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Abstract. We give a rapid overview of the theory of adic spaces most relevant to Bhargav’s class, topics including basic

definitions, analytic adic spaces, rigid spaces, separated and proper morphisms, the generic fiber construction, the étale site,

and overconvergent sheaves.

1. Basics

The building blocks for schemes are spectra of rings. The building blocks for adic spaces are adic spectra of Huber

pairs. One of the technical points of non-archimedean geometry is that all rings are equipped with a topology, and

various constructions should take the topology into account. Let’s start by reviewing what a Huber pair is.

Definition 1.1. A topological ring A is Huber if A admits an open subring A0 ⊂ A which is adic with respect to a

finitely generated ideal of definition. Any such A0 is called a ring of definition of A. By saying that a topological ring

A0 has I as an ideal of definition, we mean that the topology on A0 is I-adic.

Remark 1.2. If A is Huber and A0 ⊂ A is any adic open subring, A0 has a finitely generated ideal of definition.

Remark 1.3. A0 is not assumed to be I-adically complete, but one may nonetheless always take the completion with

respect to the I-adic topology by defining Â via the Cauchy sequence construction, then the closure Â0 of A0 ⊂ Â

is the I-adic completion of A0 and Â = Â0 ⊗A0
A. A Huber ring is called complete if it has an I-adically complete

ring of definition (A0, I). Whether a Huber ring is complete doesn’t depend on the choice of a ring of definition.

Although many of the below can be said for non-complete pairs, we always assume that A is complete.

Remark 1.4. When the ideal of definition is not assumed to be finitely generated, exotic things can happen. For example,

there exists an I-adic ring A and an A-module M such that M̂/IM̂ ̸≃M/IM . This is forbidden in p-adic geometry

since one should be able to think of a p-adic formal scheme as patching other Z/pnZ-schemes and hence one always

wants completion to respect modulo pn-reduction.

Example 1.5. Some recurring standard examples of Huber rings include:

(1) (Schemes) Any discrete ring A. Take I = 0, then any subring works as a ring of definition. Any subset of A
is bounded. Hence, A◦ = A and A◦◦ = Nil(A). The pair (A,A) is a Huber pair. Spa(A,A) is the set of

valuations on A bounded by 1. This is in general different from Spec A. For example the points of Spa(Z,Z)
are:

(a) A point η taking all non-zero integers to 1.

(b) A special point sp for each prime p given by the composition Z→ Fp → {0, 1} where the second map

sends all nonzero elements to 1.

(c) A point ηp for each prime p given by the p-adic valuation

Z→ Zp → pZ≤0 ∪ {0}.

In general there is a natural map Spa(R,R) → Spec R and a natural section Spec R → Spa(R,R), both

continuous.

(2) (Formal schemes) An adic ring A with a finitely generated ideal of definition is Huber, by taking A0 = A.

Any subset of A is bounded. Hence, A◦ = A and A◦◦ =
√
I . The pair (A,A) is a Huber pair. The map

A 7→ Spa(A,A) defines a fully faithful functor from locally noetherian formal schemes to adic spaces.
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(3) (Rigid spaces) Let k be a nonarchimedean field, then the Tate algebra

k⟨T1, . . . , Tn⟩ :=


∑

I∈Zn
≥0

aIT
I ∈ k[[T1, . . . , Tn]] : lim

|I|→∞
aI → 0


is Huber with a ring of definition Ok⟨T1, . . . , Tn⟩ and a ring of definition (g) for any g ∈ Ok with valuation

less than 1. Quotients of Tate algebras with quotient topology are also Huber. A subset of A is bounded if the

absolute values of the coefficients of the elements are uniformly bounded. Hence, A◦ = Ok⟨T1, . . . , Tn⟩ and

A◦◦ =
√
(g). The pair (A,A◦) is Huber and the points of its adic spectrum can get complicated.

