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Abstract

The standard proof of the fundamental theorem of (finite) Galois theory, as found in, say,
[2] or [5], uses two key ideas from field theory, namely those of normality and separability.
The goal of this article is to expand on an alternative approach to this theorem, due to Bavula
[1], which avoids the notions of normality and separability entirely, and uses instead only
one result from the theory of central simple algebras over a field: the Double Centralizer
Theorem. The key new insight is to establish a correspondence between the lattices of
intermediate subfields and subgroups of the Galois group by introducing a third lattice of
algebras that is isomorphic to both of the them. A delightful feature of this approach, other
than its simplicity and elegance, is it makes abundantly clear at what (unique) point the
Galois hypothesis–interpreted here as saying the field extension is “maximally symmetric”–
comes into play.
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1 Introduction

1 Introduction

Let L/K be a field extension, and let G := AutK(L) be the group of field automorphisms of L
that fix K pointwise.1 The first key result and definition we recall is

Lemma/Definition 1.1 (Finite Galois Extensions). In the above setting, if L/K is a finite
extension of degree [L : K] := dimK L, then G is a finite group whose cardinality #G satisfies

#G ≤ [L : K].

The extension L/K is said to be Galois if equality holds in the above, i.e., #G = [L : K]. In
this case we call the group G the Galois group of L/K and denote it by Gal(L/K).

In other words, a finite Galois extension is a maximally symmetric finite field exten-
sion.2 The above inequality follows from Dedekind’s Lemma on the linear independence of
automorphisms. Dedekind’s Lemma is recalled in §2, and we use it to prove Lemma/Definition
1.1 in §3. Given this definition, we are ready to state

Theorem 1.2 (Fundamental Theorem of Galois Theory). Let L/K be a finite field extension
with G := AutK(L). Let F denote the lattice of intermediate subfields F of the extension L/K,
and let G denote the lattice of subgroups H of G.

(a) There are morphisms of posets
F∨ ↔ G

given by the operations F 7→ AutF (L) and H 7→ LH . When L/K is Galois, these
operations are inverse bijections. In this case, for any F ∈ F, the extension L/F is
Galois as well, so that AutF (L) can be written as Gal(L/F ) and

[L : F ] = #Gal(L/F ).

(b) In (a), if L/K is Galois and the intermediate field F corresponds to the subgroup H, then
F/K is Galois iff H ⊴ G, i.e., the subgroup H of G is normal. In this case there is a
natural restriction morphism G = Gal(L/K) → Gal(F/K) which fits into a short exact
sequence of groups

0 → H → G → Gal(F/K) → 0,

so that G/H →∼ Grp Gal(F/K).

Remark 1.3.

(a) The (−)∨ denotes the dual lattice; this amounts to saying that the bijection in (a) is in
inclusion-reversing. The additional structure captured by the lattice formulation of the
statement, which is not essential and actually follows from the classical formulation, is
that the bijection in part (a) preserves joins and meets, i.e., that for any two subgroups
H,H ′ ≤ G, we have LH∩H′

= LHLH′
and LHH′

= LH ∩ LH′

1This coincides with the the group AutK-Alg(L) of the automorphisms of L considered as a K-algebra.
2For the relationship between this definition and another equivalent one–that L/K is Galois iff LG = K–see

Corollary 5.2. Indeed, the equivalence between these two definitions is a direct consequence of our approach to
the fundamental theorem. A third definition is also possible, in which an extension L/K is said to be Galois iff
it is normal and separable; a fourth as well, in which an extension L/K is Galois iff it is the splitting field of a
collection of separable polynomials. Either of these last three definitions is more useful when studying infinite
Galois theory, but for our present purposes (in the context of our approach to finite Galois theory without using
the notions of normality or separability), the equivalence of these definitions can be considered a coincidence and
not an essential feature. However, I suspect also that there is a way to extend the present proof to the setting of
infinite Galois theory by introducing appropriate topologies; in this setting, the correct definition (still avoiding
normality and separability) could be some analog of Corollary 3.3.
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2 Dedekind’s Lemma

(b) Given part (a) and the existence of a morphism G → Gal(F/K) as in (b), the existence
of the following short exact sequence–or what amounts to the same thing, the surjec-
tivity of the map G → Gal(F/K)–follows immediately from size considerations and the
multiplicativity of the degree in towers of field extensions.

