
ON DERIVED COMPLETIONS AND OTHER THINGS

MICHAEL BARZ

This is a short expository note on derived completions and derived things, written
mostly so I have an idea how my ReMpAHT talk will go. It might also be useful to
people who attend the talk.

Acknowledgements. Sophie Kriz improved the pedagogy in several places. She
also talked me out of spending a bunch of time explaining ∞-categories.

1. What makes something derived?

When someone says ‘animated X,’ they mean that they have added extra infor-
mation to X via ‘simplicial methods.’ The purpose of this talk is to say a little about
what that means, at least in a handful of useful cases.

Let’s start with a very basic instance of this phenomena. If X is a set, and ∼ is
an equivalence relation on X, we can form the quotient set X/ ∼ .

For example, maybe X = C we use the equivalence relation z ∼ w if and only if
there is some angle θ so that z = weiθ. Then the quotient set X/ ∼ can be identified
with the ray [0,∞).

This equivalence relation arose from the natural action of the group S1 on X;
our equivalence classes are just orbits of this group action. When we formed this
quotient, we forgot one important piece of information: the orbit {0} is unique, in
that (unlike every other orbit), it has a large stabilizer. In other words, 0 ∼ 0 for
‘many reasons,’ whereas normally z ∼ w for exactly one reason.

One way to ‘animate’ this situation is to replace the quotient set X/ ∼ by the
pair of functions

s, t : X × S1 → X,

where s(z, θ) = z (s stands for ‘source’) and t(z, θ) = zeiθ (t stands for ‘target’).
From this pair of functions s, t, we can recover the quotient set X/ ∼; but knowing

that our equivalence relation secretly came from an S1 action gives us some extra
information.

Earlier, I said that ‘animated X’ means adding extra information via ‘simplicial
methods.’ What does that mean?

A simplicial set is just a combinatorial model of a shape; imagine a simplicial
set as instructions telling you how many pieces of each dimension you have, as well
as how to glue them together to build your shape. The precise definition is not so
important for us, though.

This s, t : X × S1 → X can be thought of as behaving like a simplicial set.
Namely, if a homotopy theorist wanted to force two points of a space to be equal,

they wouldn’t quotient the space – they’d just add a path between the two points
(since up to homotopy, you can contract that path to identify your two points).
Thinking similarly, we will think of X×S1 as a set of ‘paths’ we adjoin to X; the two
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maps s, t being as they are tell us that (z, θ) ∈ X × S1 is a path from s(z, θ) = z to
t(z, θ) = zeiθ. Thus we can view s, t as instructions for building a certain topological
space, one where you start by taking the points of X with the discrete topology,
and then connect them with paths – one path for each pair (z, θ).

It is perhaps surprising that this homotopy theory intuition works so well in
algebra, but by a miracle it does. A point we will gloss over: there is an impor-
tant theorem called the Dold-Kan correspondence, which says that (in a rather
non-obvious way!), simplicial objects in an abelian category A are equivalent to
(connective) chain complexes in A. Think of the chain complex as being analogous to
the chain complex one associates to a topological space: degree 0 is the free abelian
group on the 0-simplices, degree 1 is the free abelian group on the 1-simplices, etc.,
and you have boundary maps between them.

People think of chain complex-y phenomena as being ‘derived’; so ‘animated’ phe-
nomena are the connective ‘derived’ phenomena. At least for Bhargav/Scholze/Lurie,
as far as I am aware, so far derived schemes has always meant animated schemes
– nobody in this school of works seems to have needed to do derived algebraic
geometry for ring spectra which are not connective. This causes an unfortunate
terminological problem where people say derived schemes when really they should
be saying animated schemes; but anyways, I will follow the standard terminology,
and in the next section we introduce derived schemes.

2. Derived intersections

Derived intersections are an interesting phenomenon, and we will need to under-
stand them for derived completions anyway, so let’s introduce them as our next
example of a derived phenomena.

Take an affine scheme X = Spec A. To intersect the two closed subschemes cut
out by f = 0 and g = 0, we’d form Spec A/(f, g). Let’s now form an ‘animated’
version of this quotient.

2.1. Derived quotient by a principal ideal. Let’s start by actually forming a
derived version of Spec A/f first. The ring A/f is obtained by taking the ring A,
and then quotienting by the equivalence relation a ∼ b if and only if b− a = rf for
some r ∈ A. Let’s think of this r as the ‘reason’ that a ∼ b. In particular, when f is
a zero divisor, there can be ‘multiple’ reasons that a ∼ b, just like we saw in our
X/ ∼ example above.

Example 2.1. Suppose A = C[x, y]/(xy); then Spec(A) is the union of the x-axis
and the y-axis.

Setting x = 0 in the usual sense gives us the ring A/x = C[y], with spectrum just
the x-axis. However, given any function p(x, y) ∈ C[x, y]/(xy), we have

p(x, y) ∼ p(x, y)

for multiple reasons: once because

p(x, y)− p(x, y) = 0 · x,

and a second time because

p(x, y)− p(x, y) = y · x,

since in the ring A we have y · x = 0. There also reasons like 3y, πy, iy, etc.
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Thus, the fact that x is a zero divisor menas that p ∼ p can happen for many
distinct reasons!

