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Abstract

Mathematics is not a careful march down a well-cleared highway, but a journey into a
strange wilderness, where the explorers often get lost. Rigour should be a signal to the
historian that the maps have been made, and the real explorers have gone elsewhere.

Mathematics and History, Mathematical Intelligencer, v. 4, no. 4,
W. S. Anglin

The Atiyah-Singer Index Theorem, discovered by the geometers Sir Michael
Atiyah and Isadore Singer in 1963, is one of the crown jewels of differential geometry of
the 20th century. Roughly speaking, the theorem allows us to study solutions to partial
differential equations on manifolds by relating analytic information about their solution
spaces to the topology of the underlying manifolds; in other words, it builds a bridge be-
tween analysis and topology through geometry. More precisely, the theorem expresses the
index of an elliptic differential complex on a closed orientable smooth manifold in terms of
characteristic classes and other cohomological data on the manifold. This theorem unifies
our understanding of a variety of apparently unrelated results that are central to several
subdisciplines of mathematics, including, but not limited to, the Chern-Gauss-Bonnet
Theorem, the Hirzebruch Signature Theorem, the Hirzebruch-Riemann-Roch Theorem,
and the integrality of the Â-genus for spin manifolds. The Index Theorem and its several
cousins, like the Atiyah-Segal-Singer Fixed Point Theorem and the Atiyah-Patodi-Singer
Theorem, are some of the most powerful modern techniques used to study the geometry
and topology of smooth manifolds. They open avenues connecting differential geome-
try and topology to several other mathematical disciplines such as algebraic topology,
algebraic geometry, mathematical physics, and even combinatorics and number theory.

This thesis is structured roughly in sonata form. In Chapter 1: Statements, we
introduce the main characters of the above story, namely the Atiyah-Singer Index The-
orem and its various consequences. We do not give complete proofs of these results, but
we give detailed sketches of, and references to, several complete proofs. We aim, rather,
to narrate the (mathematical) story connecting these results to each other and to various
other mathematical gems such as the Lefschetz Fixed Point Theorem, Milnor’s exotic
7-sphere, the Riemann-Roch Theorem, and non-smoothable manifolds. Then, in Chap-
ter 2: Examples, we carry out several computations–on (hyper)spheres, projective spaces
of various flavors, complex Grassmannians, and complex smooth complete intersection
varieties–verifying and illustrating the general theory of the previous chapter. Along the
way, we stop to explore several related questions about these manifolds, such as those
about the existence of almost complex structures and metrics of positive scalar curvature.
Finally, in Chapter 3: Appendices, we return to the original characters and spell out the
details of the technical tools used throughout the exposition, such as differential opera-
tors, characteristic classes of vector bundles, and the cohomology of Grassmannians. The
primary goal of this thesis is to unify and present in modern language several classical
results collected from a plethora of textbooks, journals, and websites, and to provide thus
an introduction to the breadth of applications–the many joys–of the Atiyah-Singer Index
Theorem.
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Foreword

So the whole book consists of using the Atiyah-Singer Index Theorem, one of the deepest
and hardest results in mathematics, to prove a series of perfectly elementary identities

which can be proved much more easily by direct means.
Foreword, The Atiyah-Singer Index Theorem and Elementary Number Theory,

Friedrich Hirzebruch and Don Zagier

The idea behind this thesis first arose when I stumbled upon the survey article
[1]. Titled simply “The Atiyah-Singer Index Theorem” and published in the Bulletin of
the American Mathematical Society, this captivating survey was written by Dan Freed,
one of the world’s renowned experts in index theory. Upon reading it (and even under-
standing maybe less than half of it), I felt particularly attracted not only to the theorem
itself–which connected several of my mathematical interests–but also to Freed’s clear and
effective narrative style. Imagine, then, my delight when I found out in July of 2023 that
Dan Freed would be moving to Harvard as the director of the CMSA starting my senior
year! Of course, I had to write my thesis on the Atiyah-Singer Index Theorem.

None of the results in this thesis are mine, or even new–indeed, most of them
(particularly the computations in Chapter 2) are very classical results on the geometry of
manifolds and varieties, obtained decades, if not centuries, before the Index Theorem. An
attempt then, to understand them using the framework of the Index Theorem, may seem
like “a rather pointless course requiring justification,” to quote Hirzebruch and Zagier
once more. Unlike them, however, I do not attempt to give any such justification, other
than mentioning that this attempt serves very well the purpose of illustrating the beauty
and unity of mathematics, which I find well worth writing about.

This thesis barely scratches the tip of the iceberg of the subject of index theory.
Missing from it, in addition to a proof of the Index Theorem, is any treatment of opera-
tor theory, K-theory and Bott periodicity, equivariant index theory, Atiyah-Segal-Singer
fixed point formulae, or the physical motivation behind index theory–all topics well worth
including. The choice of manifolds on which I carry out computations also leaves some-
thing to be desired: for instance, the discussion of complex Grassmannians begs to be
generalized to one of real, oriented real, Lagrangian, and isotropic Grassmannians, and, in
a different direction, to one of flag manifolds, or more generally relative flag manifolds and
their towers. The eclectic and uneven treatment–such as assuming more familiarity with
complex algebraic geometry and combinatorics than with differential geometry–reflects
my own somewhat untraditional background and, of course, biases.

The most interesting results in mathematics are often the ones that admit several
different proofs and are connected to a wealth of different results. It is for this reason
that I have tried to give multiple proofs of each result I mention, drawing on tools
from, and highlighting connections between, differential topology, differential geometry,
algebraic topology, algebraic geometry, and combinatorics. In order to keep this thesis at
a reasonable size, I have not been able to give every detail in every proof of every result
I include–I can at least pretend to deflect some of the blame in this regard towards the
breadth of the math involved (while retaining other blame on the incompleteness of my
understanding). More than anything, this thesis is an excuse for me to write about and
share pieces of math that I find beautiful. I hope that the reader derives as much joy
from reading as I did from writing it.
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Conventions and Fundamentals

The following notations and conventions will be adopted throughout the article. We1

also use this opportunity to review standard definitions and results that will be used
throughout the article without further comment.

Rings and Ringed Spaces

• All rings are commutative and unitary. We do not disallow the zero ring.
• Given a ring R and a power series Q(z) ∈ R[[z]], we denote for each integer n ≥ 0
the coefficient of zn in Q(z) by [zn]Q(z).

• A semiring S is an algebraic object that satisfies all axioms in the definition of a
ring, except for the existence of additive inverses, so that (S,+) and (S,×) are both
monoids, with the two operations + and × related by the distributive law.

• Let R be a ring. An R-ringed space is a pair (X,X) consisting of a topological
space X equipped with a sheaf of R-algebras. A Z-ringed space is simply called a
ringed space.

• To generalize the previous notion slightly, by an R-ringed space, we mean a triple
(X,R,X), where X is a topological space, R a sheaf of rings on X, and X a
sheaf of R-algebras on X.2 The sheaf X is called the structure sheaf of X. Often,
we will supress R and X , and call X the R-ringed space.

Partitions

• A partition λ is a weakly decreasing sequence of nonnegative integers λ = (λ1, . . . , λk)
of some size k ≥ 0, i.e. of integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. We call the
integers λj the parts of λ. We call their sum λ1 + · · ·+ λk the size of λ and denote
it by |λ|. Finally, we call the number of nonzero λj the length of λ and denote it by
ℓ(Λ). If n = |λ| is the size of λ, then we also write λ ⊢ n and call λ a partition of
n. It is often helpful to add or delete as many zero parts as needed.

• The lexicographic ordering on partitions is the total order on all partitions, given by
saying λ > µ if λj > µj when j ≥ 1 is the first index at which λ and µ differ.

• Given a partition λ ⊢ n of n ≥ 0, we also denote λ as λ = (nin , (n−1)in−1 , . . . , 1i1),
where for 1 ≤ j ≤ n, we set ij := #{s : λs = j} to be the number of times j
appears in λ. Therefore, ij are nonnegative integers satisfying

∑n
j=1 jij = n.

• Given a partition λ, the partition obtained by flipping the Ferrers diagram across
the principal diagonal is called the conjugate partition of λ, and denoted λ∗. So,
for instance, for any k ≥ 0, the partition (j) has Ferrers diagram a single row of
j boxes, whereas (j)∗ = (1j) denotes the partition (1, . . . , 1), with 1 appearing j
times, which has Ferrers diagram a single column of j boxes. Note that for any
integers a, b ≥ 0, a partition λ has at most a parts of size at most b iff the Ferrers
diagram of λ fits in the rectangle with a rows and b columns; we denote this by
writing λ ⊂ a× b.

1One convention will be the usage of the formal academic “we”. All the writing and figures are mine,
unless explicitly noted.

2Therefore, an R-ringed space (X,X) is an RX -ringed space (X,RX ,X), where RX is the constant
sheaf with values in R.
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Symmetric Functions

• Given an integer n ≥ 1 and variables x := x1, . . . , xn, we define the ring of the
symmetric polynomials in x to be the subring Λn := Z[x1, . . . , xn]n of Z[x1, . . . , xn]
fixed under the natural action of the symmetric group n. This is naturally a graded
ring Λn =

⊕
k≥0 Λ

k
n, where Λk

n consists of symmetric polynomials of degree k.
• Given a partition λ with ℓ(λ) ≤ n, we define the monomial symmetric function in the
variables x of type λ, denotedmλ(x), to be the unique polynomial Λn with the small-
est number of nonzero coefficients that contains the monomial xλ := xλ1

1 · · · xλn
n .

• Given an integer 0 ≤ j ≤ n, we define the elementary, resp. complete, symmetric
polynomial of degree j in x, written ej(x), resp. hj(x), by

ej(x) := m(1j)(x), resp. hj(x) :=
∑
λ⊢ j

mλ(x).

Given a partition λ with parts at most n, we also define the elementary, resp. com-
plete, symmetric function in the variables x of type λ, written eλ(x), resp. hλ(x), to
be the product

eλ(x) :=

ℓ(λ)∏
i=1

eλi
(x), resp. hλ(x) :=

ℓ(λ)∏
i=1

hλi
(x).

The Fundamental Theorem of Symmetric Polynomials says that the ring Λn is given
by

Λn = Z[e1(x), . . . , en(x)] = Z[h1(x), . . . , hn(x)],

i.e. is a polynomial ring generated by the ej(x) or hj(x).
• Given any integer j ≥ 0, we define the power sum of degree j in x, written pj(x) by

pj(x) = m(j)(x).