The standard proof of this fundamental theorem (Theorem 1.2), as found in, say, [2]
or [5], uses two notions from field theory: that of normality and separability. The goal of this
paper is to give an alternative proof, following [1], that does not invoke these notions at all; all
the heavy lifting in this case is done by essentially one result from the theory of central simple
algebras, namely the Double Centralizer Theorem (Theorem 4.6).

The rest of this article is organized as follows. In the next section (§2), we review
Dedekind’s lemma on the linear independence of field automorphisms, and in the following
section (§3), we use it to provide a reinterpretation of the Galois condition in terms of endo-
morphism algebras. In §4, we review the definition of central simple algebras and state (and
give references to proofs of) the fundamental theorem needed–the Double Centralizer Theorem.
In the final section (§5), we then present the new proof of the fundamental theorem with this
approach.

2 Dedekind’s Lemma

In this section, we review Dedekind’s lemma on the linear independence of field automorphisms.
In fact, the same (standard) proof can be used to prove the slightly strong result of

Lemma 2.1. Let R and S be commutative rings, with S is a nonzero integral domain. Any
set of ring homomorphisms R → S is linearly independent over S in HomAb(R,S). In other
words, given n ∈ Z≥1 and pairwise distinct ring homomorphisms g1, . . . , gn : R → S, if for some
λ1, . . . , λn ∈ S we have

n∑
i=1

λigi = 0 (1)

as abelian group morphisms R → S, then λ1 = λ2 = · · · = λn = 0.

Proof. We induct on n, with n = 1 being clear by evaluating at 1. Suppose n ≥ 2. Since the gi
are ring homomorphisms, we also have for any λ ∈ R that

n∑
i=1

λigi(λ) · gi = 0. (2)

Since g1 ̸= gn, there is a λ ∈ R such that g1(λ) ̸= gn(λ). For this value of λ, if we multiply (1)
by gn(λ) and subtract it from (2), we get also

n−1∑
i=1

λi (gi(λ)− gn(λ)) gi = 0.

By the inductive hypothesis, all coefficients are zero; in particular, λ1(g1(λ)− gn(λ)) = 0. Since
S is a domain and g1(λ)− gn(λ) ̸= 0 by our choice of λ, we must have λ1 = 0. Plugging this in
(1) and using the inductive hypothesis one more time finishes the proof. ■

Remark 2.2. For a counterexample when S is not a domain, take R = S = C[ε]/(ε2), take n =
2, the first map f1 to be the identity, and the second map f2 to be the C-algebra homomorphism
sending x to 0. Then ε · f − ε · g = 0 in HomAb(R,S).
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3 Reinterpreting the Galois Condition

Given a field L and a group G, we define a (linear) character of G in L to be a group
homomorphism χ : G → L×. In this language, the classical version of Dedekind’s Lemma is
about linear independence of characters as follows.

Corollary 2.3 (Dedekind’s Lemma). Let L be a field.

(a) Given any group G, distinct linear characters G → L× are linearly independent over L.
(b) Distinct field automorphisms of L are linearly independent over L.

Proof.

(a) Take R := Z[G] and S = L in Lemma 2.1, noting that specifying a character G → L× is
the same thing as specifying a ring homomorphism R → L.3

(b) Take G = L× in (a).

■

Remark 2.4. The more general formulation of this classical lemma may seem unnecessary, but
I believe that this exposition with minimal hypotheses actually clarifies the result. Besides, this
result is also directly useful in modular representation theory (see, e.g., [7, Corollary 6.8]).

3 Reinterpreting the Galois Condition

We will now use Dedekind’s Lemma (Corollary 2.3(b)) to prove the result of Lemma/Definition
1.1 and to reinterpret the Galois condition in terms of algebras. For that, let’s first quickly
review the definition of algebras over a field.

