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QUANLIN CHEN

Let’s start by recalling some basic definitions.

o A Huber ring is a topological ring with an open subring of definition Ay C A adic with respect to a finitely
generated ideal of definition.

o A is called Tate if it contains a topological nilpotent unit (pseudo-uniformizer) g € A. A Huber ring A is
analytic if A°° generates the unit ideal. Any Tate ring is analytic.

e Asubring AT C Aisaringofintegral elementsif itis open and integrally closed in A and AT C A°. A Huber
pair is a pair (A, A1) of a Huber ring A and A" a ring of integral elements.

e The adic spectrum Spa(A, A™) is the set of equivalence classes of continuous valuations | - | on A such that
|A*| < 1.Forz € Spa(A, AT), write g — |g(x)| for a choice of corresponding valuation. The topology on
Spa(A, A1) is generated by open subsets of the form

{z: [f(2)] < lg(2)] # 0}
with f, g € A. Rational subsets are
U(T/s) ={x e X :|t(z)| < |s(x)| #0,forallt € T}

where TA C Aisopenand T C Ais finite. Itis a theorem of Huber for any rational subset U C Spa(A, A™),
there is an universal complete Huber pair (A, A*) — (0x (U), 0% (U)) which moreover induces a homeo-
morphism onto U

Spa(Ox (U), 0% (U)) — Spa(A, A™).
e Define a pair of presheaves (O x, 0% ) of topological rings on Spa(A4, A™) by
Ox(W):= lm  Ox(U). Ok(W)= lm 0}(0).
U CW rational U CW rational

A Huber pair (A, A™) is sheafy if O x is a sheaf of topological rings.

1. ANALYTIC ADIC SPACES

We now say a few words about analytic adic spaces, which include all adic spaces that we shall see in Bhargav’s class.
These are spaces that are close to rigid analytic varieties but without finiteness assumptions.

Definition r.1. Let (4, AT) be a Huber pair. A point 2 € Spa(A, A1) is analytic if the prime ideal supp(z) :=
{a € A:|a(z)| = 0} of Ais not open. A point  of an adic space X is analytic if it has an affinoid neighborhood in
which  is analytic. An adic space is analytic if all its points are analytic. In particular, the set of analytic points is open.

Proposition 1.2. Let (A, A") be a complete Huber pair.
(1) The Huber ring A is analytic if and only if all points of Spa(A, AT) are analytic.
(2) A point x € Spa(A, A") is analytic if and only if there is a rational neighborhood U C Spa(A, A™) of x such
that O x (U) is Tate.

Definition 1.3. A morphism f : A — B of Huber rings is adic if for one and hence any choice of rings of definition
Ao C A, By C Bwith f(A4g) C By, and I C Ag an ideal of definition, f(I)Bjy is an ideal of definition. A
morphism between Huber pairs is adic if A — B is.

Remark 1.4. If Ais Tate, then any morphism f : A — Bis.

Example 1.s. Z, — Z,[[x]] is not adic.
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Proposition 1.6. Amap (A, A™) — (B, B") of complete Huber pairs is adic if and onlyif Spa(B, B*) — Spa(A, A1)

carries analytic points to analytic points.

One may then define an adic morphism between adic spaces to be a morphism that sends analytic points to analytic
points or equivalently is locally given by adic morphisms between Huber pairs.

Proposition 1.7. If (A, A") — (B, B™) is adic, then pullback along the associated map of topological spaces preserves
rational subsets. Moreover, for a diagram (B, BY) < (A, AT) — (C,C™") of Huber pairs where both morphisms are
adic, let (Ao, Bo, Co) be rings of definition compatible with the morphisms, and let I C Aq be an ideal of definition.
Let D = B®a C and let Dy be the image of Bo ® a, Co in D. Make D into a Huber ring by declaring Dy to be a ring
of definition with I Dy as its ideal of definition. Let D be the integral closure of the image of BY @ g+ C'* in D. Then
(D, D) is a Huber pair and it is the pushout of the diagram in the category of Huber pairs.