• For each n ≥ 1, there is a natural graded epimorphism Λn+1 → Λn given by setting
xn+1 = 0. We define the group of symmetric polynomials of degree k in countably
many variables as the projective limit

Λk := lim←−Λk
n

of the degree k part of this system, and define the ring of symmetric polynomials in
countably many variables as the graded ring given by

Λ :=
⊕
k≥0

Λk,

where multiplication comes from the structures in Λn. This often also called simply
the ring of all symmetric polynomials. For each partition λ, there is a unique element
mλ ∈ Λ that projects under the natural map Λ → Λn to mλ(xn) for all n ≥ ℓ(λ);
call this element mλ. Define eλ, hλ, and pj similarly. Then Λ is generated as a
Z-algebra by the sequence e1, e2, . . . (resp. h1, h2, . . . ), and as an abelian group by
the sequence eλ (resp. hλ) as λ ranges over all partitions.
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• For any ring R, let ΛR := Λ ⊗Z R be the corresponding ring of symmetric poly-
nomials with coefficients in R. Note that the Newton’s Identities are the universal
identities in Λ, which for each n ≥ 1 relate the elementary symmetric and power
sum polynomials via

pn = (−1)n−1nen +
n−1∑
i=1

(−1)n−1+ien−ipi. (1)

These identities imply that ΛQ is generated as a Q-algebra also by p1, p2, . . . .

Topology

• We say that a topological space X is of finite type if its total singular cohomology
group with integral coefficients H∗(X;Z) is a finitely generated abelian group.3 Note
that all compact manifolds (possibly with boundary) and finite CW complexes are
of finite type, as are all spaces homotopy equivalent to these, by the homotopy
invariance of singular cohomology. In this case, we define for i ≥ 0 the ith Betti
number of X to be

bi(X) = rankZH
i(X;Z) = dimQ Hi(X;Q);

note that bi(X) = 0 for all but finitely many i. More generally, given any field k,
we define the ith Betti number of X with coefficients in k by

bi(X; k) = dimk H
i(X; k);

note that bi(X; k) = bi(X) whenever k has characteristic 0. We then call the
generating function of the Betti numbers the k-Poincaré polynomial of X and denote
it by pt(X; k), so that

pt(X; k) :=
∞∑
i=0

bi(X; k)ti ∈ Z[t].

TheQ-Poincaré polynomial is denoted by pt(X) and is called the Poincaré polynomial
of X. The Universal Coefficient Theorem tells us that the quantity obtained by
evaluating pt(X; k) at t = −1 is independent of the choice of k; this quantity is
called the Euler characteristic of X. In other words,

χ(X) = p−1(X; k) =
∞∑
i=0

(−1)ibi(X; k)

for any field k. By a standard theorem in algebraic topology, if X is given a finite
CW structure with ci cells of dimension i, then we have also

χ(X) =
∞∑
i=0

(−1)ici.

3The Universal Coefficient Theorem tells us that we get the same definition if we ask this of the
homology or cohomology groups.
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• Since the quaternions H are not commutative, but form a skew-field, we need to be
careful about our definition of right and left vector spaces over H. We will take a
vector space over H to mean a right H-module, i.e. to say that scalar multiplication
is done on the right. So, for instance, subspaces are defined to be sub-right-modules,
and Hn is the space of column vectors of size n with right multiplication, on which
n × n-matrices with values in H act on the left as H-linear maps. With this con-
vention, we can define uniformly for F ∈ {R,C,H} and integer n ≥ 0 the projective
space of dimension n over F, denoted FPn, to be the quotient

FPn := {v ∈ Fn+1 ∖ {0}}/
(
v ∼ vλ for all v ∈ Fn+1 ∖ {0}, λ ∈ F× = F ∖ {0}

)
.

• Let n ≥ 0 and let X be a connected, closed, orientable topological n-manifold.
Then standard algebraic topology of manifolds asserts that the top homology group
Hn(X;Z) of X is isomorphic to Z. A choice of orientation corresponds to a choice
of isomorphism, i.e. if X is oriented, then we have a canonical generator [X] of
Hn(X;Z) called the fundamental class of X. Poincaré duality then asserts that, in
this case, the map

D : Hn(X;Z)→ H0(X;Z) = Z[∗] ∼= Z, η 7→ [X]⌢ η

is then an isomorphism, where ⌢ denotes the cap product operation and [∗] is
the class of a point. In particular, there is a unique distinguished generator in the
top cohomology group, ηX ∈ Hn(X;Z), which is the Poincaré dual to a point and
algebraic dual to the fundamental class, i.e. which satisfies

[X]⌢ ηX = 1.

Of course, the same remarks hold if we replace Z by an arbitrary coefficient ring
R and the word “orientable” by “R-orientable”.4 Note that when X is a smooth
manifold, taking R to be R or C and identifying H∗(X;R) ∼= H∗

dR(X;R) with the de
Rham cohomology of X with R-coefficients using the de Rham theorem, the map
D can be given by

D : Hn
dR(X;R)→ R, [ω] 7→

ˆ
X

ω,

where ω is an n-form on X, and
´
X

denotes integration on X, an operation that
is well-defined on cohomology classes by Stokes’ theorem. For this reason, for any
coefficient ring R and even when X is simply a topological manifold, the map D is
sometimes also written as

D(η) =

ˆ
X

η,

even though integration doesn’t really make sense for topological manifolds or when
R is, say, a finite field. We will also follow this convention without further comment.

• In addition to r-manifolds for r = 0, 1, 2, . . . ,∞, we say a real analytic manifold is
smooth of class ω, and a complex manifold is smooth of class hol. In this article,
we will work only with topological (i.e. 0), smooth (i.e. ∞), and complex (i.e.
hol) manifolds.

4Note, however, that there are really only two kinds of orientability: a Z-orientable manifold is
R-orientable for all R, while a Z-nonorientable manifold is R-orientable iff R is an F2-algebra.
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• When X is a smooth manifold, we denote the tangent bundle to X by TX, which
is real vector bundle of rank dimRX. When X is a complex manifold, we denote
its holomorphic tangent bundle by TX, which is a complex vector bundle of rank
dimCX. In this case, the underlying space of X is also a smooth (in fact real
analytic) manifold of dimension 2n, and the relationship between the real tangent
bundle TX and the holomorphic tangent bundle TX is that, as real vector bundles
of rank 2n, we have

TX ∼= TXR,

where the subscript R denotes restriction of scalars to the reals, i.e. considering the
underlying real vector bundle. Conversely, the complexification TXC, a complex
vector bundle of rank 2n, decomposes as

TXC = TX ⊕TX,

where TX is the complex conjugate bundle to TX.
• If X is a compact complex manifold and E → X a holomorphic vector bundle,
the sheaf cohomology groups H∗(X,E) are finite dimensional (see Example ?? and
Theorem 1.1.4), and we define for each j ≥ 0 the quantity hj(X,E) as

hj(X,E) := dimCH
j(X,E).

The holomorphic Euler characteristic χ(X,E) of E is then defined to be

χ(X,E) =
∑
j

(−1)jhj(X,E).

• Throughout the article, we will use non-calligraphic font (e.g. E → X) to denote
the total space of a vector bundle, and calligraphic font (e.g.  → X) to denote the
corresponding locally free sheaf of sections, moving freely between these notions as
needed. For instance, the trivial complex vector bundle on a complex manifold X
will be denoted either by C or X , according to the conventions of the discipline
(differential geometry or algebraic geometry) we are talking about. See Appendix
3.4 for a discussion of this choice.

12



Chapter 1

Statements

In this chapter, we precisely state the Atiyah-Singer Index Theorem and its several corol-
laries, namely the Chern-Gauss-Bonnet Theorem, the (generalized) Hirzebruch-Riemann-
Roch Theorem, the Hirzebruch Signature Theorem, and the integrality of the Â-genus
for spin manifolds. We give only sketches, and precise references to, a few different proofs
of each result.

In addition to the topics mentioned in Conventions and Fundamentals, as well as
those reviewed in the appendices, we will assume familiarity with the basics of K-theory,
as can be found in, say, [2, Chapter I, §9] and the references therein.
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Chapter 1. Statements

1.1 The Atiyah-Singer Index Theorem

We can associate to each differential operator D : E → F of order k ≥ 0 between vector
bundles E,F on a manifold X its symbol σ(D) (see Appendix 3.1). If π : T∨X → X is
the cotangent bundle of X, then the symbol σ(D) of D is a vector bundle morphism

σ(D) : π∗E → π∗F

such that the underlying map (x, ξ, v) 7→ σ(D)(x, ξ, v) is locally a homogenous polynomial
of degree k in ξ, where x ∈ X is a point, ξ ∈ T∨

xX is a cotangent vector, and v ∈ E(x).
One of the central definitions in the theory of differential operators is then

Definition 1.1.1. Let X be a smooth manifold.

(a) A differential complex E• on X is a sequence

· · · → Ej−1 ∂j−1

−−→ Ej ∂j

−→ Ej+1 → · · ·

of smooth vector bundles Ej → X and differential operators ∂j : Ej → Ej+1

with ∂2 = 0, i.e. ∂j ◦ ∂j−1 = 0 for all j, and Ej = 0 for all but finitely many j.
(b) We say that a differential complex E• is an elliptic complex, or simply elliptic,

if its symbol complex, i.e. the vector bundle complex

· · · → π∗Ej−1 σ(∂j−1)−−−−→ π∗Ej σ(∂j)−−−→ π∗Ej+1 → · · ·

on the cotangent bundle T∨X is exact outside of the zero section X ⊂ T∨X.
In other words, E• is elliptic if for each x ∈ X and 0 ̸= ξ ∈ T∨

xX, the sequence

· · · → Ej−1(x)
σ(∂j−1,ξ)−−−−−→ Ej(x)

σ(∂j ,x)−−−−→ Ej+1(x)→ · · ·

of vector spaces and linear maps is exact.

Note that Ej could be real or complex vector bundles; it does not matter for
the definition, although we will soon specialize to the case of complex vector bundles.

Example 1.1.2. The data of a complex E• supported in two consecutive degrees, say
j = 0, 1, is a single differential operator D : E0 → E1, and then E• (i.e. D) is elliptic iff
for each x ∈ X and 0 ̸= ξ ∈ T∨

xX, the map σ(D, ξ) : E0(x)→ E1(x) is an isomorphism.

Example 1.1.3. Let X = U ⊂ R2 be a domain with coordinates x, y and cotangent
coordinates ξ dx + η dy. Let E0 = E1 = R be the trivial vector bundles on X. A
differential operator D : Γ(U,R)→ Γ(U,R) of order 2 can be given as

D = a ∂2x + 2h ∂x∂y + b ∂2y + 2e ∂x + 2f ∂y + c

for some smooth functions a, b, c, e, f, h on U . Then the ellipticity of the complex R D−→ R
is equivalent to the inequality h2 < ab on U , which amounts to saying that the equation

aξ2 + 2hξη + bη2 + 2eξ + 2fη + c = 0

defines an ellipse in the (ξ, η)-plane T(x,y)U at each (x, y) ∈ U . This is the origin of the
nomenclature “elliptic”.
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The fundamental result in the theory of elliptic partial differential equations is
the finite dimensionality of the space of solutions. In the above terminology, this can
be expressed as follows. Let E• be a differential complex on a manifold X, so that in
particular, the sequence of spaces of global sections

· · · → Γ(X,Ej−1)
∂j−1

−−→ Γ(X,Ej)
∂j

−→ Γ(X,Ej+1)→ · · ·

is a complex of vector spaces. With this, we define the cohomology groups Hj(E•) of E
as

Hj(E•) :=
ker ∂j : Γ(X,Ej)→ Γ(X,Ej+1)

im ∂j−1 : Γ(X,Ej−1)→ Γ(X,Ej)
.