(4) (Perfectoid spaces) Let R be an integral perfectoid ring which is integrally closed in R[1/p] (in particular R
should be p-torsionfree). Then R[1/p] is Huber with a ring of definition R and an ideal of definition (p).

Examples (3) and (4) are examples of Tate rings. Recall that a non-Archimedean field is a field k together with an

equivalence class of non-Archimedean absolute values with respect to which k is complete. Also, recall that a non-

Archimedean field is a local field if it is required to be locally compact Hausdorff, and in particular, that implies the

residue field to be finite. Fix k a non-Archimedean field.

Definition 1.6. A Huber ring A is called Tate if it contains a topological nilpotent unit g ∈ A. Such a g is called a

pseudo-uniformizer in A. A Huber ring A is analytic if the ideal generated by topologically nilpotent elements is the

unit ideal. Any Tate ring is analytic.

A Huber pair (A,A+) is a pair of a Huber ring A and a subring A+ ⊂ A satisfying certain properties. Let’s make

this precise.

Definition 1.7. A subset S of a topological ring A is called bounded if for all open neighborhoods U of 0 there is an

open neighborhood V of 0 such that V S ⊂ U .

Remark 1.8. A subring A0 of a Huber ring A is a ring of definition if and only if it is open and bounded.

Definition 1.9. An element x ∈ A of a Huber ring is power-bounded if {xn : n ≥ 0} is bounded. Let A◦ ⊂ A be

the subring of power-bounded elements. A Huber ring is uniform if A◦
is bounded, or equivalently, A◦

is a ring of

definition.

Remark 1.10. Any ring of definition A0 ⊂ A is contained in A◦
. Any two subrings of definition are contained in a

third, and their union is A◦
.

Definition 1.11. Let A be a Huber ring. A subring A+ ⊂ A is a ring of integral elements if it is open and integrally

closed in A and A+ ⊂ A◦
. A Huber pair is a pair (A,A+) of a Huber ring A and A+

a ring of integral elements.

Remark 1.12. One often takes A+ = A◦
, especially in cases corresponding to classical rigid geometry. The subset

A◦◦ ⊂ A of topologically nilpotent elements is always contained in A+
by openness.

To these Huber pairs, we shall attach affine adic spaces, but we first need to define the corresponding “generalization”

of prime ideals.

Definition 1.13. A continuous valuation on a topolological ring A is a map | · | : A→ Γ ∪ {0} into a totally ordered

abelian group Γ such that

(1) |ab| = |a||b|
(2) |a+ b| ≤ max(|a|, |b|)
(3) |1| = 1
(4) |0| = 0
(5) for all γ ∈ Γ lying in the image of | · |, the set {a ∈ A : |a| < γ} is open in A.

Two continous valuations | · |, | · |′ valued in Γ and Γ′
are equivalent when |a| ≥ |b| if and only if |a|′ > |b|′.

Definition 1.14. The adic spectrum Spa(A,A+) is the set of equivalence classes of continuous valuations | · | on A
such that |A+| ≤ 1. For x ∈ Spa(A,A+), write g 7→ |g(x)| for a choice of corresponding valuation. The topology

on Spa(A,A+) is generated by open subsets of the form

{x : |f(x)| ≤ |g(x)| ̸= 0}
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with f, g ∈ A.

Remark 1.15. The topological space Spa(A,A+) is spectral.

Remark 1.16. If A ̸= 0, Spa(A,A+) is nonempty. One has

A+ = {f ∈ A : f(x) ≤ 1, for all x ∈ X}
and an element f ∈ A is invertible if and only if for all x ∈ X , we have |f(x)| ̸= 0.

Definition 1.17. Let s ∈ S and T ⊂ A be a finite subset such that TA ⊂ A is open. We define the subset

U(T/s) := {x ∈ X : |t(x)| ≤ |s(x)| ̸= 0, for all t ∈ T}.
Subsets of this form are called rational subsets. They are open since they are a finite intersection of {|t(x)| ≤ |s(x)| ̸=
0} for t ∈ T .

