
ADIC SPACES II

QUANLIN CHEN

Let’s start by recalling some basic definitions.

• A Huber ring is a topological ring with an open subring of definition A0 ⊂ A adic with respect to a finitely

generated ideal of definition.

• A is called Tate if it contains a topological nilpotent unit (pseudo-uniformizer) g ∈ A. A Huber ring A is

analytic if A◦◦
generates the unit ideal. Any Tate ring is analytic.

• A subringA+ ⊂ A is a ring of integral elements if it is open and integrally closed inA andA+ ⊂ A◦
. A Huber

pair is a pair (A,A+) of a Huber ring A and A+
a ring of integral elements.

• The adic spectrum Spa(A,A+) is the set of equivalence classes of continuous valuations | · | on A such that

|A+| ≤ 1. For x ∈ Spa(A,A+), write g 7→ |g(x)| for a choice of corresponding valuation. The topology on

Spa(A,A+) is generated by open subsets of the form

{x : |f(x)| ≤ |g(x)| ̸= 0}

with f, g ∈ A. Rational subsets are

U(T/s) := {x ∈ X : |t(x)| ≤ |s(x)| ̸= 0, for all t ∈ T}

whereTA ⊂ A is open andT ⊂ A is finite. It is a theorem of Huber for any rational subsetU ⊂ Spa(A,A+),

there is an universal complete Huber pair (A,A+)→ (OX(U),O+
X(U)) which moreover induces a homeo-

morphism onto U

Spa(OX(U),O+
X(U))→ Spa(A,A+).

• Define a pair of presheaves (OX ,O+
X) of topological rings on Spa(A,A+) by

OX(W ) := lim←−
U⊂W rational

OX(U), O+
X(W ) := lim←−

U⊂W rational

O+
X(U).

A Huber pair (A,A+) is sheafy if OX is a sheaf of topological rings.

1. Analytic adic spaces

We now say a few words about analytic adic spaces, which include all adic spaces that we shall see in Bhargav’s class.

These are spaces that are close to rigid analytic varieties but without finiteness assumptions.

Definition 1.1. Let (A,A+) be a Huber pair. A point x ∈ Spa(A,A+) is analytic if the prime ideal supp(x) :=
{a ∈ A : |a(x)| = 0} of A is not open. A point x of an adic space X is analytic if it has an affinoid neighborhood in

which x is analytic. An adic space is analytic if all its points are analytic. In particular, the set of analytic points is open.

Proposition 1.2. Let (A,A+) be a complete Huber pair.
(1) The Huber ring A is analytic if and only if all points of Spa(A,A+) are analytic.
(2) A point x ∈ Spa(A,A+) is analytic if and only if there is a rational neighborhood U ⊂ Spa(A,A+) of x such

that OX(U) is Tate.

Definition 1.3. A morphism f : A→ B of Huber rings is adic if for one and hence any choice of rings of definition

A0 ⊂ A, B0 ⊂ B with f(A0) ⊂ B0, and I ⊂ A0 an ideal of definition, f(I)B0 is an ideal of definition. A

morphism between Huber pairs is adic if A→ B is.

Remark 1.4. If A is Tate, then any morphism f : A→ B is.

Example 1.5. Zp → Zp[[x]] is not adic.
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Proposition 1.6. A map (A,A+)→ (B,B+) of complete Huber pairs is adic if and only if Spa(B,B+)→ Spa(A,A+)
carries analytic points to analytic points.

One may then define an adic morphism between adic spaces to be a morphism that sends analytic points to analytic

points or equivalently is locally given by adic morphisms between Huber pairs.

Proposition 1.7. If (A,A+)→ (B,B+) is adic, then pullback along the associated map of topological spaces preserves
rational subsets. Moreover, for a diagram (B,B+)← (A,A+)→ (C,C+) of Huber pairs where both morphisms are
adic, let (A0, B0, C0) be rings of definition compatible with the morphisms, and let I ⊂ A0 be an ideal of definition.
Let D = B⊗AC and let D0 be the image of B0⊗A0 C0 in D. Make D into a Huber ring by declaring D0 to be a ring
of definition with ID0 as its ideal of definition. Let D+ be the integral closure of the image of B+ ⊗A+ C+ in D. Then
(D,D+) is a Huber pair and it is the pushout of the diagram in the category of Huber pairs.