Note that each Hj(E•) is a vector space, real or complex as E• is. Then this fundamental
result can be stated as

Theorem 1.1.4 (Finiteness). Let E• be an elliptic differential complex on a compact
manifold X. Then for each j, the cohomology space Hj(E•) is finite dimensional.

Proof. This is usually proven using a fair bit of machinery from analysis, including elliptic
regularity applied to harmonic sections in Sobolev spaces of sections of Ej–this is the same
machinery that proves, for instance, the Hodge theorem as a special case. For complete
proofs, see [3, Theorem 2.6] and [4, Chapter 0, §6]. ■

In light of Theorem 1.1.4, we may make

Definition 1.1.5. Let E• be a differential complex on a compact manifold X. Then
we define the index of E•, denoted χ(E•) or ind(E•), to be

χ(E•) = ind(E•) :=
∑
j

(−1)j dimHj(E•).

Example 1.1.6. In the simplest case of a single elliptic operator D : E0 → E1 between
vector bundles on a compact manifold X, the above theorem is saying that the kernel
and cokernel of D : Γ(X,E0)→ Γ(X,E1) are finite-dimensional, and the index of D is

indD = dimkerD − dim cokerD.

Example 1.1.7. The de Rham complex on a smooth manifold is the differential complex
E• given by taking Ej := ΛjT∨X and ∂j : ΛjT∨X → Λj+1T∨X to be the de Rham
differential. This complex is often denoted simply as Λ•T∨X. In this case, for (x, ξ) ∈
T∨X, the symbol map

σ(∂j, ξ) : ΛjT∨
xX → Λj+1T∨

xX is given by ω 7→ ξ ∧ ω,

Example 1.1.8. Let X be a complex manifold and E → X be a holomorphic vector
bundle. Then the Dolbeault complex of E is the differential complex E• = (0,•⊗E, ∂E)
given by taking Ej := 0,j⊗∞(−,C)E, wherep,q denotes the sheaf of complex differential

forms of type (p, q) on X, and taking ∂E : Ej → Ej+1 to be the ∂-operator corresponding
to E. In this case, for (x, ξ) ∈ T∨X ∼= (T∨X)R, the symbol map

σ(∂j, ξ) : Λ0,j
x X → Λ0,j+1

x X is given by ω 7→ iξ0,1 ∧ ω,

15



Chapter 1. Statements

so that again, E• is elliptic. In this case, the jth cohomology group of this complex is
called the jth Dolbeault cohomology group of E, and is denoted by Hj

∂
(X,E). Theorem

1.1.4 says in this case that the Dolbeoux cohomology groups of a holomorphic vector
bundle on a compact complex manifold are finite dimensional. In this case, the index of
the Dolbeault complex associated to E is called the holomorphic Euler characteristic of E
and is denoted by χ(X,E).

Note that if we temporarily write Ehol to emphasize the holomorphic structure
on E and denote by E∞ the corresponding smooth complex vector bundle, then the
∂-Poincaré Lemma says exactly that the sequence

0→ Ehol → E∞ ∂−→ 0,1 ⊗ E∞ ∂−→ · · · ∂−→ 0,n ⊗ E∞ → 0,

where n := dimCX, is a soft resolution of Ehol. Therefore, from the general machinery
of soft resolutions, we conclude that there is an isomorphism

H∗(X,Ehol)→∼ H∗
∂
(X,E)

between the sheaf cohomology of X with coefficients in E to the Dolbeault cohomology of
E–this is the Dolbeault Theorem, the complex analog of the de Rham Theorem. Theorem
1.1.4 then tells us that the sheaf cohomology groups of a vector bundle on a compact
complex manifold are finite dimensional. This is the differential geometric analog of the
theorem in algebraic geometry which ensures the coherence of higher pushforwards of
coherent sheaves along proper morphisms of Noetherian schemes; see [5, Theorem 8.8(b)]
and the references there.

Roughly speaking, the Atiyah-Singer Index Theorem says that that the index
of an elliptic complex on a compact manifold can be computed with the help of cohomo-
logical data on it. To state this we first recall the definition of the compactly supported
K-theory of a locally compact paracompact Hausdorff space. Recall that if F • = (F j, ∂j)j
is a complex of vector bundles on a space Y 1, then we define its support to be

supp(F •) := {y ∈ Y : · · · → F j(y)
∂j

−→ F j+1(y)→ · · · is exact}.

By the upper semicontinuity of the kernel dimension of a vector bundle morphism, this
is a closed subset of Y . We say that the complex F • is compactly supported if supp(F •)
is compact. Now given a locally compact paracompact Hausdorff space Y , we consider
the set Lc(Y ) of isomorphism classes of compactly supported complexes of vector bundles
on Y . In Lc(Y ), a complex F • is said to be elementary iff it is supported in only two
consecutive degrees, say i and i + 1, and the map ∂i : F i → F i+1 is an isomorphism of
vector bundles. There is an operation of direction sum on Lc(Y ), and we now define an
equivalence relation on Lc(Y ) by saying that two complexes F • and G• are equivalent,
written F • ∼ G•, if there are elementary complexes S1, . . . , Sr, T1, . . . , Ts ∈ Lc(Y ) such
that

F ⊕ S1 ⊕ · · · ⊕ Sr
∼= G⊕ T1 ⊕ · · · ⊕ Ts. (1.1)

1This is, as opposed to a differential complex, so that the maps ∂j : F j → F j+1 are vector bundle
homomorphisms (i.e. ∂j :  j →  j+1 are X -module homomorphisms).
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Definition 1.1.9. Given a locally compact, paracompact Hausdorff space Y , we de-
fine the compactly supported K-theory of Y to be

Kc(Y ) := Lc(Y )/ ∼

the set of equivalence classes of compactly supported complexes of complex vector
bundles under the equivalence relation (1.1).

On the equivalence of this definition to the more traditional definition ofKc(Y ) =
K̃(Y +) of the compactly supported K-theory as the reduced K-theory of the one point
compactification Y +, see [6]. We remark only that if Y is already compact, then any
complex on Y has compact support, and the isomorphism with the usual definition of
K-theory (as the Grothedieck ring of the semiring Vect(Y ) of complex vector bundles
on Y ; see Appendix 3.4) is given simply by taking the class in Kc(Y ) = Lc(Y )/ ∼ of a
complex E• ∈ Lc(Y ) to the element∑

j

(−1)j[Ej] ∈ K(Y ).

In particular, this class, at least for compact Y , does not depend on the morphisms
∂j : Ej → Ej+1 in the complex at all. Finally, just as in ordinary K-theory, for nice
spaces Y there is a Chern character homomorphism

ch : Kc(Y )→ H∗
c(Y ;Q),

where H∗
c(Y ;Q) denotes the compactly supported (say) singular cohomology of Y with

rational coefficients. Again, this Chern character is natural with respect to pullbacks
along proper morphisms.

Given the above set-up, let’s return to the case of a differential complex E• on
a smooth manifold X. In this case, if we take Y := T∨X to be (the total space of)
thecotangent bundle of X, then the support of the elliptic complex (π∗E•, σ(∂)) on Y
contains at least the zero section X ⊂ T∨X (at least when all differential operators have
positive order), and saying that E• is elliptic is equivalent to saying that the symbol
complex is supported exactly on the zero section. In particular, if E• is elliptic and X
is compact, then the symbol complex is compactly supported, and hence defines a class
in the compactly supported K-theory of T∨X, which we will call the symbol class of E•

and denote by
σ(E•) ∈ Kc(T

∨X).

In particular, taking its Chern character then defines an element

chσ(E•) ∈ H∗
c(T

∨X;Q).

With this notation, we can state the eponymous

Theorem 1.1.10 (Atiyah-Singer). Let X be a closed oriented smooth n-manifold,
where n ≥ 1, and let E• be an elliptic complex on X. Then the index of E• is given
by

χ(E•) = (−1)n(n+1)/2

ˆ
X

Θ−1
T∨X chσ(E•) · Td(TXC),
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where ΘT∨X : H∗(X;Q) → H∗
c(T

∨X;Q) is the Thom isomorphism in cohomology
and the class Td(TXC) ∈ H∗(X;Q) is the total Todd class of the complexified tangent
bundle TXC of X.

The Thom Isomorphism Theorem is reviewed in Appendix 3.2.1 and the defini-
tion of the total Todd class of a complex vector bundle is reviewed in Appendix 3.4. It is
not clear at all that the quantity on the right, a priori only a rational number, is even an
integer; the theorem implies that it is, and indeed this gives us a way to prove a series of
integrality results for genera on manifolds (see, for instance, §1.5). Note how remarkable
this theorem is–it expresses deep analytic information about the spaces of solutions to
partial differential equations, namely χ(E•), in terms of the topology of the underlying
space on which we have formulated these differential equations.

Proof. We refer the reader to the survey article [1] for a history of the theorem and ideas
behind several proofs of it–using cobordism, K-theory and pseudodifferential operators,
and the heat equation–and to the textbooks [2] and [7] for complete expositions. ■

Instead of giving the proof, we now emphasize two qualitative results that can
be derived already from Theorem 1.1.10. The first observation is

Proposition 1.1.11. Let X be a closed oriented smooth n-manifold with n odd. If
E• is any elliptic complex on X, then the index

χ(E•) = 0.

Proof Sketch. If X is an odd-dimensional manifold, then there is an orientation-reversing
involution on TX ∼= T∨X given by (x, ξ) 7→ (x,−ξ). Using this involution, one can show
that the formula on the right side of Theorem 1.1.10 gives you something equal to its own
negative, so the result follows from Theorem 1.1.10. See [2, Ch. III, Thm. 13.12]. ■

This proposition, combined with Example 1.1.7, implies that the Euler char-
acteristic χ(X) of a closed, odd-dimensional manifold is zero, something which is often
proven as a consequence of Poincaré duality. The second observation is that the quantity
on the right side in Theorem 1.1.10 can in a lot of cases of interest be simplified via

Lemma 1.1.12. Let F → X be a vector bundle over a compact space X, and let
ι : X ↪→ F denote the inclusion of the zero section. Then for any γ ∈ H∗

c(F ;Q), we
have that

ι∗γ = e(F )⌣ Θ−1
F γ,

where ΘE : H∗(X;Q) → H∗
c(F ;Q) is the Thom isomorphism, and ι∗ : H∗

c(F ;Q) →
H∗(X;Q) is the restriction to the zero section.