Definition 1.8. A complete analytic Huber pair (A, A™) is stably uniform if O x (U) is uniform (A® is bounded) for
all rational subsets U C X = Spa(A4, A™).

Theorem 1.9. [fthe complete analytic Huber pair (A, AT) is stably uniform, then it is sheafy. In particular, perfectoid
spaces are sheafy.

2. RIGID SPACES

There is a fully faithful functor r from rigid analytic spaces over & to adic spaces over Spa(k, k°) with the following
properties:

o Itsends Sp(A) to Spa(A, A°) for affinoid A. Andif f : Sp(A) — Sp(B) is a morphism induced by ¢ : B —
A, then r(f) is given by the morphism (B, B°) — (A, A°) induced by ¢. Here we might want to say a few

words on how to topologize A. Take a presentation
A= KT/T

with the residue seminorm
|f| := inf{|h| : RT = f}.

This norm depends on the choice of presentation, but the topology it induces does not (by the open mapping
theorem). This topologizes A and consequently

A° = Op(T5) /(I N OR(T3)).

e An open embedding is sent to an open embedding.

o A family of admissible open subsets is an admissible covering if and only if their adic counterpart forms an
honest open covering.

o The image of objects under  are locally of finite type over Spa(k, k°).

o 7 induces an equivalence from the category of quasi-separated rigid analytic spaces over k to adic spaces over
Spa(k, k°) that are locally of finite type and quasi-separated.

e r commutes with fiber products and preserves étale and smooth morphisms.

3. SEPARATED AND PROPER MORPHISMS

» <«

We already saw words like “locally of finite type,” “quasi-separated,” “étale” and “smooth.” These are part of the
foundational vocabulary of usual algebraic geometry. In this section we hope to convince you that there are reasonable
analogues for adic spaces.

There is a usual notion of quasi-compactness of a spectral space. A spectral space is called quasi-separated if the
intersection of any two quasi-compact open subsets is quasi-compact.

Definition 3.1. A ring morphism f : A — B from a Huber ring A to a complete Huber ring B is of topologically
finite type if f is adic and there exists a finite subset M C B such that A[M] is dense in B, and there exist rings of
definition Ag, By of A and B and a finite subset N C By such that f(Ag) C By and Ag[N] is dense in By.
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Definition 3.2. Let f : X — Y be a morphism of adic spaces. Then f is called locally of finite type if for every
x € X there exist open affinoid subspaces U,V of X,Y such thatx € U, f(U) C V and the ring homomor-
phism of Huber pairs (Oy (V), 05(V)) — (0x(U), 0% (U)) is of topologically finite type. The morphism f is
called locally of weakly finite type if one may choose U and V' as above such that Oy (V) — Ox(U) is of topologi-
cally finite type. The morphism f is called of Tweakly finite type if f is quasi-compact and if there exists U and V" as
above together with a finite subset £ C O x (U) such that OF (U) is the integral closure of O3 [E U O x (U)°°] in
Ox (U). The morphism f is called locally of finite presentation if for every x € X there exist U, V' as above such that
(Oy (V),05(V)) = (0x(U), 0% (U)) is of topologically finite type and if the topology of Oy (V') is discrete, the
ring morphism Oy (V') — Ox (U) is of finite presentation.

Locally of weakly finite type morphisms are all adic morphisms. Morphisms between rigid analytic varieties are all

of finite type.

Proposition3.3. Let f : X — Zand g:Y — Z be morphisms of adic spaces. Then the fiber product of f and g exists
ifeither f is locally of finite type or if f is locally of weakly finite type and g is adit.

Definition 3.4. A morphism of adic spaces f : X — Y is called separated if f is locally of weakly finite type and the
image of the diagonal morphism A : X — X xy X isclosedin X xy X. The morphism f is called universally closed
if f islocally of weakly finite type and for every adic morphism Y’ — Y the projection X Xy Y’ — Y is closed. The
morphism f is called proper if f is of T weakly finite type, separated, and universally closed.