Definition 1.8. A complete analytic Huber pair (A,A+) is stably uniform if OX(U) is uniform (A◦
is bounded) for

all rational subsets U ⊂ X = Spa(A,A+).

Theorem 1.9. If the complete analytic Huber pair (A,A+) is stably uniform, then it is sheafy. In particular, perfectoid
spaces are sheafy.

2. Rigid spaces

There is a fully faithful functor r from rigid analytic spaces over k to adic spaces over Spa(k, k◦) with the following

properties:

• It sends Sp(A) to Spa(A,A◦) for affinoidA. And if f : Sp(A)→ Sp(B) is a morphism induced byφ : B →
A, then r(f) is given by the morphism (B,B◦) → (A,A◦) induced by φ. Here we might want to say a few

words on how to topologize A. Take a presentation

A = k⟨Ti⟩/I

with the residue seminorm

|f | := inf{|h| : hI = f}.
This norm depends on the choice of presentation, but the topology it induces does not (by the open mapping

theorem). This topologizes A and consequently

A◦ = Ok⟨Ti⟩/(I ∩ Ok⟨Ti⟩).

• An open embedding is sent to an open embedding.

• A family of admissible open subsets is an admissible covering if and only if their adic counterpart forms an

honest open covering.

• The image of objects under r are locally of finite type over Spa(k, k◦).

• r induces an equivalence from the category of quasi-separated rigid analytic spaces over k to adic spaces over

Spa(k, k◦) that are locally of finite type and quasi-separated.

• r commutes with fiber products and preserves étale and smooth morphisms.

3. Separated and proper morphisms

We already saw words like “locally of finite type,” “quasi-separated,” “étale" and “smooth." These are part of the

foundational vocabulary of usual algebraic geometry. In this section we hope to convince you that there are reasonable

analogues for adic spaces.

There is a usual notion of quasi-compactness of a spectral space. A spectral space is called quasi-separated if the

intersection of any two quasi-compact open subsets is quasi-compact.

Definition 3.1. A ring morphism f : A → B from a Huber ring A to a complete Huber ring B is of topologically
finite type if f is adic and there exists a finite subset M ⊂ B such that A[M ] is dense in B, and there exist rings of

definition A0, B0 of A and B and a finite subset N ⊂ B0 such that f(A0) ⊂ B0 and A0[N ] is dense in B0.
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Definition 3.2. Let f : X → Y be a morphism of adic spaces. Then f is called locally of finite type if for every

x ∈ X there exist open affinoid subspaces U, V of X,Y such that x ∈ U , f(U) ⊂ V and the ring homomor-

phism of Huber pairs (OY (V ),O+
Y (V )) → (OX(U),O+

X(U)) is of topologically finite type. The morphism f is

called locally of weakly finite type if one may choose U and V as above such that OY (V ) → OX(U) is of topologi-

cally finite type. The morphism f is called of
+

weakly finite type if f is quasi-compact and if there exists U and V as

above together with a finite subset E ⊂ OX(U) such that O+
X(U) is the integral closure of O+

Y [E ∪ OX(U)◦◦] in

OX(U). The morphism f is called locally of finite presentation if for every x ∈ X there exist U, V as above such that

(OY (V ),O+
Y (V )) → (OX(U),O+

X(U)) is of topologically finite type and if the topology of OY (V ) is discrete, the

ring morphism OY (V )→ OX(U) is of finite presentation.

Locally of weakly finite type morphisms are all adic morphisms. Morphisms between rigid analytic varieties are all

of finite type.

Proposition 3.3. Let f : X → Z and g : Y → Z be morphisms of adic spaces. Then the fiber product of f and g exists
if either f is locally of finite type or if f is locally of weakly finite type and g is adic.

Definition 3.4. A morphism of adic spaces f : X → Y is called separated if f is locally of weakly finite type and the

image of the diagonal morphism∆ : X → X×Y X is closed inX×Y X . The morphism f is called universally closed
if f is locally of weakly finite type and for every adic morphism Y ′ → Y the projectionX×Y Y ′ → Y ′

is closed. The

morphism f is called proper if f is of
+

weakly finite type, separated, and universally closed.