Proof. Write γ = ΘF (η) for some η ∈ H∗(X;Q) using the Thom Isomorphism Theorem,
and then use the formula that

ΘF (η) = ΘF ⌣ π∗η,
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where ΘF on the right side is the Thom class (see Appendix 3.2). Pulling back both sides
via ι∗ and using the push-pull formula, we then conclude as needed that

ι∗γ = ι∗ΘF (η) = ι∗(ΘF ⌣ π∗η) = ι∗(ΘF )⌣ η = e(F )⌣ η = e(F )⌣ Θ−1
F γ,

where in the second to step we have used the definition e(F ) := ι∗ΘF . ■

Let’s return to the case where X is a closed oriented smooth manifold, and E•

is an elliptic complex on X. Applying the above lemma to F := T∨X and γ = ch σ(E•),
we get that

ι∗ chσ(E•) = e(T∨X)⌣ Θ−1
T∨X chσ(E•) = e(TX)⌣ Θ−1

T∨X chσ(E•),

where in the last step we have used that T∨X ∼= TX as bundles. On the other hand, the
naturality of the Chern character homomorphism, along with the fact that the symbol
complex σ(E•) pulls back via ι∗ to the complex on X which has the same vector bundles
E• but zero differentials, we conclude that

ι∗ chσ(E•) = ch ι∗σ(E•) = ch

(∑
j

(−1)jEj

)
=
∑
j

(−1)j chEj.

Therefore, if e(TX) ∈ H∗(X;Q) were invertible, then this would allow us to write

Θ−1
T∨X chσ(E•) =

∑
j(−1)j chEj

e(TX)
,

where by this division we mean multiplication on the left by e(TX)−1. However, in
most cases of interest, this Euler class will not be invertible. For instance, if X is odd
dimensional, then this class is simply zero. Even if X is even-dimensional, nothing
guarantees in general that for an arbitrary manifold X, this class will be invertible.
There is, nonetheless, a way to get around this problem for some interesting choices of
E• by appealing to the “universal case” of X = BSOn. Of course, this doesn’t make
sense literally, since BSOn is not even close to being a manifold. Nonetheless, Atiyah
and Singer explain already in the third [8] of their series of papers in which they lay out
the proof of Theorem 1.1.10 how to deal with this issue–they introduce, for Lie groups
H, the notion of H-structures on manifolds and elliptic complexes, and then show that if
ρ : H → SOn is a homomorphism (with n even!) such that the maximal torus of H has no
fixed nonzero vector in Rn, then the pullback ρ∗(e) ∈ H∗(BH;Q) of the universal Euler
class e ∈ H∗(BSOn;Q) is nonzero. Since the cohomology H∗(BH;Q) is polynomial, we
are now allowed to divide by ρ∗(e). In particular, if the elliptic complex E• comes from
complex H-modulesM j (in the sense that Ej is obtained from the principal H-bundle lift
of TX and M j via the mixing construction), then in fact there is a well-defined element∑

j(−1)j chM j

ρ∗(e)
∈ H∗(BH;Q),

which we are pulling back to X via a classifying map, so that we may pretend that we
are allowed to divide by the Euler class. See [8, Proposition 2.17] and [2, Ch. III, Thm.
13.13] on precise formulations of this heuristic argument; in the following sections, we
will show rather how to use this argument in practice.
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1.2 Chern-Gauss-Bonnet and Poincaré-Hopf

One of the simplest local-to-global theorems in differential geometry is the Gauss-Bonnet
Theorem, which relates the curvature of a closed surface (a local, geometric invariant)
to its Euler characteristic (a global topological invariant). Chern later extended this
result to manifolds of higher dimension, giving a formula relating the curvature of a
Riemannian manifold–specifically the Pfaffian of the curvature matrix–to its topological
Euler characteristic; this is the content of the famed Chern-Gauss-Bonnet Theorem. This
theorem can be proven immediately as a consequence of the machinery of the Atiyah-
Singer Index Theorem, and we present (detailed sketches of) two proofs of this result
below. Atiyah and Singer even call this application “not very exciting” (see [8, §6])–I
disagree.

Theorem 1.2.1 (Chern-Gauss-Bonnet). LetX be an oriented closed smooth manifold.
Then the Euler characteristic χ(X) of X can be computed as

χ(X) =

ˆ
X

e(TX),

where e(TX) is the Euler class of the tangent bundle TX of X.

Since the proof is not explained in detail in [8], we give a slightly more detailed
explanation of this consequence of Theorem 1.1.10 here.

Sketch of Proof 1 of Theorem 1.2.1. We use Theorem 1.1.10. Of course, the result is
only nontrivial when X is even dimensional (see Proposition 1.1.11 and the following
discussion), so we assume hence that X has dimension 2n for some n ≥ 1. Consider the
complexified de Rham complex ΛjT∨XC on X. Combining the observation in Example
1.1.7 along with the Universal Coefficient Theorem tells us that that the index of the
complexified de Rham complex

χ(Λ•T∨XC) = χ(X)

is just the Euler characteristic of X. On the other hand, we can compute the right hand
side of Theorem 1.1.10 as follows. By taking H = SO2n in the argument at the end of
§1.1, we may pretend that we are allowed to divide by the Euler class, and use this to
write the right side of Theorem 1.1.10 as

(−1)n(2n+1)

ˆ
X

∑
j(−1)j chΛjT∨XC

e(TX)
· Td(TXC).

To compute this quantity, we note that by a version of the splitting principle (Theorem
3.4.11), proven identically to the usual one, we may assume that the tangent bundle TX
splits as

TX = E1 ⊕ E2 ⊕ · · · ⊕ En (1.2)

for some collection of oriented real 2-plane bundles E1, . . . , En. Now any oriented real 2-
plane bundle is the underlying real vector bundle of a complex line bundle (by U1 = SO2),
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and hence there are complex line bundles L1, . . . , Ln such that Ej = (Lj)R for 1 ≤ j ≤ n.
If we write γi := c1(Lj) = e(Ej) for 1 ≤ j ≤ n, then we get from (1.2) that

e(TX) =
n∏

j=1

e(Ej) =
n∏

j=1

γj.

On the one hand, we have

TXC ∼=
n⊕

j=1

Lj ⊕ Lj,

so that

Td(TXC) =
n∏

j=1

γj
1− e−γj

· (−γj)
1− eγj

.

On the other hand, the Chern roots of T∨XC are also those of TXC, namely

{β1, . . . , β2n} = {γ1, . . . , γn,−γ1, . . . ,−γn},

and hence for each 1 ≤ j ≤ n, we have

chΛjT∨XC =
∑

I⊂{1,...,2n}
|I|=j

eβI ,

where I = {i1, . . . , ij} is a subset of {1, . . . , 2n} of size j and βI := βi1 + βi2 + · · · + βij .
It follows from this that

2n∑
j=0

(−1)j chΛjT∨XC =
2n∏
i=1

(1− eβi) =
n∏

j=1

(1− eγj)(1− e−γj).

Putting these all together, we conclude from Theorem 1.1.10 that

χ(X) = (−1)n
ˆ
X

∏n
j=1(1− eγj)(1− e−γj)∏n

j=1 γj
·

n∏
j=1

γj
1− e−γj

· (−γj)
1− eγj

=

ˆ
X

n∏
j=1

γj =

ˆ
X

e(TX),

as needed. ■

Sketch of Proof 2 of Theorem 1.2.1. The more classical proof of this result, using differ-
ential topology, proceeds as follows. As noted in the second definition of the Euler class
in Appendix 3.2, the integer ˆ

X

e(TX)

is the oriented self intersection number of the zero section X ⊂ TX in the tangent bundle
of X. To compute this, note that the normal bundle of the zero section X ⊂ TX is simply
the bundle TX itself. Further, if we denote by ι : X → X × X the embedding as the
diagonal ∆ ⊂ X ×X, then the pullback of the normal bundle ∆/X×X of ∆ in X ×X
under the diagonal embedding ι is also TX, i.e. we have an isomorphism

ι∗∆/X×X
∼= TX.
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Since this oriented self intersection number is a local quantity depending only on the
normal bundle of X in TX, we may compute it also as the self intersection of ∆ in
X ×X. The advantage of this formulation is that, since X ×X is compact, we can use
the Künneth formula to explicitly write down the cohomology ring H∗(X ×X;Q) of the
product and compute the class η∆ ∈ Hn(X ×X;Q) of the diagonal, where dimX = N .
Then it is not hard to check directly that this oriented self-intersection number

I(∆,∆) =

ˆ
X×X

η∆ ⌣ η∆ = χ(X)

is the Euler characteristic of X. For details, see [4, Chapter 3, §4] or [9, Prop. 11.24]. ■

When X has dimension 2, we recover from Theorem 1.2.1 the classical Gauss-
Bonnet Theorem. Indeed, the topological classification of oriented closed surfaces tells
us that any such surface X is diffeomorphic to the connect sum of g tori for some unique
g ≥ 0 called the genus of X. In this case, standard algebraic topology gives us

H∗(X;Z) =


Z, ∗ = 0, 2,

Z2g, ∗ = 1, and

0 else.

Therefore, the Euler characteristic of X is simply

χ(X) = 2− 2g.

We may also easily compute the Euler class e(TX) using Chern-Weil Theory (see Defi-
nition 3 of the Euler class in Appendix 3.2.1)–namely, if we fix a Riemannian metric on
X, then

e(TX) =

[
1

2π
κ dvol

]
,

where κ : X → R is the scalar curvature of X and dvol is the volume form on X
with respect to the chosen Riemannian metric. Indeed, this is because the Pfaffian of a
skew-symmetric 2× 2 matrix is given by

Pf

[
0 x
−x 0

]
= x.

With this notation, applying Theorem 1.2 to this case gives us

Theorem 1.2.2 (Gauss-Bonnet). Let X be an oriented closed surface of genus g. If κ
denotes the scalar curvature of X with respect to a given Riemannian metric, then
we have

2− 2g =
1

2π

ˆ
X

κ dvol.

This theorem implies, for instance, that the volume of the round sphere S2,
which has constant curvature κ = 1 and genus g = 0 is exactly 4π. Also, if X is a surface
of genus g ≥ 2 equipped with a hyperbolic metric of constant curvature κ = −1, then its
hyperbolic volume is simply Vol(X) = 4π(g − 1).
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The Chern-Gauss-Bonnet theorem gives us a way to relate χ(X) with the Euler
class e(TX), but, in practice, is not the easiest way to compute χ(X), because determi-
nation of the Euler class e(TX) for higher dimensional X is fairly nontrivial in general.
There are, however, two approaches that can often be made to work.

The first approach applies when X is a(n) (almost) complex manifold. If X is
complex of dimension n (so real dimension N = 2n) and TX denotes the holomorphic
tangent bundle of X, then by Remark 3.4.23, the Euler class of TX ∼= (TX)R is given as

e(TX) = cn(TX),

i.e. top Chern class of TX, often also denoted simply by cn(X). More generally, if X is
almost complex, so that there is a complex vector bundle E such that TX ∼= ER, then
we have

e(TX) = cn(E).

If we can use characteristic class techniques to compute this Chern class, then we may
use this computation to figure out the Euler characteristic of X. This is done in a few
special cases in an ad hoc manner in sections §2.2, 2.3 and 2.4 below. Carrying out this
computation systematically (using the definition of Chern classes as degeneracy loci and
the Thom-Porteous formula) can also be used to give another proof of Theorem 1.2.1 in
this special case of complex manifolds; see [4, §3.3] and [10, Formula 3.5.10].

