WHAT THE **** IS A STACK AND WHY SHOULD I CARE?

KENTA SUZUKI

ABSTRACT. Schemes are the basic object of study in algebraic geometry, which are usually defined
as ringed spaces. We introduce an alternative formalism, the so-called functor-of-points perspective
on schemes. This motivates the definition of stacks, which are certain functors on rings. The main
insight of Grothendieck (please correct my history!) was that one can really think of such functors
as geometric objects, and develop the theory of sheaves on them.

1. FUNCTOR-OF-POINTS

The basic object of study in modern algebraic geometry is a scheme. Usually, schemes are defined
as (locally) ringed spaces (X, Ox) which locally looks like (Spec A, Ogpec a)-
An alternative way to think about schemes is via their functor-of-points.

Definition 1.1. For a scheme X, let the functor-of-points be:
Fx: CRings = AffSch®? — Sets
R — X(R) := Homg, (Spec(R), X).
Example 1.2. The following are examples of functors-of-points of schemes:
1. when X = A} = SpecZ[t],
X(R) =R.
2. when X = Gy, z = Spec Z[t*1],
X(R) = R* = {x € R: invertible}.
3. the circle: X = Spec(Z[z,y]/(x? + y> — 1)), then
X(R) = {(z,y) € R? : 2® +¢* = 1}.
More generally, for X = Spec(Z[t1,...,tn]/(f1,---, fm)), we have

X(R)={z=(z1,...,2n) € R": fi(z) =+ = fm(z) =0}.
Thus, Fx really just captures all the solutions to the equations fi,..., fm!
4. (open complements) consider the open subscheme U = A2\{(0,0)} of X = A2. Then
X(R) = R?

and U defines the subset
U(R) = {(x,y) € R* : 2 and y generate the unit ideal}.
More generally, for U = A7\{(0,...,0)}, we have
U(R) ={(z1,...,2n) € R" : x1,..., 7, generate the unit ideal},

generalizing (2.). More generally, the open complement U of Z =V (f1,..., fm) in X = A}
has functor-of-points

UR)={z € R": fi(x),..., fm(z) generate the unit ideal}.
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Even more generally, given a scheme X = Spec(A) and a closed subscheme Z = V(I), the
open complement U = X\ Z has functor-of-points
X(R)={p: A= R:9(I)R = R}.
5. (projective line) for a further non-affine example, consider X = P}. Then
X (R) = {invertible submodules L. C R? s.t. R?*/L is also invertible},

where a R-module L is invertible if it is locally free of rank one. More generally, when
X =P7, then

X(R) = {invertible submodules L C R"™! s.t. R"*!/L is locally free}.
This is the “moduli description” of P™.
More generally, let:
Definition 1.3. A prestack is a functor CRings — Sets. Denote PreStk := Fun(CRings, Sets).
Prestacks can really be thought of as generalizations of schemes:
Theorem 1.4. The functor X — Fx defines a fully faithful embedding Sch — PreStk.

Proof. We need to prove that for any schemes X and Y the natural map
Homsch(Y, X) — Nat(Fy, Fx)

is a bijection. When Y is affine this is Yoneda. Generally, cover Y by open affines {U;}ic;. The
key observation is that

(1.1) Homsen (Y, X) = {(¢i) € [ [ Homsan (Ui, X) : @ilvinv, = @5lvinu, }- O
iel
Remark 1.5. In fact, if you want you can define a scheme to be a prestack which can locally be

covered by affine schemes.

The equality (1.1) expresses the idea that a morphism X — Y can be recovered from local data.
If we want to think of a functor F': CRings — Sets as a “geometric” object, we certainly want that
property. We define a stack to be a prestack which can be recovered from local data in this sense.