Recall that a point y ∈ X of a topological space X called a generalization of point x ∈ X (or x is called a special-

ization of y) if y is contained in every neighborhood of x in X .

In an analytic adic space X , all generalization of x ∈ X form a chain. A point x ∈ X is called maximal if it has

no other generalizations. Then a point x ∈ X is maximal if and only if the valuation vx has rank 1. Let x ∈ X be

a generalization y, then the natural ring morphism j : OX,y → OX,x is local and flat and in particular injective. A

morphism between analytic adic spaces X → Y sends maximal points to maximal points and f sends the set of all

generalizations of x ∈ X onto the set of all generalizations of f(x) ∈ Y .

Definition 3.5. Let f : X → Y be a morphism of adic spaces. Say that f is specializing at a point x ∈ X if for

every specialization y′ of f(x) in Y there exists a specialization x′
of x in X with y′ = f(x′). Say that f is universally

specializing at a pointx ∈ X if f is locally of weakly finite type and for every adic morphism of adic spacesY ′ → T and

every point x′
of X ×Y Y ′

lying over x, the projection X ×Y Y ′ → Y ′
is specializing at x′

. Say that f is specializing

if f is universally specializing at every point of X and say that f is universally specializing if f is universally specializing

at every point. Say that f is partially proper if f is locally of
+

weakly finite type, spearated, and universally specializing.

Remark 3.6. A morphism f is proper if and only if it is partially proper and quasi-compact.

3.1. The generic fiber construction. Let’s review how to extract the generic fiber of a p-adic formal scheme X. Let

A be a complete Zp-algebra. Then A is a Huber ring with itself being a ring of definition and (p) being an ideal of

definition and (A,A) is a Huber pair. Then the functor

Spf(A) 7→ Spa(A,A)

extends to a fully faithful functor from p-adic formal schemes to adic spaces over Spa(Zp,Zp). This functor is denoted

X 7→ Xad
. Let X be a p-adic formal scheme, define its generic fiber to be

Xη := Xad ×
Spa(Zp,Zp) Spa(Qp,Zp).

By above, the fiber product always exists when X is of topologically finite type over Zp. In the cases of our interests,

the functor

Spf (A) 7→ Spa(A[1/p], A)

always works as a fiber product.

4. The étale site

4.1. Étale morphisms. Let f : X → Y be a morphism between adic spaces that is locally of weakly finite type.

Let ∆ : X → X ×Y X =: Z be the diagonal morphism and I ⊂ OZ be the kernel of OZ → ∆∗OX . Define

ΩX/Y := ∆∗(I) = I⊗OZ
OX .
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Definition 4.1. Let f : X → Y be a morphism between adic spaces. Then f is called unramified if f is locally of

finite type and if for any Huber pair (A,A+) and any square-zero ideal I ⊂ A and any morphism Spa(A,A+)→ Y ,

the map HomY (Spa(A,A+), X) → HomY (Spa(A,A+)/I,X) is injective. Say that f is smooth if it is locally of

finite presentation and the above map is surjective. Say that f is étale if it is locally of finite presentation and the above

map is bijective.

Remark 4.2. We need to clarify how to quotient a Huber pair (A,A+) by an ideal I . The definition is simply that

(A,A+)/J = (A/J, (A+/(A+ ∩ J))c) where (A+/(A+ ∩ J))c denote the integral closure of (A+/(A+ ∩ J))c

inside A/J . This is again a Huber pair. This construction can be globalized to define closed adic subspaces of X
corresponding to a quasicoherent OX -module I ⊂ OX .

Remark 4.3. Open embeddings are étale, locally closed embeddings are unramified. For f : X → Y and g : Y → Z ,

if g ◦ f is unramified then f is unramified. If g ◦ f is étale and g is unramified then f is étale. The above properties of

morphisms are stable under base changes.

Remark 4.4. For f : X → Y locally of finite type, f is unramified if and only ifΩX/Y = 0, if and only if the diagonal

∆ : X → X ×Y X is an open embedding. If X → Y is smooth then ΩX/Y is a locally free OX -module.