In derived algebraic geometry, one replaces A/f by the chain complex A/Lf :=
A

f−→ A, with the first A being put in cohomological degree −1, and the second A
being put in degree 0. This chain complex remembers A/f in the sense that

H0(A f−→ A) = A/f,

but it also can remember the multiple reasons for p ∼ q to happen, in the form of
knowing that

H−1(A f−→ A) = ker(f : A→ A).

I will remark on a point which will occur over and over again. Remembering
the entire complex A

f−→ A is somehow ‘tautological’ – it remembers everything
about the A/f situation, but everything is too much. When doing something
derived, you will often have a very complicated model that remembers ‘everything’
– just like this complex – but then you’ll care more about some other invariants
associated to your model; these invariants are homotopy groups in the simplicial
object view, or cohomology groups in the cochain complex view. Generally, π0 or
H0 captures the ‘naive’ or ‘underived’ object, and the higher homotopy groups
tell you more information. Think like a homotopy theorist: they care more about
the ‘homotopy type’, and not really the actual topological space, when computing
invariants; similarly, don’t get too strung up on the ‘model’ of the derived object
A/f, and instead just focus more on what invariants you can extract from it.1

2.2. Derived intersection. Now that we can form A/f in a derived sense, let’s
intersect f = 0 and g = 0 by forming A/L(f, g) in a derived sense. In algebraic
geometry, the ‘standard’ way we’d take an intersection would be a tensor product:
we’d form A/f ⊗A A/g.

In derived algebraic geometry, we will replace this by A/Lf ⊗L
A A/Lg. What does

this mean? As a first step, we are going to replace A/f and A/g by there derived
incarnations, the complexes

A
f−→ A

and

A
g−→ A.

Now, we form the tensor product of these two complexes. Then, we will see
what extra information such a derived intersection remembers. It can be a little
confusing to compute this tensor product of complexes because all the terms are A
and A⊗A A = A, so when I write the final answer you will see A many times and
not know ‘which’ A it is.

1Avalokiteśvara Bodhisattva, when practicing deeply the prajna paramita perceived that
emptiness is form, and form is emptiness. This insight is very useful to homotopy theorists, and I
think it helps me understand what is going on in homotopy theory.
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2.2.1. Tensor products of complexes. So first let me tell you how to form the tensor
product of

M−1 f−→M0

and
N−1 g−→ N0.

The idea is to create a complex by doing some form of Dirichlet convolution to
these two complexes; hopefully when I tell you what the answer is, you’ll see why
it’s a reasonable notion of tensoring. The tensor product complex, which I will
denote M• ⊗A N•, lives in degrees −2,−1, and 0, and has terms

(M• ⊗A N•)−2 = M−1 ⊗A N−1,

(M• ⊗A N•)−1 = (M−1 ⊗A N0)⊕ (M0 ⊗A N−1),
(M• ⊗A N•)0 = M0 ⊗A N0,

The morphisms of the complex are as follows.

Warning 2.2. There will be some funny signs in the differentials defining this
complex. In a moment I will say why one might want to use these fun signs;
sometimes people refer to the correct way to ascribe signs as the ‘Koszul sign
rule.’ They usually use this term in a very general context; whenever you see chain
complexes with signs, the author will tell you they used the ‘Koszul sign rule’ to
figure out where the signs go. The ‘Koszul sign rule’ is just that, whenever you need
to ‘move the differential’ past a term of degree n, you add the sign (−1)n. So for
example, writing mk to denote an element of degree k, if you do somethign like

d(mk ⊗ nj),
then you should apply the Leibniz rule with proper signs to get

d(mk ⊗ nj) := d(mk)⊗ nj + (−1)kmk ⊗ d(nj).
If you’ve ever taken the exterior derivative of differential forms, you see exactly

the same sorts of signs showing up.

When going from degree −2 to degree −1, we use the map
m−1 ⊗ n−1 7→ f(m−1)⊗ n−1 −m−1 ⊗ g(n−1).

Do you see why that answer lives in (M−1 ⊗N0)⊕ (M0 ⊗N−1)?
When going from degree −1 to degree 0, we use the maps

m−1 ⊗ n0 7→ f(m−1)⊗ n0,

m0 ⊗ n−1 7→ m0 ⊗ g(n−1).

Remark 2.3. Why use these funny signs? The trouble is that, if you made
everything positive, the differentials in this chain complex would not obey d2 = 0.
However, with our carefully chosen signs, we will have d2 = 0. Let’s compute this
explicitly:

d(d(m−1 ⊗ n−1)) = d(f(m−1)⊗ n−1 −m−1 ⊗ g(n−1))
= d(f(m−1)⊗ n−1)− d(m−1 ⊗ g(n−1))
= f(m−1)⊗ g(n−1)− f(m−1)⊗ g(n−1)
= 0.
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Note that if we had a + sign in our map from degree −2 to degree −1, then this
would not be zero!