Let K be a field. In general, by an algebra over K, or a K-algebra, we mean a possibly
noncommutative but associative unital ring E equipped with a unital ring homomorphism
K → E such that the image of K lies in the center Z(E) of E. Given such a K-algebra E,
the ring homomorphism K → E is automatically injective (since K is a field) and maps K
bijectively to a subring of the center Z(E), which is a commutative ring. The definitions of
a K-subalgebra A ⊂ E and of a K-algebra homomorphism E → E′ are clear, and left to the
reader. Our main source of algebras in this article will come from

Example 3.1. Given a field K and a vector space V over K, let E := EndK-Vect(V ). Then E
is naturally a K-algebra; this algebra is called the endomorphism algebra of the vector space V .

Now suppose that L/K is a field extension, and let G := AutK(L) be as above. Let
E := EndK-Vect(L) denote the endomorphism algebra of the underlying vector space of L. There
are two kinds of elements of E that we understand really well:

(a) There is a natural K-algebra homomorphism µ : L → E which takes a λ ∈ L to the
K-linear endomorphism µ(λ) : L → L given by left multiplication by λ. Since L is a field,
the map µ is injective, so that L can be identified with the K-subalgebra µ(L) of E.

(b) Every element of G gives rise to a K-linear endomorphism of L, i.e., there is a natural
homomorphism ι : G → E× which is again evidently injective.4

In fact, we can combine these two kinds of endomorphisms; to do this, we first make

3In other words, the group algebra functor Z[−] : Grp → Ring is left adjoint to the group-of-units functor
(−)× : Ring → Grp.

4However, it is never surjective (except in the very trivial case of K = L = F2): G = AutK(L) is only a
subgroup of E× = AutK-Vect(L). Indeed, it is very easy to come up with K-linear automorphisms of L that are
not field automorphisms.
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3 Reinterpreting the Galois Condition

Definition 3.2. In the above setting, define the crossed product algebra L ⋊ G to be the K-
algebra with underlying K-vector space

L⊕G =
⊕
g∈G

Leg

and multiplication defined by the formula

λ eg ⊗ λ′ eg′ 7→
(
λg(λ′)

)
egg′

for λ, µ ∈ L and g, h ∈ G. The K-algebra structure comes from the homomorphism K → L⋊G
given by the inclusion K ↪→ L ∼= Le1 ⊂ L⋊G, where 1 ∈ G is the identity.

One can check very directly that this defines an associative unital ring, but this also
follows immediately from the following discussion. First note that L ⋊ G is evidently a left
L-vector space, and by construction, there is a natural K-algebra homomorphism L ⋊G → E
given by λ eg 7→ µ(λ) · ι(g); indeed, the K-algebra structure L⋊G is defined to make this map
a homomorphism.5 Now Dedekind’s Lemma (Corollary 2.3(b)) implies in particular that

the K-algebra homomorphism L⋊G → E is injective. (3)

In particular, L⋊G can be considered as a K-subalgebra of E, and we will make this
implicit identification in all that follows. It is also for this reason that we will also denote eg by
g for g ∈ G, and drop both µ and ι from the notation, identifying everything with their images
in E. Finally, note that G acts on E by conjugation; this action preserves L ⊂ L⋊G ⊂ E, and
indeed recovers the tautological action of G on L by automorphisms.

Now suppose that L/K is a finite extension. In this case, the algebras L ⋊ G and E
are both finite dimensional over K. Indeed, we have that

dimK L⋊G = [L : K] · dimL L⋊G = [L : K] ·#G,

whereas
dimK E = [L : K]2.

Combining this dimension count with the observation (3) immediately gives us the result of
Lemma/Definition 1.1, and also proves

Corollary 3.3. In the above notation, the finite extension L/K of fields is Galois iff the natural
map L⋊G → E is an isomorphism.

It is this reinterpretation of the Galois condition that we will use in the rest of the
paper.

Example 3.4. For the Galois extension C/R, the isomorphism C ⋊ Z/2 →∼ EndR-Vect(C)
amounts to the statement that every R-linear map f : C → C can be uniquely written as
the sum of a C-linear and a C-antlinear map, a fact (the higher-dimensional analog of) which
is very familiar to complex geometers. Indeed, any R-linear map f can be written as

f =
f + f̄

2
+

f − f̄

2
,

where the first summand is C-linear and the second C-antilinear.
5This is even a left L-linear map when E is given the structure of an L-vector space by using the K-algebra

homomorphism µ.
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4 Central Simple Algebras

Example 3.5. The previous example may suggest that degree two Galois extensions might be-
have strangely in characteristic two, but at least in terms of Galois theory there is no difference.
For instance, it is again true that any F2-linear endomorphism of F4

∼= F2[ω] = F2[x]/(x
2+x+1)

is a unique linear combination of 1F4 and the Frobenius automorphism σ : F4 → F4 taking
ω 7→ ω2.