The second approach applies more generally to any oriented closed manifold. To
explain this, note that Proof 2 of Theorem 1.2.1 allows us to write the Euler characteristic
of X as the self-intersection number

χ(X) = I(∆,∆)

of the diagonal ∆ ⊂ X ×X. (This is sometimes also taken as the definition of the Euler
characteristic, as in [11, §3.3].) The homotopy invariance of the intersection number then
allows us to say that if f : X → X is any smooth map homotopic to the identity map
such that its graph Γf := {(x, f(x)) : x ∈ X} intersects the diagonal ∆ transversally,
written Γf ⋔ ∆, then we can compute the Euler characteristic of X as

χ(X) = I(Γf ,∆).

This motivates the following definition.

Definition 1.2.3. Let X be any manifold and f : X → X be a smooth map.

(a) Suppose that x ∈ X is a fixed point of f so f(x) = x. Then x is called a
nondegenerate, or Lefschetz, fixed point if the graph Γf of X ×X intersects the
diagonal ∆ transversally at (x, x). Equivalently, x is a Lefschetz fixed point of
f is the differential

dfx : Tx → Tx

does not have +1 as an eigenvalue, i.e. det(dfx − idTxX) ̸= 0.
(b) We call f a Lefschetz map if all its fixed points are Lefschetz fixed points.

The equivalence of the two definitions of x being a Lefschetz fixed point is seen
easily in local coordinates (see [11, §3.4]); the advantage of the second definition is that
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it gives us a convenient criterion to check explicitly. Since both a graph and ∆ are half-
dimensional in X×X, any Lefschetz fixed point is isolated. In particular, if X is compact,
then any Lefschetz map f : X → X has only finitely many fixed points. Note also that
any smooth map f without fixed points is tautologically Lefschetz.

Now suppose that X is a closed oriented manifold. Then to any smooth map
f : X → X and Lefschetz fixed point x ∈ X, we can associate a number, called the
local Lefschetz number of f at x and denoted Lx(f), which is simply the local oriented
intersection number of Γf and ∆ at (x, x), given via the formula

Lx(f) = Ix(Γf ,∆) = sign det(dfx − idTxX).

If f is Lefschetz, we may define its Lefschetz number, denoted L(f), to be the total
oriented intersection number of Γf and ∆, so that, by definition, we have

L(f) = I(Γf ,∆) =
∑

x∈X:f(x)=x

Lx(f).

Then the main result here is a cohomological interpretation of L(f) as in

Theorem 1.2.4 (Lefschetz Fixed Point Theorem). Let X be a closed oriented n-
manifold and f : X → X a Lefschetz map. Then the Lefschetz number of f is

L(f) =
n∑

i=0

(−1)iTr
(
f ∗ : Hi(X;R)→ Hi(X;R)

)
.

Proof. The proof is very similar to Proof 2 of Theorem 1.2.1; we refer the reader to [4,
§3.4] or [9, Exercise 11.26]. ■

We mention two immediate consequences of this theorem.

Corollary 1.2.5. If X is a closed oriented manifold and f : X → X a Lefschetz map
homotopic to the identity, then

χ(X) = L(f).

Proof. By homotopy invariance of cohomology, we know for each i that the pullback map
f ∗ : Hi(X;R)→ Hi(X;R) is the identity map, and so has trace equal to

Tr
(
f ∗ : Hi(X;R)→ Hi(X;R)

)
= dimR H

i(X;R) = bi(X).

Therefore, by Theorem 1.2.4, we have

L(f) =
∑
i

(−1)ibi(X) =: χ(X).

Alternatively, as noted above, this follows from the homotopy invariance of the oriented
intersection number, which gives

L(f) = I(Γf ,∆) = I(∆,∆) = χ(X).

■
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Corollary 1.2.6. If X is a closed oriented manifold and f : X → X is any smooth
map such that the alternating sum of traces∑

i

(−1)iTr
(
f ∗ : Hi(X;R)→ Hi(X;R)

)
does not vanish, then any smooth map f ′ : X → X homotopic to f has a fixed
point. In particular, if X has nonzero Euler characteristic, then any smooth map
f : X → X homotopic to the identity has a fixed point.

Proof. If f did not have any fixed points, then f would tautologically be Lefschetz with
L(f) = 0, contradicting Theorem 1.2.4. ■

Note that this corollary does not imply that if the alternating sum of traces is
nonzero, then f is a Lefschetz map or even has isolated fixed points, and indeed that is
false in general (take f = idX when χ(X) ̸= 0). Corollary 1.2.6 shows the double-edged
sword that Theorem 1.2.4 is; it can be used both to compute the Euler characteristic,
and then prove fun results about the existence of fixed points of maps on manifolds. For
instance, it can be used to show the Fundamental Theorem of Algebra (Corollary 2.2.4).

One way to find a map f : X → X that is homotopic to the identity is to
consider the flow of a vector field on X. Note that if V is a vector field on X, then since
X is closed, we have for all time t ∈ R a flow map ft : X → X given by flowing along V
for time t (i.e. given by integrating V ). In this case, for small t ̸= 0, it is easy to show
that the fixed points of ft correspond exactly to the zeroes of V . We say that a zero of
V is nondegenerate if for all small time t, it is a Lefschetz fixed point of the flow map
ft. In this case, we define the index of this zero x ∈ X, denoted indx V , to be the local
Lefschetz number of ft at x, which can also be computed as the degree of the map given
in local coordinates as V/|V | from a small sphere around x to SN−1, where N = dimX.
This last interpretation allows us to generalize the definition of the index to isolated but
possible degenerate zeroes; for points x ∈ X where V (x) ̸= 0, this quantity is also simply
zero. In these terms, we have

Theorem 1.2.7 (Poincaré-Hopf Index Theorem). Let X be a closed oriented manifold.
If V is any global vector field on X with isolated zeroes, then we have

χ(X) =
∑
x∈X

indx(V ).

Proof. In the case of nondegenerate zeroes, this follows from the above discussion: apply
Corollary 1.2.5 to the flow ft of V . For the general case of isolated zeroes, see [9, Theorem
11.25]. ■

This sequence of results (Theorem 1.2.4, Corollary 1.2.5, and Theorem 1.2.7) is
what is often used to compute Euler characteristics of various spaces. We give several
examples of such computations in Chapter 2; see §2.1, 2.2, and 2.3.
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1.3 The Hirzebruch Signature Theorem

Let X be a closed oriented topological manifold of dimension 4k for some k ≥ 0. Poincaré
duality tells us that the intersection pairing in the middle cohomology

H2k(X;Z)free × H2k(X;Z)free → Z, (α, β) 7→
ˆ
X

α ⌣ β

is a perfect symmetric bilinear pairing of abelian groups, where the superscript “free”
denotes the torsion-free part of this group (see [12, Proposition 3.8]). This result, then,
holds also with Z replaced by any field of characteristic zero. Over R, this pairing induces
a nondegenerate symmetric bilinear form on the middle cohomology

H2k(X;R) ∼= Rb2k(X),

called the intersection pairing. Now Sylvester’s Law of Inertia says that a symmetric
bilinear form Q = ⟨·, ·⟩ on a finite dimensional real vector space V of a fixed dimension
n ≥ 0 is determined upto isomorphism by its signature Sign(Q), which is defined as

Sign(Q) := r − s,

where r (resp. s) is the maximal dimension of a subspace of V , the restriction of Q to
which is positive definite (resp. negative definite), so that r + s = n. In particular, to
each X as above, we may associate the signature of its intersection form on H2k(X;R), a
quantity we will denoted by Sign(X). It was Hirzebruch’s observation that if X is given
a smooth structure, then this topological quantity Sign(X) can be expressed in terms
of characteristic classes on X. Specifically, if we let L(X) denote the L-genus of the
manifold X defined as

L(X) =

ˆ
X

L(TX),

where L(TX) denotes the total L-class of the tangent bundle TX (see Appendix 3.4),
then we have

Theorem 1.3.1 (Hirzebruch Signature Theorem). For a closed oriented smooth man-
ifold X of dimension divisible by 4, we have

Sign(X) = L(X).

In particular, L(X) is a topological invariant.

Sketch of Proof 1 of Theorem 1.3.1. This is obtained by applying Theorem 1.1.10 to the
Hodge-Dirac operator D. To say more, if we pick a Riemannian metric on X and let d∗

be the formal adjoint of the de Rham differential d on X, then the operator D := d+ d∗,
called the Hodge-Dirac operator, is a square root of the Laplacian operator, i.e. satisfies
∆ = D2. The complexified cotangent bundle Λ∗T∨XC admits an involution τ given by

τω = iq(q−1)+n ∗ ω,

if ω ∈ Γ(ΛqT∨XC) is a complex q-form, where dimX = 2n for n ≥ 1 and ∗ denotes
the Hodge star operator. Therefore, Λ∗T∨XC ecomposes as the sum of ±1 eigenbundles,
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denoted Λ±, of the involution τ . It is easy to see then that Dτ = −τD, so that D+ :=
D|Λ+ maps Λ+ to Λ−, and that, by Hodge theory, the index of D+ is exactly

indD+ = Sign(X).

Since the Laplacian ∆ is elliptic, the equation ∆ = D2 can be used to show that
D+ : Λ+ → Λ− is elliptic as well, and we may apply the Atiyah-Singer Index Theo-
rem (Theorem 1.1.10) to compute this quantity. To simplify the right hand side of the
theorem, we may use the discussion at the end of Section 1.1 to pretend that e(TX)
is invertible; it then remains only to compute chΛ+ − chΛ−–and this is where the L-
polynomials enter into the proof. For details, see [8, Theorem 6.6]. A slightly different
way to phrase this argument is to consider the complexified Clifford bundles Cl±C(X) in-
stead and to apply the Index Theorem to the signature operator D+ : Cl+C(X)→ Cl−C(X);
this proof can be found in [2, Ch. III, Thm. 13.9]. ■

Sketch of Proof 2 of Theorem 1.3.1. The first proof of this result, due to Hirzebruch, uses
cobordism. The idea is to consider the oriented cobordism ring Ω∗, and show that both
sides of Theorem 1.3.1 give ring homomorphisms Ω∗ → Z. This reduces the proof to
showing the result for generators of the ring Ω∗, which by work of Thom can be taken
to be the various complex projective spaces CPn, for which the result can be shown by
direct computation. For details, see Hirzebruch’s exposition in [13, Theorem 8.2.2]. ■

Remark 1.3.2. In low dimensions, the content of Theorem 1.3.1 can be written down
rather explicitly using the computations in Example 3.3.9. For instance, if X is a closed
oriented 4-manifold, then

Sign(X) =
1

3
p1(X),

explaining the otherwise somewhat mysterious result that the (unique) Pontryagin num-
ber of any closed 4-manifold is a multiple of 3. Similarly, if X is a closed oriented
8-manifold, then

Sign(X) =
1

45
(7p2(X)− p1(X)2). (1.3)

We mention in closing that the formula (1.3) can be used to show the existence
of exotic 7-spheres; a version of this argument was carried out first by Milnor and was the
first example of sphere shown to be exotic. We will now sketch a proof of this result.