2.2.2. Back to our derived intersection. If we apply that above notion of tensor
product to our origianl complexes A

f−→ A and A
g−→ A, then we get

A/f ⊗L
A A/g = A

(f,−g)−−−−→ A⊕A
(g,f)−−−→ A.

Here, I mean the tensor product is (modelled by!) a complex living in degrees
−2,−1, and 0. The differential from degree −2 to degree −1 is

a 7→ (fa,−ga),
and the differential from degree −1 to degree 0 is

(a1, a2) 7→ ga1 + fa2.

Note that the composition is zero, since
a 7→ (fa,−ga) 7→ g(fa) + f(−ga) = (fg)a− (fg)a = 0.

Remark 2.4. This type of three term complex is called a Koszul complex associated
to the sequence f, g.

Remark 2.5 (Technical thing for experts). If f is not a zero divisor, then

A
f−→ A

is a free resolution of A/f, and so we can compute the derived tensor product as
just

A/g ⊗A (A f−→ A) = A/g
f−→ A/g.

When f is a zero divisor, though, this will in general be incorrect – for example,
consider the H−2 of that complex vs the Koszul complex.

This complex has three terms, and so its entitled to have cohomologies in degrees
−2,−1, and 0. Let’s compute these. The easiest one is

H0(A/Lf ⊗L
A A/Lg) = A/(f, g).

This is expected: H0 of derived X really ought to be the classical X!
Next,
H−1(A/Lf ⊗L

A A/Lg) = {(a1, a2) ∈ A2 | ga1 + fa2 = 0}/{(fa,−ga) | a ∈ A}.
Finally,

H−2(A/Lf ⊗L
A A/Lg) = {a ∈ A | fa = ga = 0}.

So, this derived intersection has two extra pieces of information.

2.3. What is this information good for? It turns out that this extra information
is exactly what one should encode for intersection theory to work correctly without
needing to add weasel words like ‘transverse intersections’ etc. in things like Bezout’s
theorem (although already underived schemes can understand all Bezout phenomena
in P2; really its only in higher Pn that derived algebraic geometry can help).

To give a very simple example, consider the statement ‘every two lines in P2

intersect exactly once.’ This is actually false: if the two lines are equal, they intersect
too often. Let me explain now how to take the intersection of a line with itself in
derived algebraic geometry. To make the computation simpler, let’s work actually
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in A2 = SpecC[x, y], with the line being x = 0. Then one can compute the ‘derived’
intersection x = 0, x = 0 is

C[x, y] (x,−x)−−−−→ C[x, y]⊕ C[x, y] (x,x)−−−→ C[x, y].

More importantly, the cohomologies of this complex are

H0 = C[x, y]/(x),

H−1 = (1,−1)C[x, y]/(x,−x)C[x, y] = C[x, y]/(x),

H−2 = 0.

In fact, this complex is even quasiisomorphic to

C[y]⊕ (C[y])[−1],

but maybe I won’t say too much about what that means.
What does knowing this extra H−1 give us? In just this one affine chart it’s hard

to see, but let’s look at another chart of P2 to try and globalize. If we view P2 as
having coordinates [X : Y : Z], then before we were working in the chart Z ̸= 0,
with coordinates x = X/Z, y = Y/Z. In these global coordinates, our line is the set
of all points [0 : Y : Z], and hence is a copy of P1. Our chart A2 missed one point of
our line: the point [0 : 1 : 0].

We could have instead worked in the chart Y ̸= 0, with coordinates x′ = X/Y, z′ =
Z/Y. Now our line becomes x′ = 0, and the point [0 : 1 : 0] is visible to our chart.
The derived self intersection works out to be C[z′]⊕ (C[z′])[−1] for the same reason
as before.

The overlap of our two charts is given by C[x, y, 1/y], with

x′ = x

y
,

z′ = 1
y

.

Hence, the global H−1 is the twisting sheaf O(−1) on P2. Note that this twisting
sheaf O(−1) is exactly the normal bundle of a line in P2 – this is not a coincidence!

3. Back to classical algebra: The topological approach to
completions

A miracle in p-adic analysis is that convergence of infinite series becomes a
completely algebraic phenomena. Indeed, take K a complete non-archimedean field
with valuation ring OK . Then a series

∑
n≥0 an of terms in OK converges if and

only if the terms an go to 0, which happens if and only if all but finitely many an

lie in mN
K for each N.

This motivates the following general notion.

Lemma 3.1. Let A be a ring and I an ideal. The sets

a + In

form the basis of a topology on A. Moreover, they form a ‘non-archimedean basis’:
the intersection of two such sets is either empty, or equal to one of the sets.

We call this the I-adic topology on A.
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Proof. Let
X = (a + In) ∩ (b + In+m).

If x ∈ X, then we can write

x = a + in = b + in+m.