We end this section by making a general observation we will use below. Given a
field K, an algebra E over it, and a subalgebra A ⊂ E, we define the centralizer (also called
commutant) CE(A) of A in E to be the K-subalgebra of E consisting of those elements which
commute with all elements of A, i.e.,

CE(A) := {e ∈ E : (∀ a ∈ A) ae = ea}.

Therefore, for example, we have Z(E) = CE(E). Note that this operation is inclusion-reversing:
if A ⊂ B ⊂ E are K-subalgebras, then CE(A) ⊃ CE(B) ⊃ Z(E); ultimately, this is the reason
for the inclusion-reversing nature of the Galois correspondence in our approach to it. The key
observation we will need, and the first indication that something interesting is happening, is

Lemma 3.6. Let L/K be a field extension, and let E := EndK-Vect(L) be the endomorphism
algebra of the underlying K-vector space of L. Consider L as a K-subalgebra of E as in §3. For
any intermediate extension F (i.e., field F with K ⊂ F ⊂ L), considered as a K-subalgebra of
E via F ⊂ L ⊂ E, we have

CE(F ) = EndF -Vect(L).

In particular, CE(L) = L.

Proof. Trivial unraveling of the definitions, and left to the reader. ■

Convention 3.7. In the rest of this article, we will require all our algebras E over our field K
to be finite dimensional over K.

4 Central Simple Algebras

Given a finite dimensional vector space V over a field K, the endomorphism algebra E =
EndK-Vect(V ) is a central simple algebra, and it is this property that will be central to our proof
of the Fundamental Theorem of Galois Theory. Let us recount this story here.

Definition 4.1. Let K be a field and E be an algebra over K. We say that E is a central
simple algebra over K iff it is both

(a) central, i.e., the map K → Z(E) coming from the structure of E is an isomorphism, and
(b) simple, i.e., it has no nonzero proper two-sided ideals.

Remark 4.2. Central simple algebras are also known as Azumaya algebras; see [6, §1.5.1],
where one can also find several equivalent definitions to the one given above.

In this article, we will need only two results which we will not prove fully. The first of
these is

Theorem 4.3. A finite-dimensional algebra over a field is simple iff it admits a finite-dimensional
faithful simple module, in which case this module is unique up to isomorphism.
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5 Proof of the Fundamental Theorem

This is a essentially a consequence of the Artin-Wedderburn Theorem; see [3, Chapters
1-2] or [4, Theorem 5.48] for the general theory. Here we give the short proof of the first
statement found in [1, Lemma 2.4], which is all we need.

Proof of the first statement. Let K be a field and E a K-algebra. If E is simple, then all
nontrivial E-modules are faithful. In particular, E itself, say, by the left regular action is a
faithful simple module, which is finite-dimensional if E is. Conversely, suppose M is a faithful
simple E-module, and let Rad(E) denote the Jacobson radical of E ([4, Def. 5.38]). Since M
is simple, Rad(E) · M = 0; since M is faithful, Rad(E) = 0. In particular, E is semisimple
([4, Lemma 5.39]), and hence by the Artin-Wedderburn Theorem ([4, Theorem 5.48]), E is a
finite direct product of simple finite-dimensional algebras (i.e., matrix algebras over skewfield
extensions of K). In particular, we understand all the simple modules over E. If E is semisimple
but not simple, then no simple E-module can be faithful; but we’ve asserted the existence of
one such module, namely M , and hence E must be simple. ■

Example 4.4. Let V be a finite dimensional vector space over K. The K-algebra E :=
EndK-Vect(V ) of K-linear endomorphisms of K is a central simple algebra over K. Indeed, a
choice of basis of V yields an isomorphism of E with a square matrix algebra over K, and then
centrality and simplicity amount to trivial checks about matrices, left to the reader. Alterna-
tively, centrality is clear by basic linear algebra, and by Remark 4.2(b), it only remains to note
that V is a faithful simple module for E.