Remark 1.18. The intersection of finitely many rational subsets is again rational.

Remark 1.19. It is a theorem of Huber for any rational subset U ⊂ Spa(A,A+), there is a complete Huber pair

(A,A+)→ (OX(U),O+
X(U)) such that the map

Spa(OX(U),O+
X(U))→ Spa(A,A+)

factors over U is universal for such maps. This map is in fact a homeomorphism onto U and implies that U is quasi-

compact. Let’s sketch how this is proved. Say U = U(T/s). Let A0 ⊂ A be a ring of definition with I a finitely

generated ideal of definition. Endow A0[t/s : t ∈ T ] with the I-adic topology which extends to a ring topology on

A[1/s] making A0[t/s : t ∈ T ] a ring of definition. Let A[1/s]+ be the integral closure of A+[t/s : t ∈ T ] in

A[1/s] and let (OX(U),O+
X(U)) be the completion of (A[1/s], A[1/s]+).

Definition 1.20. Define a pair of presheaves (OX ,O+
X) of topological rings on Spa(A,A+) by

OX(W ) := lim←−
U⊂W rational

OX(U), O+
X(W ) := lim←−

U⊂W rational

O+
X(U).

Remark 1.21. We may show that for all open U , we have

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1, for all x ∈ U}.

In particular O+
X is a sheaf if OX is.

Definition 1.22. A Huber pair (A,A+) is sheafy if OX is a sheaf of topological rings.

Definition 1.23. We define the category of locally v-ringed spaces as follows. The objects are triples (X,OX , | ·
(x)|x∈X), where X is a topological space, OX is a sheaf of topological rings, and for each x ∈ X , | · (x)| is an equiv-

alence class of continuous valuations on OX,x. The morphisms are maps of topologically ringed topological spaces

f : X → Y such that the composition

OY,y → OX,x
|·(x)|−−−→ Γx

is equivalent to | · (y)|. An adic space is a locally v-ringed space that is locally isomorphic to the adic spectrum of a

sheafy Huber pair.

Remark 1.24. Huber pairs corresponding to adic noetherian rings with a finitely generated ideal of definition is sheafy.

Discrete rings are sheafy. Huber pairs coming from quotients of Tate algebras and from perfectoid rings are sheafy.

Remark 1.25. The final object is Spa(Z) = Spa(Z,Z).

Example 1.26. We already mentioned that classifying all points of an adic space corresponding to a rigid space can be

complicated. We give such a complete classification for the adic closed unit disc DK := Spa(K⟨T ⟩,OK⟨T ⟩) for an

algebraically closed nonarchimedean field K . There are five classes of points:

(1) The classical points: Let x ∈ OK , then

K⟨T ⟩ → K → R≥0, f 7→ f(x) 7→ |f(x)|
defines a continuous valuation.
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(2) Branching points: Let 0 < r ≤ 1 be a real number and x ∈ OK , then

xr : f 7→ sup
y∈OK ,|y−x|≤r

|f(y)|

is a point of DK . It only depends on D(x, r). When r = 0 is reduced to the classical points and when r = 1
this gives the Gauss point as the root of the tree. This class consists of the points where r ∈ |K×|

(3) Same as above but r /∈ |K×|.
(4) Dead ends: Let D1 ⊃ D2 ⊃ · · · be a sequence of closed disks such that ∩iDi = ∅ (such sequences exists

when K = Cp). Then

f 7→ inf
i

sup
y∈Di

|f(y)|.

(5) Higher rank points: Let x ∈ OK and fix a real number r with 0 < r ≤ 1. Endow the abelian group

R>0 × γZ

with the unique total order such that γ < r but γ > r′ for all r′ < r. Then

x<r : f =
∑
n

an(t− x)n 7→ max
n
|an|γn

is a point of X . Similarly, one may define x>r . If r /∈ |k×|, x<r = x>r = xr , but for each point xr in type

2 this gives one extra point for each ray.
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