Proposition 1.3.3 (Milnor). There is a closed oriented 7-manifold X that is homeo-
morphic but not diffeomorphic to the standard seven-sphere S7.

Proof Sketch. We closely follow [14, §2.1], to which we refer the reader for details. The
exceptional isomorphism (see [2, Ch. I, Thm. 8.1]) given by

Spin4
∼= SU2× SU2

∼= S3 × S3

tells us that
π3 SO4

∼= π3 Spin4
∼= π3(S

3 × S3) ∼= Z⊕ Z.
In fact, for each pair (i, j) of integers and x ∈ S3 thought of as a unit quaternion, the
map y 7→ xiyxj preserves the usual inner product on H ∼= R4, and so we get a map

fi,j : S
3 → SO4, f(x)y = xiyxj
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which can be shown to have class (i, j) in π3 SO4. Given a fixed (i, j), we can apply the
clutching construction to the map fi,j to obtain a rank 4 real vector bundle on S4; we let
Di,j be the corresponding disk bundle with respect to some choice of metric. It can then
be shown that Xi,j := ∂Di,j, which is an S3 bundle over S4, has the homotopy type of a
sphere iff i + j = ±1. Let’s stick to the case j = 1− i. We will show that X = Xi,1−i is
an exotic sphere if i ̸≡ 0, 1 (mod 7).

First, using the fact that Xi,j is an S3-bundle over S4, one can explicitly write
down a Morse function on Xi,1−i with only two critical points, because of which it follows
from Reeb’s Theorem that Xi,1−i is homeomorphic S7. Suppose now that Xi,1−i is diffeo-
morphic to S7. Then gluing back an 8-disk D8 to Di,1−i along Xi,1−i results in a closed
smooth 8-manifold, say Yi. It is clear by construction that Yi is homotopy equivalent to
a CW complex with one cell each in dimensions 1, 4, 8, so that the cohomology of Yi is

H∗(Yi;Z) =

{
Z, ∗ = 0, 4, 8, and

0 else.

Since Yi is a manifold, Poincaré duality then tells us that the generator of the middle co-
homology must square to a generator of the top cohomology, determining the cohomology
ring as

H∗(Yi;Z) = Z[λ]/(λ3) where |λ| = 4.

In particular, we must have Sign(Yi) = ±1. We may orient Yi so this signature is 1.
In particular, Theorem 1.3.1 in the form of (1.3) tells us that the Pontryagin numbers
Ai := p1(Yi)

2 and Bi := p2(Yi) are related as

7Bi − Ai = 45. (1.4)

Now, since the restriction map H4(Yi;Z) → H4(S4) is an isomorphism, the naturality of
characteristic classes tells us that Bi is determined by p1(TYi|S4), from which it can be
shown that

p1(Yi) = 2(i− j)λ = 2(2i− 1)λ so Ai = 4(2i− 1)2. (1.5)

It follows from (1.4) and (1.5) that

Bi =
4(2i− 1)2 + 45

7
.

In particular, since Pontryagin numbers of smooth manifolds are integers, we conclude
from this that if Xi,1−i is diffeomorphic to S7, then we must have

4(2i− 1)2 + 45 ≡ 0 (mod 7),

which is equivalent to saying that i is 0 or 1 mod 7. ■

One can combine this result with a theorem of Novikov saying that rational Pon-
tryagin classes are topological invariants to conclude that for i ̸≡ 0, 1 (mod 7), the Yi con-
structed above is a topological 8-manifold that does not admit a smooth structure; see the
references in [14, §2.1] and compare this result with that in Remark 1.5.8. Note that this
argument does not show that the spheres Xi,1−i are not all pairwise non-diffeomorphic;
indeed, there are only 28 distinct diffeomorphism classes of smooth structures on S7,
which follows from work of Kervaire and Milnor [15].
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1.4 The Hirzebruch-Riemann-Roch Theorem

In this section, we present the Hirzebruch-Riemann-Roch Theorem (Theorem 1.4.1), and
its generalization to the Hirzebruch χy-characteristic for vector bundles (Theorem 1.4.3),
as a consequence of the Atiyah-Singer Index Theorem (Theorem 1.1.10). The first proof
of Theorem 1.4.1 was obtained by Hirzebruch in 1954, which was published in [13], and
it served as central impetus to the establishment of generalizations of this result by
Grothendieck, and ultimately also the Atiyah-Singer Index Theorem. After sketching a
proof of Theorem 1.4.1, we then discuss its applications including the classical Riemann-
Roch Theorem for Riemann surfaces and its consequences, as well as Noether’s formula
for complex surfaces. Finally, we briefly discuss how the proof via the Atiyah-Singer
Index Theorem can be used to generalize these theorems to almost complex manifolds.

Recall (see Example 1.1.8) that to each complex manifold X and holomorphic
vector bundle E → X, we can associate an elliptic differential complex (E•, ∂E) on X
called the Dolbeault complex of E. The Dolbeault Theorem says that the cohomology
groups of this complex are exactly the sheaf cohomology groups of E, i.e. there is an
isomorphism

H∗(X,E)→ H∗
∂
(X,E).

In particular, if X is compact, then Theorem 1.1.4 tells us that these cohomology groups
are finite dimensional, and hence the holomorphic Euler characteristic

χ(X,E) =
∑
j

(−1)jhj(X,E)

of E is well-defined. The Hirzebruch-Riemann-Roch Theorem allows us to compute this
holomorphic Euler characteristic in terms of cohomological information.

Theorem 1.4.1 (Hirzebruch-Riemann-Roch). If E → X is a holomorphic vector bun-
dle over a compact complex manifold X, then the holomorphic Euler characteristic
of E is given by

χ(X,E) =

ˆ
X

chE · Td(X),

where Td(X) = Td(TX) is the total Todd class of X.

Sketch of Proof of Theorem 1.4.1. The key idea is to apply the Atiyah-Singer Index The-
orem 1.1.10 to the Dolbeault complex (E•, ∂E). By the above observations, the index of
the Dolbeux complex is exactly

χ(E•, ∂E) = χ(X,E),

the holomorphic Euler characteristic of E. To compute the quantity on the right side of
the formula, we can use the remarks at the end of §1.1 to pretend that we may divide by
e(TX) = cn(TX) as before. More specifically, if we let γ1, . . . , γn be the Chern roots of
TX , then we can show that

Θ−1
T∨X chσ(E•) = chE ·

n∏
i=1

1− eγi

γi
.
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Also, we have that
TXC ∼= TX ⊕TX,

so that

Td(TXC) =
n∏

i=1

γi
1− e−γi

· (−γi)
1− eγi

.

Therefore, remembering that the real dimension of X is 2n, Theorem 1.1.10 implies that

χ(X,E) = (−1)n(2n+1)

ˆ
X

chE ·
n∏

i=1

1− eγi

γi

n∏
i=1

γi
1− e−γi

· (−γi)
1− eγi

=

ˆ
X

chE ·
n∏

i=1

γi
1− e−γi

=

ˆ
X

chE · Td(X)

as needed. For details, see [8, Thm. 4.3] or [2, Ch. III, Thm. 13.15]. ■

Remark 1.4.2. Note how the right hand side of this equality does not depend on the
holomorphic structure of E at all, but only the complex structure. It is possible to write
down a compact complex manifold X and holomorphic vector bundles L1, L2 → X such
that the h0(X,L1) ̸= h0(X,L2), so that L1 and L2 are not isomorphic as holomorphic
vector bundles, but such that L∞

1
∼= L∞

2 , i.e. the underlying smooth complex bundles are
isomorphic. In this case, the above theorem tells us that the higher cohomology groups
hj(X,Li) compensate for this discrepancy in such a way that we get

χ(X,L1) = χ(X,L2).

Here’s a simple example of this phenomenon. Take X to be any smooth curve, L1 = X

and L2 = X(D) for some divisor D with degD = 0 but D ̸∼ 0, i.e. such that D is
not linearly equivalent to zero. For instance, we may take X to be an elliptic curve with
D = p − q for p ̸= q ∈ X; the fact that D ̸∼ 0 is saying that there is no degree 1 map
f : X → CP1, which is a topological observation. In this case, we have h0(X,L1) = 1
whereas h0(X,L2) = 0, since if a meromorphic f satisfies div f ≥ −D, then by equality
of degree we would conclude that div f = −D, so D ∼ 0. On the other hand, the only
invariant of a smooth complex line bundle on a curve is its degree, and so we conclude
from this that if X is any curve and D on X a divisor with degD = 0 but D ̸∼ 0, then

0− h1(X,X(D)) = 1− h1(X,X) = 1− h0,1(X)

so that
h1(X,X(D)) = h0,1(X)− 1 = g − 1,

where g is the genus of X; see Proposition 1.4.8.

We may generalize Theorem 1.4.1 slightly. To see this, note that we can encode
a lot of information about a vector bundle E → X in its Hirzebruch χy-characteristic,
defined as

χy(X,E) :=
n∑

i=0

χ(X,ΩiE)yi,

30



Chapter 1. Statements

where n is the complex dimension of X and Ωi := ΛiT∨
X , so that ΩiE := Ωi ⊗ E is the

bundle of E-valued holomorphic i-forms. Note that taking y = 0 simply returns

χ0(X,E) = χ(X,E).

Here’s where things get interesting. Taking E = X to be the trivial bundle, we get that

χy(X) := χy(X,X) =
n∑

i=0

χ(X,Ωi)yi.

Since

χ(X,Ωi) =
n∑

j=0

(−1)jhj(X,Ωi) =
n∑

j=0

(−1)jhi,j(X),

where hi,j(X) is (either by definition or by the Dolbeault Theorem) the (i, j)th Hodge
number of X, we conclude that

χy(X) =
n∑

i,j=0

(−1)jhi,j(X)yi.

This has the following specializations:

(a) Taking y = 0 gives us

χ0(X) =
n∑

j=0

(−1)jh0,j(X) = χ(X,X),

which is the holomorphic Euler characteristic of X.
(b) Taking y = −1 gives us

χ−1(X) =
n∑

i,j=0

(−1)i+jhi,j(X) =
2n∑
k=0

(−1)kbk(X) = χ(X),

which is the topological Euler characteristic of X, also written χtop(X).
(c) Finally, taking y = 1 gives us

χ1(X) =
n∑

j=0

(−1)jhi,j(X).

If X is a compact Kähler manifold of even complex dimension, then one can show
directly (see [16, Corollary 3.3.18]) that this quantity is the signature Sign(X).