These are, however, far from the only central simple algebras over a field. The simplest
non-matrix-algebra example I know is

Example 4.5. When K = R, the R-algebra E = H of Hamiltonian quaternions is a central
simple algebra over R that is not isomorphic to a matrix algebra over R (check!).

In general, central simple algebras over a field K are classified by its Brauer group
Br(K) ∼= H2(K,Gm); since this is irrelevant to our current exposition, we redirect the interested
reader to [4] or [6]. The theory of central simple algebras over a field is rich and vast, with many
applications to number theory (local class field theory) and arithmetic geometry (rationality
questions); however, the only other result from it we shall need is

Theorem 4.6 (Double Centralizer Theorem). Let K be a field and E a central simple algebra
over K. If A ⊂ E is a simple K-subalgebra, then so is the centralizer CE(A), and we have

A = CE(CE(A)).

Further, we have
dimK A · dimK CE(A) = dimK E.

Proof. See [3, Theorem 3.15(d)] or [4, Theorem 6.26]. ■

5 Proof of the Fundamental Theorem

We are now ready to prove the Fundamental Theorem of Galois Theory (Theorem 1.2) using
the Double Centralizer Theorem (Theorem 4.6).

The first part of the Fundamental Theorem is a consequence of

Theorem 5.1. Let L/K be a finite extension of fields with G := AutK(L). Let F and G be
as in 1.2. Let A denote the lattice of intermediate K-subalgebras A between L and E.

7



5 Proof of the Fundamental Theorem

(a) There is an isomorphism of lattices
F∨ ↔ A

given by the operations F 7→ CE(F ) = EndF -Vect(L) and A 7→ CE(A).
(b) There are morphisms of posets

A ↔ G

given by A 7→ A∩G and H 7→ L⋊H. For any H ∈ G, we have (L⋊H)∩G = H. For any
A ∈ A, we have L⋊ (A ∩G) ⊂ A, and further, if L/K is Galois, then equality holds. In
particular, if L/K is Galois, then these morphisms give inverse isomorphisms of lattices.

In particular, for any extension L/K, the lattice G embeds into F∨ via this composition, and
it is maps surjectively (and hence isomorphically) if L/K is Galois.

(c) The compositions of the poset morphisms in (a) and (b) are the morphisms in 1.2(a).
(d) If L/K is Galois, then for any F ∈ F, so the extension L/F is also Galois.

Proof.

(a) If F ∈ F, then F ⊂ L ⊂ E implies CE(F ) ⊃ CE(L) = L, so that CE(F ) ∈ A. Conversely,
if A ∈ A, then L ⊂ A ⊂ E implies L = CE(L) ⊃ CE(A), and a K-subalgebra of L is
automatically a field.6 Next, note that every F ∈ F, being a field, is simple, and also
every A ∈ A is simple; indeed, the latter follows from Theorem 4.3 because A ⊃ L implies
that the faithful A-module L is simple. Putting this all together, the result follows from
the Double Centralizer Theorem (Theorem 4.6).

(b) That these are morphisms of posets is clear. GivenH ∈ G, the inclusionH ⊂ (L⋊H)∩G is
obvious, and the other inclusion follows from Dedekind’s Lemma (Lemma 2.1(b)). Given
A ∈ A, the inclusion L ⋊ (A ∩ G) ⊂ A follows from the fact that A contains L and is
a K-algebra. It remains to show that when L/K is Galois, we have the other inclusion
as well. For this, note that when L/K is Galois, E = L ⋊ G (Corollary 3.3), and so it
remains to show that for any A ∈ A, if

∑
g∈G λgg ∈ A with λg ∈ L, then in fact each

g such that λg ̸= 0 is in A. This is easily done by induction on the number n ∈ Z≥0 of
nonzero λg. The proof of this statement is very reminiscent of the proof of Lemma 2.
When n = 0, there is nothing to show, and when n = 1, the result is clear because L ⊂ A.
Suppose now that n ≥ 2 and we have shown the result for n− 1. Label to write the given
sum as

∑n
i=1 λigi with the gi all pairwise distinct and λi all nonzero. Since g1 ̸= gn, there

is a λ ∈ L such that g1(λ) ̸= gn(λ). Since L ⊂ A and A is an algebra,

A ∋

(
n∑

i=1

λigi

)
· λ =

n∑
i=1

λigi(λ)gi

as well. But also

A ∋ gn(λ) ·

(
n∑

i=1

λigi

)
=

n∑
i=1

λign(λ)gi.