Definition 1.6. A prestack F': CRings — Sets is a stack if for any distinguished open cover
Spec(R) = U Spec(Ry,),
i€l
we have

F(R) ={z; € HF(Rfi) : $i|Rfifj = xj|Rfifj € F(Rfifj)}‘
el
Since schemes are covered by affine opens, stacks uniquely extend to a functor Sch®® — Sets, which
we will also denote as F' by an abuse of notation, such that for any open cover Y = |JU;,

F(Y) ={(z:) € HF(Uz‘) L 2ilunu; = zjluinu; }-
el
Remark 1.7. More generally, given a Grothendieck topology on Sch, one can ask for a prestack
to satisfy the sheaf axiom with respect to the topology. Given a cover {U;} of Y, we require

FY) ={(z) € HF(U%) : xi’UiXXUj = xj|Ui><XUj}‘
icl
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Example 1.8. Formal schemes, as introduced by Dhruv last time, are an examples of prestacks
which are not stacks. Let R be a noetherian ring, and let I be an ideal. Then X = Spf;(R) can be
considered a stack by

X(S) = liTrln Hom(R/I",S).

More generally, let X be a noetherian scheme and let Z be a sheaf of ideals cutting out a closed
subscheme Y — X. Let Y,, = Spec(Ox/ZI") be the n-th formal neighborhood of ¥ in X. Then
X9 is a stack by -

(X{)(S) = lim Homsey (5. ¥;).

2. EXAMPLES OF STACKS
We will have many more interesting examples if we extend Defintion 1.3 slightly to:

Definition 2.1. A prestack is a functor CRings — Gpds, where Gpds is the category of groupoids
(=categories whose morphisms are invertible). Denote PreStk := Fun(CRings, Gpds).
Example 2.2. The following are some examples of stacks valued in groupoids:

1. Any scheme X is a prestack, by setting F'x (R) = X (R) which is considered a groupoid with
objects X (R) and the only morphisms are the identities.
2. (classifying stacks) The stack X = BG,, is defined by:

ob X(R) = {line bundle on Spec R}
Hom%(R)(ﬁ,E’) = {isomorphism ¢: £ — L'},

and is called the classifying stack of line bundles. More generally, for an group scheme G,
a G-bundle on a scheme X is a scheme p: Y — X with a G-action on Y commuting with
p such that there exists an open cover U; of X with p~1(U;) 2 G x U;. Then X = BG is
defined by:

ob X(R) = {G-bundle Y on Spec R}
Homy gy (Y, Y’) = {G-equivariant isomorphism ¢: Y — Y’ over X}.
When G = G,,, this recovers the previous desciption of BG,,, because given a line bundle
L on Spec(R), we may associate a Gy,-bundle Y = Isom(O, £) defined by:
Y (S) = {a morphism Spec S %, Spec R, with an isomorphism Ospec 5 5 0 L}

Here G, acts on Y by changing the trivialization, i.e., a € G,,,(S) = S* acts by (¢,¢) —
(¢,at). Conversely, given a G,,-bundle Y, we the product Y x®n Al := (Y x A")/G,, is
the total space of a line bundle £. This gives an equivalence
{line bundles £ on Spec R} ~ {G,,-bundle Y on Spec R}
L — Isom(O, L)
YV xEm Al Y.
As further examples, BGL,, classifies rank n vector bundles, BSL,, classifies rank n vector
bundles with a trivialization of the determinant, and BSp,,, classifies rank 2n vector bundles
with a non-degenerate symplectic form.
3. (quotient stacks) For a scheme X with an action of an group scheme G, the quotient stack
X = [X/G] is defined by:
obX(R) = {G-bundle Y % Spec R and a G-equivariant morphism ¥ — X}
Homy g ((Y,p), (Y',p')) = {isomorphism ¢: Y — Y such that p’ o p = p}.
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For example, G,,, acts on A! by scaling. The quotient stack X = [Al/G,,] is defined by:

ob X(R) = {line bundle £ on Spec(R), and a homomorphism s: £ — O}
Homy(g)((£, ), (£',s")) = {an isomorphism ¢: £ — £ such that s o ¢ = s}.