Remark 4.5. A morphism f : X → Y is étale if and only if it is flat (for every x ∈ X , OX,x is flat over OY,f(x)) and

unramified.

Proposition 4.6. If Spa(A,A+)→ Spa(B,B+) is étale, then B → A is flat.

Proposition 4.7. Every smooth morphism of adic spaces is open.

Remark 4.8. There is a notion of étale and smooth morphisms between rigid analytic varieties and they coincide with

the above definition under the functor r.

For analytic adic spaces, Scholze used the following criterion.

Proposition 4.9. A morphism f : X → Y is finite étale if for all Spa(B,B+) ⊂ Y open, its pullback in X is
Spa(A,A+)whereA is a finite étaleB-algebra andA+ is the integral closure of the image ofB+ inA. Then a morphism
f : X → Y is étale if and only if x ∈ X there exists an open U ∋ x and V ⊃ f(U) such that there is the following
diagram.

U W

V

open

f |U finite étale

4.2. The étale site. The étale site Xét of an adic space is the category of adic spaces étale over X equipped with the

Grothendieck topology such that a family a étale morphisms overX is a covering if and only if they are jointly surjective.

Every morphism of adic spaces f : X → Y induces f : Xét → Yét. There is a parallel notion of the étale site over

a rigid analytic variety. Then the functor r induces an equivalence on the étale topos on two incarnations of a rigid

analytic variety X . Let’s consider some examples of étale sheaves.

Example 4.10. Let Z be an adic space over X , then the presheaf on Xét represented by Z is a sheaf if either Z is étale

over X or X is analytic.

Example 4.11. Let G be an étale finite adic group over X , then it makes sense to consider étale G-torsors over X . One

may also view G as an étale sheaf, and that will lead to the same notion of étale torsors.

Example 4.12. There is a general recipe for taking base change of an adic space along a morphism between schemes.

This basically amounts to analytify the scheme over a base adic space. One may in particular make sense of Z :=
X ×Spec Z Spec Z[T ]/(Tn− 1) which is étale over X . The sheaf represented by Z is µn : Y 7→ {s ∈ OY (Y ) : sn =
1}.

Example 4.13. The adic affine line Ga : Y 7→ OY (Y ) = HomX(Y,X ×Spec Z Spec Z[T ]) is a sheaf. There is also

the familiar sheaf Gm : U 7→ OY (U)× sitting in the exact sequence

0→ µn → Gm
n−→ Gm → 0
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5. Overconvergent sheaves

Huber studied the partially proper site which leads to the notion of overconvergent sheaves, which is very important

for Bhargav’s joint work with Jacob Lurie. Instead of considering all open embeddings, we might want to restrict to

only partially proper open embeddings, and instead of étale morphisms, we might wish to restrict to partially proper

étale morphisms. These notions lead to the partially proper sites on adic spaces.

Let X be an adic space. Then X as a topological space is locally spectral and generalizations of any given point form

a chain. The morphisms between analytic spaces are spectral and generalizing. Recall that a map X → Y between

locally spectral spaces is called spectral if for every qcqs open subsets U ⊂ X and V ⊂ Y such that f(U) ⊂ V , the

restriction f : U → V is quasi-compact.

Definition 5.1. A sheaf F on an analytic space X is called overconvergent if for any x, y ∈ X such that y is a special-

ization of x, the natural mapping of stalks Fy → Fx is bijective.

Remark 5.2. Then F is overconvergent if and only if for every x ∈ X , the restriction of F to the set {x} of specializa-

tions of x in X is a constant sheaf.

Remark 5.3. Let f : X → Y be a morphism of analytic adic spaces. If F is overconvergent on Y , then f∗F is

overconvergent.

Remark 5.4. Say that an open subset U ⊂ X is partially proper if the inclusion is partially proper. Then U ⊂ X is

partially proper if and only if U is closed under specializations of X . The set of partially proper open subsets of X is

closed under unions and finite intersections and hence defines a partially proper topology on X .

Definition 5.5. A sheaf F on the étale site Xét of an analytic adic space X is called overconvergent if for every special-

ization morphism u : η1 → η2 of geometric points of X , the mapping u∗F : Fη2
→ Fη1

is bijective.
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