Hence a− b = in+m − in ∈ In.
In that case, a + In = b + In, and so X = b + In+m. Thus either X = ∅ or

X = b + In+m, and in either way the intersection of two sets in our base lies in our
base. □

Definition 3.2. We say that (A, I) is separated if the I-adic topology on A is
Hausdorff; equivalently, if

⋂∞
n=1 In = 0.

Remark 3.3. As A is a topological ring, Hausdorfness is equivalent to being
T0 (points are topologically distinguishable) is equivalent to the identity being
topologically distinguishable from every non-identity point; as

⋂
n In is precisely

the intersection of all open sets containing 0, we get the equivalence between
Hausdorfness and the intersection.

Proposition 3.4. Define
ν : A→ N ∪ {∞}

the function
ν(0) =∞,

ν(a) = max{n ∈ N | a ∈ In}.
Then d(x, y) = 2−ν(x−y) is a pseudometric on A inducing the I-adic topology. If

(A, I) is separated, then d is a metric.

Proof. Immediate from the same algebra used to prove that the p-adic metric is a
metric. □

Thus we can view A as a pseudometric space with the I-adic topology, not just a
metric space.

Definition 3.5. We say A is I-adically complete if (A, I) is separated, and A is
complete with respect to the I-adic pseudometric.

4. The algebraic approach to completions

We now give a more algebraic criterion for a ring A to be I-adically complete.
This is the miracle of the non-archimedean world: there is a completely algebraic
way to understand convergence!

Theorem 4.1. Let A be a ring and I an ideal. The natural map

A→ lim←−
n

A/In

is
(1) injective if and only if (A, I) is separated,
(2) bijective if and only if A is I-adically complete.



8 MICHAEL BARZ

Proof. Call this map φ. Note that ker φ =
⋂

n≥0 In and so we get the injectivity
claim immediately.

Now assume φ is injective; let’s show under this assumption, surjectivity is
equivalent to completeness.

If A is complete, we have surjectivity as follows: given (ā0, ā1, ...) ∈ lim←−n
A/In,

let ai be an arbitrary lift of āi ∈ A/Ii+1 to A, and then define
a := a0 + (a1 − a0) + (a1 − a2) + · · · ,

which exists by I-adic completeness and of course maps to (ā0, ā1, ...) in the inverse
limit.

Conversely, if φ is surjective, then we can use φ−1 to form infinite sums and
hence get I-adic completion. □

This inverse limit approach is very algebraically convenient. It also allows us to
define a completion functor.

Definition 4.2. Let A be a ring. We define the completion of A with respect to an
ideal I to be

A∧
I := lim←−

n

A/In.

There is a natural map A→ A∧
I .

Warning 4.3. A∧
I is not in general complete!

Proposition 4.4. Take A a ring, I an ideal; let φ : A→ A∧
I be the natural map.

For J an ideal of A, write JA∧
I to mean φ(J)A∧

I .
Then

InA∧
I = (IA∧

I )n

for every n, and the projection
A∧

I → A/In

is surjective with kernel containing InA∧
I .

Moreover, if I is finitely generated, then the kernel is exactly InA∧
I ; in particular,

A∧
I is I-adically complete in this case.

Remark 4.5. This funny business with finite generation is our first clue that
completion is not quite the right notion, and we need something derived. We will
explore this soon.

5. Crash course in derived categories

By the Dold-Kan correspondence mentioned above, simplicial objects of an
abelian category can be replaced by connective chain complexes; the Dold-Kan
correspondence also takes the homotopy group functors to cohomology functors,
and so the correct analogue of ‘look at simplicial objects, but only up to weak
homotopy equivalences’ becomes ‘look at connective chain complexes, but only up to
quasi-isomorphisms’. Here, a quasi-isomorphism is a map which is an isomorphism
on all cohomologies.

Of course, there is no reason to restrict to connective chain complexes, and so we
don’t. This lets us define the derived category of an abelian category A as the new
category D(A), whose objects are ‘chain complexes in A up to quasi-isomorphism.’
I won’t say too much about what this means, but I will say the main feature of this
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category that we use in practice; in our derived completion example, we will use
this a lot, so hopefully you’ll get comfortable working with D(A) from that.

In any abelian category, the most important constructions are kernels and cok-
ernels. In D(A), these operations magically morph into one, which we call the
mapping cone. The mapping cone measures how far a morphism f : X• → Y • is
from being a quasi-isomorphism, by measuring both the kernel and the cokernel of
the maps Hi(X•)→ Hi(Y •).

More precisely, we have the following.
Theorem 5.1. For any morphism f : X• → Y • of complexes, there is a complex
C(f) and morphisms

X• → Y • → C(f)→ X•[1]
(where the [1] means ‘take the same complex, but shift all the terms one to the left;
note that Hq(X•[1]) = Hq+1(X•)) such that the associated sequences

Hq(X•)→ Hq(Y •)→ Hq(C(f))→ Hq+1(X•)
on cohomologies are all exact; concatenating them, we get a long exact sequence

· · · → Hq(X•)→ Hq(Y •)→ Hq(C(f))→ Hq+1(X•)→ · · · .