Now suppose E → X is a complex vector bundle. If E has Chern roots µi, then
we define the generalized Chern character chy E of E to be

chy E :=
∑
i

eµi(1+y) = rankE +
∞∑
j=1

(1 + y)j
pj(µ)

j!
∈ H∗(X;Q[y]),

where pj as before is the jth power sum in the µi. If Tdy(X) := Tdy(TX) denotes the
total generalized Todd class of X in the sense of Appendix 3.4, i.e. the total characteristic
class corresponding to the series

Qy(z) =
z(1 + ye−z(1+y))

1− e−z(1+y)
,

then the generalization of Theorem 1.4.1 is
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Theorem 1.4.3 (Generalized Hirzebruch-Riemann-Roch Theorem). If E → X is a holo-
morphic vector bundle on a compact complex manifold X, then the χy-characteristic
of E is given by

χy(X,E) =

ˆ
X

chy E · Tdy(X).

Since it is tricky to extract a proof of this result from [13], we present a complete proof.

Proof. We have

χy(X,E) =
∑
i

χ(X,ΩiE)yi =
∑
i

yi
ˆ
X

ch(ΩiE) ·Td(X) =

ˆ
X

chE ·Td(X) ·
∑
i

yi chΩi,

where the first step is the definition, the second step uses Theorem 1.4.1, and the third step
uses the multiplicativity of the Chern character to conclude that ch(ΩiE) = ch(Ωi) ch(E).
If γ1, . . . , γn are the Chern roots of TX, then those of Ωi are −γJ , where J ranges over
subsets J ⊂ {1, . . . , n} of size i and γJ :=

∑
j∈J γj. It follows from this that∑

i

yi chΩi =
n∏

j=1

(1 + ye−γj),

and hence that

χy(X,E) =

ˆ
X

chE ·
n∏

j=1

γj
1− e−γj

n∏
j=1

(1 + ye−γj).

In computing this integral, we are extracting only the degree 2n component of the inte-
grand. Therefore, scaling all degree 2 components (i.e. Chern roots) involved by 1 + y
and dividing throughout by (1 + y)n does not change this quantity. In other words, this
formula gives us

χy(X,E) =
1

(1 + y)n

ˆ
X

chy E ·
n∏

j=1

γj(1 + y)

1− e−γj(1+y)

n∏
j=1

(1 + ye−γj(1+y))

=

ˆ
X

chy E ·
n∏

j=1

Qy(γj)

=

ˆ
X

chy E · Tdy(X)

as needed. ■

Taking y = 0 in Theorem 1.4.3 recovers Theorem 1.4.1. Specializing to the
trivial line bundle E = X then gives us

Corollary 1.4.4. If X is a compact complex manifold, then

χy(X) =

ˆ
X

Tdy(X).

Further specializing to y ∈ {0,±1}, and using the specializations of Qy mentioned in
Example 3.3.10, we then obtain the following three corollaries.
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Corollary 1.4.5. If X is a compact complex manifold, then the holomorphic Euler
characteristic of X is the Todd genus of X, i.e.

χ(X,X) = Td(X).

Corollary 1.4.6. If X is a compact complex manifold, then the topological Euler
characteristic of X is the Chern genus of X, i.e.

χtop(X) = c(X).

Corollary 1.4.7. If X is a compact Kähler manifold of even complex dimension, then
the signature of X the L-genus of X, i.e.

Sign(X) = L(X).

Note that since cn(X) = e(TX) by Remark 3.4.23, Corollary 1.4.6 is just the
Chern-Gauss-Bonnet Theorem (Theorem 1.2.1) for compact complex manifolds. Sim-
ilarly, Corollary 1.4.7 is just the Hirzebruch Signature Theorem (Theorem 1.3.1) for
compact Kähler manifolds.

Let’s now look at special cases of the Hirzebruch-Riemann-Roch Theorem for
complex curves (i.e. Riemann surfaces) and complex surfaces. First suppose that X is
a compact Riemann surface, i.e. a closed connected complex manifold of dimension 1.2

Then every holomorphic line bundle L→ X is of the form X(D) for some divisor D on
X, where in this case D is simply a formal sum of the form

∑
x∈X axx where the ax ∈ Z

are zero for all but finitely many x.3 It is then not hard to show (see [4, Ch. 1, Prop. 1])
that the first Chern class of X(D) is given by

c1(X(D)) = degD · ηX ,

where degD :=
∑

x∈X ax and ηX ∈ H2(X;Z) is the generator of the top cohomology, i.e.
the Poincaré dual to a point. Finally, it is a consequence of Serre Duality that for any
divisor D if we let Ω1(D) := Ω1(X(D)), then

χ(X,Ω1(D)) = −χ(X,−D).

If we let c1(X) denote the (unique) Chern number of X, then the Generalized Hirzebruch-
Riemann-Roch Theorem (Theorem 1.4.3) says in this case that for any divisor D on X,
we have

χ(X,D)− y · χ(X,−D) = (1 + y) degD +
(1− y)

2
c1(X). (1.6)

Plugging in D = 0 and y = −1 in this equation gives us

2− 2g = χtop(X) = c1(X),

2See, for instance, [4, Ch. 2] or [17] for the basic theory of Riemann surfaces.
3Because of this fact, we will use the notation of divisors and line bundles interchangably, so, for

instance, we use the notation χ(X,D) := χ(X,X(D)).
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where g is the (topological) genus of X–but we knew this already, since this is the content
of the Gauss-Bonnet Theorem (Theorem 1.2.2). Now plugging in D = 0 in (1.6) gives us
that

1− h0,1(X) = χ(X,X) = 1− g,
so that h0,1(X) = g. Finally, Serre Duality gives us that h1,0(X) = g as well, where
h1,0(X) = h0(X,Ω1) is the dimension of the space Ω(X) of global holomorphic 1-forms
on X. Therefore, we have shown

Proposition 1.4.8 (Equality of the Three Genera). Let X be a compact Riemann
surface. Then the following three quantities assocaited to X are all equal:

• its topological genus g,
• its arithmetic genus h1(X,X), and
• its analytic genus dimC Ω(X).

Serre Duality tells us that for any divisorD we have h1(X,D) = h0(X,Ω1(−D)).
Using this observation and taking y = 0 in (1.6) gives us the awaited

Theorem 1.4.9 (Riemann-Roch). Let X be a compact Riemann surface of genus g.
Then for any divisor D on X, we have

h0(X,D)− h0(X,Ω1(−D)) = degD + 1− g.

In particular, we have
h0(X,D) ≥ degD + 1− g,

with equality if degD ≥ 2g − 1.

The last statement follows from the observation that

deg Ω1(−D) = −c1(X)− degD = 2g − 2− degD,

so that if degD ≥ 2g − 1, there are no global sections of Ω1(−D).

Theorem 1.4.9 is really the starting point of the theory of curves; see [17, Ch.
VII] for several applications, some of which we now mention. Firstly, Theorem 1.4.9
implies that any divisor D on X of degree degD ≥ 2g + 1 is very ample. In particular,
every compact Riemann surface is projective, and hence by Chow’s Theorem, a smooth
projective variety. Therefore, the analytic machinery that goes into the Atiyah-Singer
Index Theorem subsumes the tools needed to show the existence of meromorphic functions
on Riemann surfaces, as is done in any text on the analytic theory of Riemann surfaces,
e.g. [18, Ch. 2]. Other delicious consequences of Theorem 1.4.9 include the following:

(a) any curve of genus 0 is biholomorphic to CP1,
(b) any curve of genus 1 is biholomorphic to a smooth plane cubic and a complex torus,
(c) any curve of genus 2 is hyperelliptic,
(d) any nonhyperelliptic curve of genus 3 is a smooth plane quartic curve,
(e) any nonhyperelliptic curve of genus 4 is the smooth complete intersection variety

X1
2,3 ⊂ CP3, i.e. is the intersection of a quadric and cubic hypersurface in CP3, etc.

See [17, Ch. VII] for details.
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Now suppose that X is a connected complex surface, i.e. complex 2-manifold.
Then the Generalized Hirzebruch-Riemann-Roch Theorem (Theorem 1.4.3) for X can be
made quite explicit. Namely, we have

Theorem 1.4.10. Let X be a compact complex surface. If E → X is a holomorphic
vector bundle of rank r ≥ 0, then the χy-characteristic of E is given by

χy(X,E) = rχy(X) +

ˆ
X

(
(1− y)2

2
c1(TX)c1(E) +

(1 + y)2

2

(
c1(E)

2 − 2c2(E)
))

where

χy(X) =
1− 10y + y2

12
c2(X) +

(1 + y)2

12
c1(X)2 ∈ Q[y].

Proof. It follows from Example 3.3.10 that the total generalized Todd class of X is

Tdy(X) = 1 +
1− y
2

c1(TX) +
1− 10y + y2

12
c2(TX) +

(1 + y)2

12
c1(TX)2

= 1 +
1− y
2

c1(TX) + χy(X) · ηX ∈ H∗(X;Q[y]),

where χy(X) has the required form from Corollary 1.4.4. The generalized Chern character
of E is given by

chy(E) = r + (1 + y)c1(E) +
(1 + y)2

2

[
c1(E)

2 − 2c2(E)
]
.

Therefore, the required result follows from Theorem 1.4.3. ■

To put this result in familiar terms, consider now the case where E = L is a
line bundle, so we denote c1(L) ∈ H2(X;Z) simply by L and c2(L) = 0. Note also that
c1(TX) = −KX ∈ H2(X;Z) is the negative of the canonical class of X. In this notation,
specializing Theorem 1.4.10 to y = 0 gives us

Corollary 1.4.11 (Noether). If X is a compact complex surface then

χ(X,X) =
1

12

(
c2(X) + c1(X)2

)
.

Further, if L→ X is a holomorphic line bundle, then

χ(X,L) = χ(X,X) +

ˆ
X

L · (L−KX)

2
.

Remark 1.4.12. The machinery of the Atiyah-Singer Index Theorem also allows us to
generalize these results to almost complex manifolds. However, we now have to be careful
in how we define the holomorphic Euler characteristic or the Dolbeault complex of a

vector bundle, since if (X, J) is only almost complex, then we might not have ∂
2

J = 0
(indeed, this is one of the equivalent conditions for the almost complex structure J to be
integrable–see Theorem 3.6.3). For an explanation of how to generalize this machinery
to the almost complex case, we refer the reader to [19].
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1.5 Integrality of the Â-Genus for Spin Manifolds

Recall (see Appendices 3.3 and 3.4) that the Â-genus of a closed oriented manifold X is
given as

Â(X) =

ˆ
X

Â(TX),

where Â(TX) is the total Â-class of the tangent bundle TX, coming from the (reduced)
characteristic series

Q̃Â(z) =

√
z/2

sinh(
√
z/2)

.

If X is a complex manifold, then Td(TX) = ec1(X)/2Â(X); it is probably this observation
(along with the fact that c1(X) ≡ w2(X) (mod 2); see Corollary 1.5.3 below) which first
led Hirzebruch to ask: if a real manifold X of dimension 4k has second Stiefel-Whitney
class w2(X) = 0, a condition called being spin, then is Â(X) an integer? As the story
goes (recounted from [1]), the first proof of the integrality of Â(X) for a spin manifold
was obtained by Atiyah and Hirzebruch via a version of the Riemann-Roch Theorem for
smooth manifolds, but this explanation was not considered satisfactory. Hirzebruch had
realized that the signature is the difference in dimensions of spaces of harmonic forms,
and asked for a similar analytic interpretation of Â(X). When Singer came to Oxford
in 1962 for a sabbatical, Atiyah’s first question to him was “Why is the A-roof genus an
integer for a spin manifold?” Singer responded, “Michael, why are you asking me that
question? You know the answer to that.” Singer knew, however, that Atiyah was looking
for something deeper, and within months, the two had discovered the Dirac operator
and the index formula. Therefore, this integrality result for the Â-genus served as key
impetus that led to the discovery of Theorem 1.1.10; it is this result we discuss now.

