

The Atiyah-
Singer
Index
Theorem
and
Almost
Complex
Spheres

Dhruv Goel
Friends
Prize 2024

Almost
Complex
Structures

Index
Theory

Spheres

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends Prize 2024

Harvard University

April 12, 2024

Motivating Question

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory
Spheres

Q.: When is a manifold X the underlying space of a complex manifold?

For this, X needs to be

- (1) even-dimensional,
- (2) smooth(able), and
- (3) orientable.

Not sufficient! Need more refined criteria.

Almost Complex Structures

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory

Spheres

If X is a complex manifold, then its (smooth) tangent bundle TX has the structure of a complex vector bundle:

$$TX \cong T^{1,0}X|_{\mathbb{R}}.$$

Definition

A smooth manifold X is **almost complex** if its tangent bundle TX is a \mathbb{C} -VB.

This is a nontrivial necessary condition.

Fact: every almost complex manifold is even-dimensional and orientable.

Sufficient when $\dim X = 2$, but not when $\dim X \geq 4$ (e.g. $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$).

Spheres I

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory

Spheres

When does S^n admit an almost complex structure (ACS)?

Well, n has to be even. For small even n , we have

- (1) S^0 ,
- (2) S^2 , because $S^2 \cong \mathbb{CP}^1$ via stereographic projection or $S^2 \subset \mathbb{R}^3 = \text{Im } \mathbb{H}$,
- (3) **not** S^4 (Ehresmann-Hopf, 1949), and
- (4) S^6 , because $S^6 \subset \mathbb{R}^7 = \text{Im } \mathbb{O}$ (Kirchoff, 1947).

What about others?

Theorem (Borel-Serre, 1953)

If $n \neq 0, 2, 6$, then S^n does not admit an ACS (w.r.t. any smooth structure).

Index Theory: Spin Manifolds, Spinor Bundles, Dirac Operator

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory
Spheres

A smooth manifold X is **orientable** iff $w_1(X) = 0$.

Definition

A smooth manifold X is said to be **spin** if $w_1(X) = w_2(X) = 0$.

Given a metric on X , this amounts to a lift of $\mathrm{SO}(X)$ to a principal Spin_n -bundle, where $\mathrm{Spin}_n \rightarrow \mathrm{SO}_n$ is a double cover (where $n := \dim X$).

When n is even and X is spin, the spin representations \mathcal{S}_n^\pm of Spin_n give rise to \mathbb{C} -VB's on X called **spinor bundles**, often denoted $\mathcal{S}^\pm(X)$.

There is a first order differential operator

$$\not{d}^+ : \mathcal{S}^+(X) \rightarrow \mathcal{S}^-(X)$$

called the **Atiyah-Singer-Dirac operator**; motivated from physics.

The Index Theorem

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory
Spheres

If $E \rightarrow X$ is a \mathbb{C} -VB, there is a **twisted Atiyah-Singer-Dirac operator**

$$\mathbb{D}_E^+ : \mathcal{S}^+(X) \otimes E \rightarrow \mathcal{S}^-(X) \otimes E.$$

This operator is **elliptic**, so that if X is closed, then the kernel and cokernel of \mathbb{D}_E^+ are finite dimensional, and the **index** of \mathbb{D}_E^+ is defined as

$$\text{ind } \mathbb{D}_E^+ = \dim \ker \mathbb{D}_E^+ - \dim \text{coker } \mathbb{D}_E^+.$$

The Atiyah-Singer Index Theorem allows us to compute $\text{ind } \mathbb{D}_E^+$ using topological information about E and X . Precisely, we have

Theorem (Atiyah-Singer, 1963)

If X is a closed even-dimensional spin manifold and $E \rightarrow X$ a \mathbb{C} -VB, then

$$\text{ind } \mathbb{D}_E^+ = \int_X \text{ch } E \cdot \hat{A}(X).$$

In particular, the quantity on the right is an integer.

Spheres II

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory

Spheres

Now we are ready to study ACSs on S^{2n} for $n \geq 1$.

Lemma

If $E \rightarrow S^{2n}$ is a \mathbb{C} -VB, $n \geq 1$, then $(n-1)!$ divides $c_n(E) \in H^{2n}(S^{2n}; \mathbb{Z}) \cong \mathbb{Z}$.

Proof Sketch.

Clear for $n = 1$, so assume $n \geq 2$.

- (1) S^{2n} is a closed spin manifold: $w_i(X) \in H^i(S^{2n}; \mathbb{Z}/2) = 0$ for $i = 1, 2$.
- (2) By ASIT, $\text{ind } \mathbb{D}_E^+ = \int_{S^{2n}} \text{ch } E \cdot \hat{A}(S^{2n})$.
- (3) S^{2n} is stably parallelizable $\Rightarrow \hat{A}(S^{2n}) = 1$.
- (4) $H^j(S^{2n}) = 0$ for $1 \leq j \leq 2n-1$ gives $\text{ch}_n E = \frac{(-1)^{n-1}}{(n-1)!} c_n(E)$.
- (5) Therefore, ASIT gives

$$c_n(E) = \pm(n-1)! \cdot \text{ind } \mathbb{D}_E^+.$$

Spheres III

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory
Spheres

We are now ready to prove

Theorem (Borel-Serre, 1953)

If $n \neq 0, 2, 6$, then S^n is not almost complex (w.r.t any smooth structure).

Proof Sketch.

- (1) If S^{2n} AC, then by Lemma, $c_n(TS^{2n})$ is divisible by $(n-1)!$.
- (2) By Chern-Gauss-Bonnet, $c_n(TS^{2n}) = e(TS^{2n}) = \chi(S^{2n}) = 2$.
- (3) Therefore, S^{2n} AC $\Rightarrow (n-1)! \mid 2 \Rightarrow n \leq 3$.
- (4) Handle S^4 separately: $c_1(E)^2 = 2\chi(X) + 3\sigma(X)$.

Last Remarks

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel
Friends
Prize 2024

Almost Complex Structures

Index Theory
Spheres

Other proofs:

- (1) (Borel-Serre, 1953) Using mod p Steenrod power operations, and
- (2) (Kirchoff, 1947) S^n AC $\Rightarrow S^{n+1}$ parallelizable +
(Hirzebruch, Kervaire, Bott-Milnor, Adams, 1958) only S^1, S^3, S^7 .

Other applications of the ASIT:

- (1) The \hat{A} -genus of a closed spin manifold X is an integer.
It is even if $\dim X \equiv 4 \pmod{8}$.
- (2) (Rochlin, 1952) The signature of a closed smooth spin 4-fold is div. by 16.
- (3) (Freedman, 1982) There is a non-smoothable topological 4-fold $X(E_8)$.
- (4) Other non-ACSs: \mathbb{HP}^n (Hirzebruch, 1953; Massey, 1962) and $\#^{2m} \mathbb{CP}^{2n}$.
- (5) Much, much more!

Open problems:

- (1) Does S^6 admit a complex structure?
- (2) $\#^{2m+1} \mathbb{CP}^2, m \geq 1$, not AC (Van de Ven, 1966; Enriques-Kodaira 1968).
What about $\#^{2m+1} \mathbb{CP}^{2n}$ for $m \geq 1$ and $n \geq 2$?

Thanks!

The Atiyah-
Singer
Index
Theorem
and
Almost
Complex
Spheres

Dhruv Goel
Friends
Prize 2024

Almost
Complex
Structures

Index
Theory

Spheres

Thank you!