Indeed, a R-point of A!/G,, is the data of a line bundle £ together with a G,,-equivariant
morphism Isom(O, £) — A'. Any such homomorphism arises as post-composition with a
homomorphism s: £ — O. The stack [A!/G,,] has a closed substack [0/G,,] consisting of
those pairs (£, s) where s = 0, and the open substack [G,,/G;,] = pt consisting of those
pairs (£, s) where s is an isomorphism.’

4. A classical motivation for stacks is to consider the space M, of genus g curves. For a scheme
X, the groupoid My(X) consists of relative curves C' — X whose fibers are genus g curves.
This is genuinely a groupoid. For example, the Klein quartic, cut out by z3y+y3z+ 23z = 0
in P2, is a genus 3 curve with automorphism group of order 168. An easier example is that
any hyperelliptic curve has an order two automorphism!

For prestacks valued in groupoids, we also want to discuss the notion “recovering from local
data,” analogous to Definition 1.6. Naively, we would require that for an open cover {U;} of Y,

F(Y)={(z;) € [[FW:) : zilv.nw, = zjlv.nu; }-
i€l

However, as our experience in category theory will tell us, equality is not the correct notion, since
it is not preserved under category equivalences. Thus, our next approximation would be to require:

F(Y)={(z:) € [[FW:) : milvinw, = zjlv.ow; }
i€l

where this is an isomorphism in the groupoid F(U; N U;). However, our experience in category
theory also tells us that requiring an isomorphism is also not the correct notion. Rather, we should
remember which isomorphisms exist between ﬂfi|UimUj and x; |UmUj- Thus, we arrive at the following
definition:

Definition 2.3. A prestack F': CRings — Sets is a stack if for any affine scheme Y = Spec(R) and
a distinguished open cover {U; = Spec(Ry,) }ier, the groupoid F(Y') is equivalent to the groupoid
whose objects are

e objects x; € F(U;) for any i € I;

e isomorphisms a;: x;|v;nv; ~ 75|v,nv; for each 4,5 € I such that:
— oy = idy, for any ¢ € I;
-y = ozj_il for any i, j € I; and
— for any i, j, k € I, the following diagram commutes:

iklU,

zilU,, T |y,

Oéij|Uijk.\ ajkIUijk

Ly |Uijk )

1Though we didn’t define open and closed substacks, there are perfectly well-behaved such notions.
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and whose morphisms are isomorphisms 7;: x; =~ z such that the following diagram com-
mutes for any i,j € I:

vilo;
‘Ti|Uij r X;|U;

.. /
\La” laij

‘TJ'|U1']' — x;‘Uij'

3. REPRESENTABILITY

We can define the fiber product of stacks in a way that generalizes the fiber product of schemes.
For this, let f: X — S and g: Y — S be morphisms of schemes. Then by the universal property of
fiber products, a morphism Spec(R) — X xg Y is equivalent to morphisms «: Spec(R) — X and
B: Spec(R) — Y such that foa = go 3. Thus, we can define

Definition 3.1. Let X, X9, and ¥ be stacks with morphisms f: X; — ¥ and g: Xo — €. Then
for a ring R, we have:

(X1 Xz X2)(R) ={x; € X4(R) : v: ffx1 ~ g*xa}.

A useful notion in the theory of stacks is representability. The idea is that even if the stacks X
and ) are not schemes, the morphism X — ) may look like a morphism of schemes.

Definition 3.2. A morphism of stacks X — 9) is representable if for any ring R and a morphism
Spec(R) — ), the fiber product X xg) Spec(R) is an affine scheme. Analogously, a morphism of
stacks X — Q) is schematic if for any scheme X and a morphism X — %), the fiber product X xg9 X
is a scheme.

Many statements about representable (resp., schematic) morphisms of stacks can be formally
reduced to the analogous statement about affine schemes (resp., schemes). Moreover, many mor-
phisms of stacks we encounter in the wild are representable!