Recall that a pointy € X of a topological space X called a generalization of point x € X (or x is called a special-
ization of y) if i is contained in every neighborhood of z in X.

In an analytic adic space X, all generalization of € X form a chain. A point x € X is called maximal if it has
no other generalizations. Then a point # € X is maximal if and only if the valuation v, has rank 1. Letz € X be
a generalization y, then the natural ring morphism j : Ox y, — Ox s is local and flat and in particular injective. A
morphism between analytic adic spaces X — Y sends maximal points to maximal points and f sends the set of all
generalizations of # € X onto the set of all generalizations of f(z) € Y.

Definition 3.5. Let f : X — Y be a morphism of adic spaces. Say that f is specializing at a point x € X if for
every specialization y of f(x) in Y there exists a specialization 2’ of x in X with ¢’ = f(z'). Say that f is universally
specializing atapointx € X if f islocally of weakly finite type and for every adic morphism of adic spaces Y’ — T"and
every point 2’ of X Xy Y” lying over , the projection X Xy Y’ — Y is specializing at #’. Say that f is specializing
if f is universally specializing at every point of X and say that f is universally specializing if f is universally specializing
at every point. Say that f is partially properif f islocally of T weakly finite type, spearated, and universally specializing.

Remark 3.6. A morphism f is proper if and only if it is partially proper and quasi-compact.

3.1. The generic fiber construction. Let’s review how to extract the generic fiber of a p-adic formal scheme X. Let
A be a complete Z,,-algebra. Then A is a Huber ring with itself being a ring of definition and (p) being an ideal of
definition and (A, A) is a Huber pair. Then the functor

Spf(A) — Spa(A, A)
extends to a fully faithful functor from p-adic formal schemes to adic spaces over Spa(Zy,, Z,,). This functor is denoted
X — X%, Let X be a p-adic formal scheme, define its generic fiber to be

X, = X Xgpuz,.2,) SPA(Qp, Zp).
By above, the fiber product always exists when X is of topologically finite type over Z,,. In the cases of our interests,
the functor
Spf (A) — Spa(A[1/p], A)

always works as a fiber product.

4. THE ETALE SITE

4.1. Etale morphisms. Let f : X — Y be a morphism between adic spaces that is locally of weakly finite type.
Let A : X — X Xy X =: Z be the diagonal morphism and J C Oz be the kernel of Oz — A,Ox. Define
Qx/y = A*(j) =17 ®OZ OX



4 QUANLIN CHEN

Definition 4.1. Let f : X — Y be a morphism between adic spaces. Then f is called unramified if f is locally of
finite type and if for any Huber pair (A, A") and any square-zero ideal I C A and any morphism Spa(4, AT) — Y,
the map Homy (Spa(A, A1), X) — Homy (Spa(A4, AT)/I, X) is injective. Say that f is smooth if it is locally of
finite presentation and the above map is surjective. Say that f is étale if it is locally of finite presentation and the above
map is bijective.

Remark 4.2. We need to clarify how to quotient a Huber pair (A, A™) by an ideal I. The definition is simply that
(A, AT))J = (A)J, (AT /(AT N J))°) where (AT /(AT N J)) denote the integral closure of (A1 /(AT N J))¢
inside A/J. This is again a Huber pair. This construction can be globalized to define closed adic subspaces of X
corresponding to a quasicoherent O x-module J C Ox.

Remark 4.3. Open embeddings are étale, locally closed embeddings are unramified. For f : X = Y andg:Y — Z,
if g o f is unramified then f is unramified. If g o f is étale and g is unramified then f is étale. The above properties of
morphisms are stable under base changes.

Remark 4.4. For f + X — Y locally of finite type, f is unramified if and only if 2 )y = 0, if and only if the diagonal
A X — X xy X isan open embedding. If X — Y is smooth then Q x /y- is a locally free O x-module.