Subtracting the two yields

n−1∑
i=1

λi(gi(λ)− gn(λ))gi ∈ A.

Since L is a domain, we have λ1(g1(λ)− gn(λ)) ̸= 0. Therefore, by induction, we get that
g1 ∈ A. Then also λ1g1 ∈ A, and so again subtracting we conclude

∑n
i=2 λigi ∈ A. One

more application of the inductive hypothesis then tells us that each gi is in A as needed.

6Indeed, a domain that is finite dimensional over some field is automatically a field.
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5 Proof of the Fundamental Theorem

(c) For any F ∈ F, we have CE(F ) ∩ G = EndF -Vect(L) ∩ G = AutF (L). Similarly, for any
H ≤ G, we have that CE(L⋊H) = {λ ∈ L : (∀h ∈ H)hλ = λh} = LH .

(d) If F corresponds to H = AutF (L), then (a), (b), and (c) combine to tell us that the
natural map L⋊H → CE(F ) is an isomorphism; we are then done by Lemma 3.6 coupled
with Corollary 3.3.

■

This theorem also gives us a way to relate our definition of a Galois extension to
another common definition found in the literature.

Corollary 5.2. Let L/K be a finite extension of fields and G := AutK(L). Then L/K is Galois
(i.e., #G = [L : K]) if and only if the subfield LG ⊂ L of L fixed pointwise by all elements of
G is K.

Proof. For any finite L/K with G = AutK(L) and E = EndK-Vect(L), since L ⋊ G ⊂ E, we
have that

LG = CE(L⋊G) ⊃ CE(E) = Z(E) = K.

Therefore, LG = K iff CE(L⋊G) = CE(E), which by the Double Centralizer Theorem (Theorem
4.6) happens iff L⋊G = E, so we are done by Corollary 3.3. ■

To prove the rest of the Fundamental Theorem, it remains to show

Theorem 5.3. Let L/K be a finite Galois extension of fields with G = Gal(L/K). In the
above notation and under the correspondences of Theorem 5.1, let the field F ∈ F, the algebra
A ∈ A, and the subgroup H ∈ G all correspond to each other, so that A = L ⋊H = CE(F ).
The following conditions are equivalent.

(a) The subgroup H ≤ G is normal.
(b) The subalgebra A ⊂ E is stable under conjugation by G.
(c) The subalgebra F ⊂ E is stable under conjugation by G.
(d) The subfield F ⊂ L is stable under the action of G on L.
(e) The extension F/K is Galois.

In this case, (d) gives a natural restriction morphism G → Gal(F/K), and this mor-
phism is surjective with kernel H.

Proof.

(a) ⇔ (b) For g ∈ G, we have g(L⋊H)g−1 = L⋊ gHg−1 and so gAg−1 ∩G = g(A ∩G)g−1.
(b) ⇔ (c) For g ∈ G, we have CE(gAg

−1) = g−1CE(A)g.
(c) ⇔ (d) The group G acts on L by automorphisms via conjugation in E.
(d) ⇒ (e) The hypothesis implies there is a homomorphism G → AutK(F ) with kernelH. Therefore,

#AutK(F ) ≥ #G/#H = [L : K]/[L : F ] = [F : K],

so F/K is Galois by Lemma/Definition 1.1.
(e) ⇒ (d) Let Q := AutK(F ). By Corollary 5.2, FQ = K, so for any λ ∈ F , we have p(x) :=∏

λ′∈Q·λ(x− λ′) ∈ FQ[x] = K[x]. In particular, for any g ∈ G, the element g(λ) is a root
of g(p(x)) = p(x) as well; but all roots of p(x) lie in F , so g(λ) ∈ F .

■
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