Example 3.3. Let G be a group scheme. Then the morphism pt — BG is schematic. Indeed, for
any morphism X — BG, which corresponds to a G-bundle Y — X, we have

X Xpgpt =Y.

Indeed, a R-point of X x pg pt amounts to a point f: Spec(R) — X and a point g: Spec(R) — pt
(this is no data) with an identification of the post-compositions with X — BG. The composition
Spec(R) — X — BG corresponds to the G-bundle Spec(R) x x Y on Spec(R). Thus, the data of a
R-point of X X pg pt amounts to a trivialization of the G-bundle Spec(R) xx Y, i.e., a section of
the map Spec(R) xx Y — Spec(R). This is simply the data of a R-point of Y.

4. QUASI—COHERENT SHEAVES ON STACKS

Just as we can define quasi-coherent sheaves on schemes, we can define a quasi-coherent sheaf
on a stack as follows:

“Definition” 4.1. For a prestack X, a quasi-coherent sheaf is one of the following, from concrete
to abstract nonsense:

e a quasi-coherent sheaf F on X is the data of, for each ring R and a morphism f: Spec(R) —
X, a data of f*F € QCoh(SpecR), and for any morphism g: Spec(S) — Spec(R), a
compatible system of isomorphisms

g f*F = (fog)F.
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4.1 h(X):= i h .
(4.1) QCoh(X) SpeC%g;%QCo (Spec R)

e QCoh is a functor CRings — Ab, where Ab is the category of abelian categories, and we
can right Kan extend along the full embedding CRings — PreStk°P.

The issue is, since pullbacks along arbitrary morphisms ¢g: Spec(S) — Spec(R) may not be exact
(i.e., — ®p S is not an exact functor on the category of R-modules), the above construction does
not quite give us what we want. I believe the definition is fine if X is a stack in the fpqc topology,
but in any case the better definition is to work with derived categories. Thus we modify (4.1) to

Dye(X) == Speclé%—)% Dyc(Spec R)

where Dg.(Spec R) denotes the derived category of R-modules. For this definition to work well,
we really need to work with oco-categories instead of triangulated categories. We ignore all these
technicalities below.

Example 4.2. Here are some quasi-coherent sheaves on stacks:
1. any stack X has the structure sheaf Ox. It is defined so that for any morphism p: Spec(R) —
X,
p*of = OSpec(R)'
2. when X = X{) for a noetherian scheme X and a closed subscheme Y and Y,, denotes the
n-th formal neighborhood around Y, we have
QCoh(Xy) = lim QCoh(Y,,).

In other words, a quasi-coherent sheaf on X7 is a compatible system of quasi-coherent
sheaves on Y,,.
3. the stack X = BG,, has a tautological line bundle O(—1), defined so that for any morphism
p: Spec(R) — X, which corresponds to a line bundle £ on Spec(R), we let
p*O(-1) := L.

More generally, given a representation V' of an affine group scheme G, there is a corre-
sponding sheaf Fy on BG, so that for any morphism p: Spec(R) — X corresponding to a
G-bundle Y — Spec(R), we can let
pFy =Y xCV.
In fact, V — Fy gives an equivalence Rep(G) ~ QCoh(BG).
4. the scheme P! considered as a stack has a tautological line bundle O(—1), defined so that
for any morphism p: Spec(R) — P! corresponding to a sub-line-bundle L C R?, we let
p*O(—1) = L.
Then the compatible embeddings L C R? gives rise to an embedding O(—1) < O? on P!.
Similarly, the stack A'/G,, has a tautological line-bundle O(—1) with a homomorphism
o(-1)— 0.
5. for a smooth scheme X over a field k of characteristic zero, let X% be the stack
X®(R) = X(R/Nil(R)),
where Nil(R) is the nilpotent radical of R. Then there is an equivalence
D-mod(X) ~ QCoh(X}).

The equivalence also respects cohomology, so the de Rham cohomology of X can be com-
puted as:
RT4r(X) ~ RD(X®, Oyar).
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