Remark 4.5. A morphism f : X — Y is étale if and only if it is flat (for every z € X, Ox ; is flat over Oy ¢(,)) and
unramified.

Proposition 4.6. IfSpa(A, A") — Spa(B, B") is étale, then B — A is flat.
Proposition 4.7. Every smooth morphism of adic spaces is open.

Remark 4.8. There is a notion of étale and smooth morphisms between rigid analytic varieties and they coincide with
the above definition under the functor .

For analytic adic spaces, Scholze used the following criterion.

Proposition 4.9. A morphism [ : X — Y is finite étale if for all Spa(B, BT) C Y open, its pullback in X is
Spa(A, A") where Ais a finite étale B-algebra and A isthe integral closure of the image of B in A. Then a morphism
[+ X = Y iséaleifand only if x € X there exists an open U > x and V' D f(U) such that there is the following

diagram.
Open

U —7—F7-— W

fm '/nite érale
|4

4.2. The étale site. The étale site X¢, of an adic space is the category of adic spaces étale over X equipped with the
Grothendieck topology such that a family a étale morphisms over X is a covering if and only if they are jointly surjective.
Every morphism of adic spaces f : X — Y induces f : X4 — Y. There is a parallel notion of the étale site over
a rigid analytic variety. Then the functor r induces an equivalence on the étale topos on two incarnations of a rigid
analytic variety X. Let’s consider some examples of étale sheaves.

Example 4.10. Let Z be an adic space over X, then the presheaf on X, represented by Z is a sheaf if either Z is étale
over X or X is analytic.

Example 4.11. Let G be an étale finite adic group over X, then it makes sense to consider étale G-torsors over X. One
may also view G as an étale sheaf, and that will lead to the same notion of étale torsors.

Example 4.12. There is a general recipe for taking base change of an adic space along a morphism between schemes.
This basically amounts to analytify the scheme over a base adic space. One may in particular make sense of Z :=
X Xspecz Spec Z[T']/(T™ — 1) which is étale over X. The sheaf represented by Zis pi,, : Y = {s € Oy (V) : 5" =

1}.
Example 4.13. The adic affineline G, : Y = Oy (Y) = Homx (Y, X Xspec z Spec Z[T7) is a sheaf. There is also
the familiar sheaf G,,, : U — Oy (U)* sitting in the exact sequence

0= pin = Gpm G —0



5. OVERCONVERGENT SHEAVES

Huber studied the partially proper site which leads to the notion of overconvergent sheaves, which is very important
for Bhargav’s joint work with Jacob Lurie. Instead of considering all open embeddings, we might want to restrict to
only partially proper open embeddings, and instead of étale morphisms, we might wish to restrict to partially proper
étale morphisms. These notions lead to the partially proper sites on adic spaces.

Let X be an adic space. Then X as a topological space is locally spectral and generalizations of any given point form
a chain. The morphisms between analytic spaces are spectral and generalizing. Recall that a map X — Y between
locally spectral spaces is called spectral if for every qcqs open subsets U C X and V' C Y such that f(U) C V, the
restriction f : U — V is quasi-compact.

Definition s.x. A sheaf J on an analytic space X is called overconvergent if for any x,y € X such that y is a special-
ization of x, the natural mapping of stalks &, — F is bijective.

Remark s.2. Then F is overconvergent if and only if for every z € X, the restriction of F to the set {x } of specializa-
tions of « in X is a constant sheaf.

Remark s3. Let f : X — Y be a morphism of analytic adic spaces. If J is overconvergent on Y, then f*J is
overconvergent.

Remark s.4. Say that an open subset U C X is partially proper if the inclusion is partially proper. Then U C X is
partially proper if and only if U is closed under specializations of X. The set of partially proper open subsets of X is
closed under unions and finite intersections and hence defines a partially proper topology on X.

Definition s5.5. A sheaf J on the étale site X¢. of an analytic adic space X is called overconvergent if for every special-
ization morphism u : 171 — 12 of geometric points of X, the mapping u*F : F,, — F,;, is bijective.
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