People refer to situations
X• → Y • → C(f)→ X•[1]

as exact triangles, and a typical usage would be hearing someone say
X → Y → Z

is an exact triangle; this just means that they can identify Z with the mapping cone
of X → Y.

At the dawn of time, Grothendieck and Verdier gave us a 1-category D(A) in
which mapping cones behaved very poory functorially. Lurie has given us the stable
∞-category, which is some sort of category-like object D(A) in which forming cones
is genuinely functorial... for a different sense of functorial. In practice, the language
people use when referring to stable ∞-categories and ordinary derived categories
is usually identical, so it won’t matter so much that below I write in the language
of stable ∞-categories; hopefully you’ll pick up how the language is used. The
key difference is that, because mapping cones are functorial to me, I can slightly
simplify some technical arguments that would require more care if you wanted to
do everything using the classical language.2

6. Derived completion

We now discuss the theory of derived completion. The purpose of derived
completion is to correct all the annoying finiteness assumptions needed for usual
completion to be exact. Another consequence is that it will let us study completion
of complexes, as opposed to individual modules; this allows us to get a notion of
completion for objects of the derived category.

There are, perhaps unfortunately, many distinct notions of derived completion.
We will use one inspired by derived algebraic geometry. To be precise, we are

2There is a conservation of difficulty in mathematics; the only reason I can give simpler
arguments is because Lurie wrote two books called Higher Topos Theory and Higher Algebra, in
which he gave broadly applicable lemmas basically recreating every technical argument one usually
gives with derived categories.
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going to set up a theory of derived completions which is well adapted to formal
schemes; this means we will take an ambient ring A, and an explicit list of elements
f1, ..., fr ∈ A generaitng an ideal I = (f1, ..., fr). We will then form the derived
formal scheme associated to this setup.

This variant of derived completion is the one which will arise in Bhargav’s
course. Why? Well, last week Dhruv introduced formal schemes, and explained
how completions are intimiately related to them. The completions Bhargav will
be considering will have this flavor, of coming from a formal scheme/deformation
theory setup. Thus we use this variant of derived completion, motivated by just
taking the usual derived completion but in the sense of derived algebraic geometry.

We now define derived completions. We will give several equivalent notions of
derived completion, each having several advantages. Our first is the most intuitive
from our above discussion; fix A a ring, and f1, ..., fr ∈ A. Set I = (f1, ..., fr). The
classical I-adic completion of M ∈ ModA with respect to this ideal I would be

lim←−
n

M/InM.

We are going to change this in three ways:
(1) allow M to live in D(A),
(2) replace M/InM with a derived quotient,
(3) replace lim←−n

with R lim←−n
.

The hardest of these to fix is quotienting by In; the trouble is that derived quotients
are sensitive to the choice of generating set (on purpose!), and so we need to pick a
generating set of In. To avoid having to do that, we will just derived quotient by
fn

1 , fn
2 , ..., fn

r ; the idea here is that, in the classical setting, these quotients would
be final in the original system and so the limit would change, and in the derived
situation this is easier.

Definition 6.1. We define the (f1, ..., fr)-adic completion of M ∈ D(A) (which is
sensitive to our presentation of the ideal!) by

M̂ = R lim←−
n

(M ⊗L
A[x1,...,xr] A[x1, ..., xr]/(xn

1 , ..., xn
r ),

where we view M as an A[x1, ..., xr]-module by having xi act as fi, and implicitly
we forget the xi actions on M̂ to view it as an element of D(A).

Definition 6.2. We say that M ∈ D(A) is derived (f1, ..., fr)-complete if the natural
map

M → M̂

is an equivalence.

For understanding derived completion, note that we always have a natural map
M → M̂. Understanding the cone of this map can help us to understand derived
completions.

Lemma 6.3. Let M ∈ D(A), and f1, ..., fr ∈ A. Define a complex Q ∈ D(A) by

Q =

A→
r∏

i=1
Afi
→

∏
i<j

Afifj
→ · · · → Af1···fr

 ,

where A is placed in degree 0.
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Then M̂ = R HomA(Q, M).

Proof. The quotient A[x1, ..., xr]/(xn
1 , ..., xn

r ) is resolved by the Koszul complex

K(fn
1 , ..., fn

r ) := A→
r∏

i=1
A→

∏
i<j

A→ · · · → A.

Here, we use that xn
1 , ..., xn

r still form a regular sequence in A[x1, ..., xr], and the A
on the left is placed in degree −r.

Hence M ⊗L A[x1, ..., xr]/(xn
1 , ..., xn

r ) is equal to
Recalling filtered colimits are exact, and so there’s no derived funny business, we

have
Af = colim(A f−→ A

f−→ · · · ).
By applying this termwise, we deduce that

colimn K(fn
1 , ..., fn

r ) = Q[r].
The shift by r is because the Koszul complex started in degree −r, but Q started in
degree 0.

Therefore
R HomA(Q, M) = R HomA(colimn K(fn

1 , ..., fn
r )[−r], M)

= R lim←−
n

R HomA(K(fn
1 , ..., fn

r )[−r], M).

But famously, the Koszul complex is perfect, with dual K(fn
1 , ..., fn

r )[−r]. In
other words,
R HomA(Q, M) = R lim←−

n

M⊗L
AK(fn

1 , ..., fn
r ) = R lim←−

n

M⊗L
AA[x1, ..., xr]/(xn

1 , ..., xn
r ) = M̂,

exactly as desired. □

The purpose of Lemma 6.3 is that now the map M → M̂ is simply the map
induced by Q→ A which is identity in degree 0 (as A is concentrated in one degree,
this map will be a morphism of chain complexes). Hence the cone of M → M̂
is R HomA(fib(Q → A), M), which gives us a universal description of the cone of
M → M̂.

Theorem 6.4. Let f1, ..., fr ∈ A, M ∈ D(A). Set I = (f1, ..., fr). The following
conditions are equivalent:

(1) M is derived (f1, ..., fr)-complete;
(2) R HomA(Afi , M) = 0 for each i;
(3) R HomA(Af , M) = 0 for each f ∈ I.

Moreover, M̂ is always derived (f1, ..., fr)-complete.

Remark 6.5. In particular, being complete is independent of our choice of generating
set for the ideal; so we now can just say derived I-complete.

Proof. First, we prove that R HomA(Afn
, M̂) = 0 for each fn. By Lemma 6.3, it

suffices to prove Afn
⊗L

A Q = 0.
As Ag is always a flat A-module, we can take this tensor product naively to

compute it as

Afn
→

r∏
i=1

Afnfi
→ · · · → Afnf1···fr

.
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This is just the Koszul complex of f1, ..., fr in Afn
; but the Koszul complex associated

to any sequence containing a unit is quasi-isomorphic to 0 (see stacks 0G6J for an
explicit homotopy given) and hence this vanishes.

It follows that, if M is derived (f1, ..., fr)-complete, then R HomA(Afi
, M) = 0

for each i (since in this case M = M̂).
Next, we prove that the set of all f such that R HomA(Af , M) = 0 forms an

ideal of A (if we say formally declare A0 = 0, so that f = 0 always lies in this set);
this shows 2 implies 3.

And indeed,

R HomA(Aλf , M) = R HomA(Aλ, R HomA(Af , M))

by the tensor-hom adjunction, which implies the set of all such f is closed under
multiplication.

If f, g are such that f + g ̸= 0 and R HomA(Af , M) = R HomA(Ag, M) = 0, then
R HomA(Af+g, M) = 0 as well, since there is a short exact sequence

0→ Af+g → Af(f+g) ⊕Ag(f+g) → Afg(f+g) → 0.

It follows that there is an exact triangle

R HomA(Af+g, M)→ R HomA(Af(f+g), M)⊕R HomA(Ag(f+g), M)→ R HomA(Afg(f+g), M).

But it’s easy to see all the terms of this triangle except R HomA(Af+g, M) are zero,
forcing this last term to be zero as well. We conclude.

Finally, we must prove that 3 implies 1. To do this, we study the cone of
M → M̂, and express it using terms R HomA(Af , M). This cone, recall, is just
R HomA(fib(Q → A), M). The key point is that fib(Q → A) can be explicitly
represented by a bounded complex whose terms involve only things of the form Af

for some f ∈ I.
More precisely, by exactness of R HomA(−, M), the class of complexes N ∈ D(A)

for which R HomA(N, M) = 0 is stable under extensions. The class includes all the
Af , and hence includes any bounded chain complex made of the Af .

Our argument that 1 implies 2 really showed that any M̂ obeyed condition 2,
which (now that we know 2 implies 3 implies 1) proves M̂ is derived complete, as
desired. □

There is also a derived version of our tensor product formula.

Proposition 6.6. Let M ∈ D(A), and f ∈ A. Then M̂ is derived complete, and in
fact

M̂ = M ⊗L
A Â.

In particular, Â is a derived idempotent A-algebra.

Proof. This follows from the remarkable fact that fibers can also be viewed as
cofibers. Namely, instead of defining M̂ as the fiber of a map, we could also define
it as the cofiber of

R HomA(cofib(Q→ A), M)→ R HomA(A, M) = M.

Set C = cofib(Q→ A). Then

Â = cofib(R HomA(C, M)→M).
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It follows from cocontinuity of the tensor product that

M ⊗L
A Â = M ⊗L

A cofib(R HomA(C, A)→ A)
= cofib((M ⊗L

A R HomA(C, A))→M)
= cofib(R HomA(C, M)→M)

= M̂.

□

Remark 6.7. Set A = k[x]. Let’s compute the derived completion of A with respect
to (x, x). It’s easiest to do this using the A→ Ax⊕Ax → Ax2 complex approach, but
because I think it’s more instructive as to why the weird derived double intersection
phenomena disappears in the inverse limit, we will take a slightly different approach.

Set Kn the Koszul complex

A
(−xn,xn)−−−−−−→ A⊕A

(xn,xn)−−−−−→ A,

which we treat as spanning degrees −2 to 0. The cohomologies are

H0(Kn) = k[x]/(xn),

H−1(Kn) = k[x]/(xn),

H−2(Kn) = 0.

The inverse system has the connecting maps Kn+1 → Kn defined by

A A⊕A A

A A⊕A A.

(−xn+1 xn+1)

id

(xn+1 xn+1)

x id
(−xn xn) (xn xn)

We wish to compute R lim←−n
Kn. Let’s start by computing the cohomologies. The

Milnor sequence reads

0→ R1 lim←−
n

Hq−1(Kn)→ Hq(R lim←−
n

Kn)→ lim←−
n

Hq(Kn)→ 0.

These Kn each only have cohomologies in degrees 0 and −1. Therefore unless
q ∈ {0,−1, 1}, the cohomology Hq(R lim←−n

Kn) is forced to vanish. For q = −1,

since H−2(Kn) = 0, we get an isomorphism

H−1(R lim←−
n

Kn) = lim←−
n

H−1(Kn).

Our connecting homomorphisms in the inverse system induce maps

H−1(Kn+1)→ H−1(Kn)

of the form
k[x]/(xn+1) x−→ k[x]/(xn).

If we just used the obvious projections, the inverse limit would be k[[x]]. But
because we use these multiplication by x projections, the inverse limit is actually
zero! Thus in the limit, all of our derived intersection phenomena went away.
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7. A few important properties of derived completion

We now study a few important properties of derived I-completion.
Fix I a finitely generated ideal of a ring A.

Definition 7.1. Let
DI−comp(A)

denote the full subcategory of D(A) spanned by the derived I-complete objects.

Proposition 7.2. Fix a generating set f1, ..., fr ∈ A of the ideal I. Then the functor

M 7→ M̂

sending M ∈ D(A) to its completion with respect to this generating set is left adjoint
to the inclusion

DI−comp(A) ↪→ D(A).
In particular, this completion is actually independent of our choice of generating
set, by uniqueness of adjoints.

Remark 7.3. Here, we mean adjunction at the level of ∞-categories: that is, we
have an equivalence

R HomA(M̂, N) = R HomA(M, N)

whenever N ∈ DI−comp(A) and M ∈ D(A).

Remark 7.4. In particular, the inclusion

DI−comp(A) ↪→ D(A)

is a localization.

Proof. Consider the exact triangle

A→ Â→ Q,

with Q being defined as the cone of A→ Â. Recall from our proof of ?? that Q has
the property that R HomA(Q, N) = 0 for all derived I-complete N.

We therefore get an exact triangle

M → M̂ = M ⊗L
A Â→M ⊗L

A Q,

which induces a canonical exact triangle

R HomA(M ⊗L
A Q, N)→ R HomA(M̂, N)→ R HomA(M, N)

for any N. If N is derived I-complete, then the tensor-hom adjunction implies the first
term of this triangle vanishes, and hence we have an equivalence R HomA(M̂, N) =
R HomA(M, N), natural in M, N. Thus we have an adjunction. □

Proposition 7.5 (Serre subcategory property). The subcategory DI−comp(A) of
D(A) is a stable ∞-category. More precisely, if

X → Y → Z

is an exact triangle in D(A), and two out of three terms lie in DI−comp(A), then so
does the third. Thus fibers and cofibers are formed in the expected way, and derived
I-complete objects are stable under extensions.
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Remark 7.6 (Stable snake lemma). In the below, we shall use the snake lemma in
stable ∞-categories. Let me say a few words on it; in the triangulated context, this
is called the 3× 3 lemma, and is much worse: the statement already is quite subtle
and the proof uses the octahedral axiom repeatedly.

Take C a stable ∞-category, and let
X Y Z

X ′ Y ′ Z ′

f g h

be a commutative diagram in C with exact rows. It follows that
Z = cofib(X → Y ),

Z ′ = cofib(X ′ → Y ′),
and h is uniquely determined by the universal property of colimits.

Functoriality of colimits gives us natural maps
cofib(X → X ′)→ cofib(Y → Y ′)→ cofib(Z → Z ′),

assembling into a 3× 3 commutative diagram
X Y Z

X ′ Y ′ Z ′

cofib(f) cofib(g) cofib(h).

f g h

We claim now that the bottom row of this commutative diagram is also exact.
Indeed, colimits commute with colimits, so

cofib(h) = cofib(cofib(X → Y )→ cofib(X ′ → Y ′)) = cofib(cofib(f)→ cofib(g)).

Proof. This is just a big diagram chase. We have a commutative diagram

X Y Z

X̂ Ŷ Ẑ

fX fY fZ

with exact rows. It follows from the snake lemma that we have an exact triangle
cofib(X → X̂)→ cofib(Y → Ŷ )→ cofib(Z → Ẑ).

As deirved I-completeness is equivalent to the cofiber of the map M → M̂ vanishing,
we conclude since if 2 out of 3 objects in an exact triangle vanish, then so does the
third. □

We remark that DI−comp(A) is moreover stable under truncations. D(A).

Proposition 7.7. Fix I ⊆ A a finitely generated ideal. For any M ∈ D(A), the
following are equivalent:

(1) each Hq(M) (for q ∈ Z) is derived I-complete (thought of as a complex in
degree 0),

(2) HomA(Af , M) = Ext1
A(Af , M) = 0 for each f ∈ I (we can even check this

on just a generating set),
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(3) M is derived I-complete.
In particular, if M is derived I-complete, then each of its truncations (with respect

to the usual t-structure on D(A)) are.

Proof. By ??, M is derived I-complete if and only if

R HomA(Af , M) = 0

for every f ∈ I.
There is a classical spectral sequence

Epq
2 = Rp HomA(Af , Hq(M)) =⇒ Rp+q HomA(Af , M).

Recall Rp HomA(Af , Hq(M)) = Extp
A(Af , Hq(M)). Note that Af classically has

a length 2 free resolution

A[y] y 7→fx−1−−−−−−→ A[x] x 7→f−1

−−−−−→ Af ,

and so Extp
A(Af , Hq(M)) = 0 for all p > 1. Thus the spectral sequence degenerates

at the E3-page, and we have a short exact sequence

0→ E1,p−1
2 → Ep

∞ → E0,p
2 → 0,

coming from the fact that, whenever E has a two step filtration, we have a short
exact sequence

0→ F 1E = gr0(E)→ E → gr1(E)→ 0.

Specializing to our case, we get short exact sequences

0→ Ext1
A(Af , Hp−1(M))→ Rp HomA(Af , M)→ HomA(Af , Hp−1(M))→ 0.

Hence M is derived I-complete iff Rp HomA(Af , M) always vanishes iff the second
condition in our theorem statement holds. The same argument for Hp(M) instead
of M shows that condition 1 and condition 2 of our theorem are equivalent, so we
conclude. □

We now give a derived form of Nakayama’s lemma.

Lemma 7.8. Let A→ A′ be a surjective ring homomorphism, with kernel J being
nilpotent of finite order n. Then, for any M ∈ D(A), we have M ⊗L

A A′ = 0 if and
only if M = 0.

Proof. The idea is that M ⊗L
A A/J = 0, and we want to show M = 0.

First take N any A-module which has JN = 0. Then we can view N as an
A/J-module to write

M ⊗L
A N = (M ⊗L

A A/J)⊗L
A/J N

= 0⊗L
A/J N

= 0.

Next, assume N ∈ ModA has J2N = 0. We thus have a short exact sequence

0→ JN → N → N/J → 0.

Note that both JN and N/J have J(JN) = J(N/J) = 0. Thus M tensored with
either of them vanishes; so M ⊗L

A N is an extension of zero by zero, and hence
vanishes.
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Doing the same argument and inducting, we find that M ⊗L
A N = 0 for any N

which has bounded J-torsion; as Jn = 0, we find that this argument holds also for
N = A, and we conclude M = 0. □

Theorem 7.9 (Nakayama’s lemma). Let I be a finitely generated ideal of a ring A.
Take M ∈ D(A) a derived I-complete A-module. Then M = 0 if and only if

M ⊗L
A A/I = 0.

Proof. If M = 0, then of course this tensor vanishes.
For the nontrivial direction, assume the tensor product vanishes. Fix a generating

set f1, ..., fr of I. Then
M = M̂ = R lim←−

n

(M ⊗L
A[x1,...,xr] A[x1, ..., xr]/(xn

1 , ..., xn
r ).

Note that, as an A-module (with xi acting as fi), A[x1, ..., xr]/(xn
1 , ..., xn

r ) is
I-power torsion (meaning for every i ∈ I, m ∈ A[x1, ..., xr]/(xn

1 , ..., xn
r ), there is

some N ≫ 0 with iN m = 0).
We will now M = 0 by showing each term in that inverse limit is zero, by proving

more generally that if M ⊗L
A A/I = 0 for any M , then M ⊗L

A N = 0 for any
N ∈ ModA which is I-power torsion.

When N is I-power torsion, we may write
N = lim−→

n

N [In],

and hence (as filtered colimits are exact) write
M ⊗L

A N = colim M ⊗L
A N [In],

so it suffices to prove this for In-torsion A-modules.
To leverage our condition about A/I, note that there is a surjection of A-algebras

A/In ⊕N → A/I,

where we view A/In ⊕N as the trivial square zero extension of A/In by N (so we
give it the obvious additive structure, and give it a multiplication by declaring N
to be a square zero ideal). This map has kernel J = I/In ⊕N, and you can easily
check Jn+1 = 0.

Set A′ = A/In ⊕N. Then
(M ⊗L

A A′)⊗L
A′ A/I = M ⊗L

A A/I = 0,

and so by Lemma 7.8 we find M⊗L
A A′ = 0. But A′ is a direct sum of two A-modules,

and so by cocontinuity of the tensor product we deduce that M ⊗L
A N = 0 as well

(this was the entire point of introducing the square zero extension by N). We
conclude. □
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