The story starts with the definition of a spin structure. Recall that for n ≥ 0,
the special orthogonal group SOn is connected and has fundamental group

π1 SOn =


0, n = 1,

Z, n = 2, and

Z/2, n ≥ 3.

In particular, for each n ≥ 0, there is a unique degree two cover of SOn, which is called
the spin group in dimension n and is denoted Spinn → SOn. Note that Spin1 = Z/2, and
Spin2

∼= SO2
∼= S1 with the map π : Spin2 → SO2 given by the unique two-fold covering

map, written z 7→ z2 when we think of SO2 as S1. For n ≥ 3, the group Spinn is a
connected, simply connected Lie group which is the universal cover of SOn, and can be
constructed explicitly as a matrix group using Clifford algebras (see [2, Chapter I]).

Definition 1.5.1. Given an oriented Riemannian vector bundle E of rank n ≥ 1 over
a space X, a spin structure on E is a lift of the bundle SO(E)→ X of orthonormal
frames of E to a principal Spinn-bundle.

A spin structure on an oriented Riemannian manifold X is defined to be a
spin structure on its tangent bundle TX. If X admits a spin structure, then it is
said to be a spin manifold, or simply spin.
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In other words, a spin structure on a bundle E is a two sheeted cover Spin(E)→
SO(E) that is nontrivial on the fibers of SO(E)→ X. When n = 1 this is saying simply
that a spin structure on E is a double cover of SO(E) ∼= X. The first result in the theory
simply characterizes when such structures exist.

Theorem 1.5.2 (Borel-Hirzebruch). Let E be an oriented vector bundle over a man-
ifold X. Then there exists a spin structure on E iff the second Stiefel-Whitney
class w2(E) ∈ H2(X;Z/2) vanishes. Further, if this is case, then the distinct spin
structures on E are in bijective correspondence with the elements of H1(X;Z/2).

Proof. This is standard obstruction theory; here’s one way to phrase this. Consider the
Leray-Serre Spectral Sequence with Z/2 coefficients of the fibre bundle SOn → SO(E)→
X, where n = rankE, which is given by

Ep,q
2 = Hp(X;q(SOn;Z/2))⇒ Hp+q(SO(E);Z/2).

Note that for q = 0, 1, the local system q(SOn;Z/2) is necessarily trivial because
Hq(SOn;Z/2) ∼= Z/2 for these q. Assuming without loss of generality that X is path
connected (else we may work on each component individually), the five term exact se-
quence in low degrees for this first quadrant spectral sequence looks like

0→ H1(X;Z/2)→ H1(SO(E);Z/2)→ H1(SOn;Z/2)
∂0,1
2−−→ H2(X;Z/2)→ H2(SO(E);Z/2).

Note that double coverings of SO(E) are in bijection with index two subgroups of
π1 SO(E), and hence with Hom(π1(SO(E));Z/2) ∼= H1(SO(E);Z/2), with the map

ρ : H1(SO(E);Z/2)→ H1(SOn;Z/2)

in the above sequence given simply by restriction to fibers of the double covering; in
particular, E admits a spin structure iff this map is surjective, which happens iff ∂0,12 = 0.
The image of the nontrivial element 1 ∈ H1(SOn;Z/2) ∼= Z/2 under ∂0,12 is, however, the
second Stiefel-Whitney class

∂0,12 (1) = w2(E),

because this is clearly true in the “universal” case of X = BSOn, for which the map
∂0,12 : H1(SOn;Z/2)→ H2(BSOn;Z/2) is an isomorphism. Combining these observations
tells us that E is spin iff ∂0,12 (1) = w2(E) vanishes, in which case the set of distinct spin
structures is the coset ρ−1(1), which is in bijection with ker ρ = H1(X;Z/2) as needed. ■

This theorem gives us many different ways to interpret the condition of being spin; see,
for instance, Proposition 1.12 and Theorem 2.10 of [2, Ch. II] and their corollaries. For
complex manifolds, we also have

Corollary 1.5.3. IfX is a compact complex manifold, thenX admits a spin structure
iff the first Chern class c1(X) ∈ H2(X;Z) is even in the sense that its mod two
reduction vanishes, i.e.

[c1(X)] = 0 ∈ H2(X;Z/2).

Proof. This follows from Theorem 1.5.2 along with the fact that w2(X) is the reduction of
c1(X) mod 2, which follows from the isomorphism TX ∼= (TX)R and Theorem 3.4.19. ■
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Corollary 1.5.4. Every Riemann surface is spin. If X is a Riemann surface of genus
g, then there are exactly 22g distinct spin structures on X.

Proof. The Gauss-Bonnet Theorem (Theorem 1.2.1) tells us that if X is a Riemann
surface of genus g, then c1(X) = (2−2g)ηX ∈ H2(X;Z) is always even. The distinct spin
structures on X are then in bijection with elements of H1(X;Z/2) ∼= (Z/2)2g. ■

In fact, this is a special case of the more general result that the set of spin
structures on a compact, spin Kähler manifold X are in bijection with the holomorphic
square roots of the canonical bundle X; see [2, Ch. II, Example 2.6] and the references
mentioned there.

Recall that given a topological (or Lie) group G, a finite-dimensional represen-
tation (V, ρ) of G, so that ρ : G→ GL(V ) is a continuous (resp. smooth) homomorphism,
and a principal G-bundle G → P → X, the balanced product P ×G V → X is a vector
bundle over X, called the vector bundle associated to the representation V . In our case, if
X is a spin manifold with corresponding principal Spinn-bundle Spin(X), then associated
to any representation Spinn → GL(V ) of Spinn, we get a vector bundle on X. Two cases
of particular interest are the Clifford bundles, given by taking V = Cl(Rn) or Cl(Rn)C
to be the real or complexified Clifford algebras (which really come from representations
of SOn), and the spinor bundles given by taking the spin representation of Spinn (which
does not). To say more, the group Spinn has a complex representation  of dimension
2n called the spin representation. If n is odd, this representation is irreducible; if n is
even, then this representation splits into two irreducible representations of dimension
2n/2 each, denoted ± and called the half spin representations. If X is a spin manifold
of even dimension n ≥ 2, the associated bundle construction mentioned above gives rise
to two complex vector bundles ±(X) on X called the spinor bundles, sections of which
are called spinor fields or simply spinors on X. In this case, we can construct using the
Levi-Civita connection of X and Clifford multiplication a first order elliptic differential
operator

/D
+
: +(X)→ −(X)

called the Dirac operator. In analogy with the Hodge-Dirac operator introduced in §1.3,
spinors annihilated by /D

+
are called harmonic spinors. More generally, if E → X is a

complex vector bundle, then the there is a first order elliptic differential operator

/D
+
E : +(X)⊗ E → −(X)⊗ E

called the twisted Dirac operator, also called the twisted Atiyah-Singer operator. In this
terminology, we have

Theorem 1.5.5. LetX be a closed spin manifold of even dimension n ≥ 2. If E → X
is any complex vector bundle over X, then the index of the twisted Dirac operator
/D
+
E is given by

ind(/D
+
E) =

ˆ
X

ch(E) · Â(X).

In particular, the quantity on the right is an integer.
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Proof. The strategy is to use Theorem 1.1.10 for the twisted Dirac operator /D
+
E and to

massage the right side of Theorem 1.1.10 to obtain the required form. For details, we
refer the reader to [8, Thm. 5.3] or [2, Ch. III, Thm. 13.10]. ■

From this result, we have now obtained the awaited

Corollary 1.5.6. Let X be a closed spin manifold of even dimension n ≥ 2. Then the
Â-genus Â(X) of X is an integer. If n ≡ 4 (mod 8), then Â(X) is an even integer.

Proof. Take E to be the trivial bundle in Theorem 1.5.5. In the case n ≡ 4 (mod 8),
the additional factor of two comes from observing that in these dimensions, the spin
representations are actually quaternionic. In particular, the kernel and cokernel of the
Dirac operator /D

+
are (finite dimensional) quaternionic vector spaces, and hence their

complex dimensions are even. Therefore, the equality Â(X) = ind(/D
+
) = dimker /D

+ −
dim coker /D

+
tells us that Â(X) must be even as well. See [2, Ch. IV, Thm. 1.1]. ■

Corollary 1.5.7 (Rochlin). The signature of a closed orientable smooth spin 4-manifold
is a multiple of 16.

Proof. Recall (see Examples 3.3.9 and 3.3.11) that the first L and Â polynomials are
given by

L1 =
1

3
p1 and Â1 = −

1

24
p1.

These formulae, combined with Theorem 1.3.1, imply that if X is a closed, oriented
4-manifold, then the signature and Â-genus of X are related as

Sign(X) = −8Â(X).

In particular, irrespective of whether X is spin, we have that Â(X) ∈ 1
8
Z. In case X is

spin, the result then follows from Corollary 1.5.6. ■

Remark 1.5.8. This theorem of Rochlin (which was known before the whole machinery
of Index Theory was developed) also answers the question of the existence of smooth
structures on topological manifolds. Specifically, a very natural first question to ask in
the theory of manifolds is whether every topological manifold admits a smooth structure.
In 1982, Michael Freedman showed by construction that if Q is any unimodular symmetric
bilinear form, then there is a simply connected topological closed oriented 4-manifold X
with intersection form Q. In particular, if we choose a unimodular symmetric bilinear
form with signature 8 (one such example being the E8 lattice–the unique positive definite,
even, unimodular lattice of rank 8), then we may construct a topological 4-manifoldX(E8)
with intersection form E8. One can then show that ifX(E8) admitted a smooth structure,
then it would be spin, but then by Corollary 1.5.7, its signature would be divisible by
16, which is a contradiction. This argument proves that the topological manifold X(E8)
does not admit any smooth structure, and X(E8) was one of the first manifolds shown
to have this property. For details, see the discussion following [2, Ch. IV, Cor. 1.2], and
the references mentioned there.
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One other result that we will mention, a proof of which requires even more
machinery than we have mentioned so far, is

Theorem 1.5.9 (Lichnerowicz). If X is a closed spin manifold that admits a Rie-
mannian metric with positive scalar curvature, then Â(X) = 0.

Proof. This uses the vanishing of the ring homomorphism

Â : ΩSpin
∗ → KO−∗(pt)

on a compact spin manifold admitting a Riemannian metric with positive scalar curvature;
see Theorem [2, Ch. IV, Thm. 4.1] for details. ■

We do not use Theorem 1.5.9 in what follows in any serious way. Rather, we only point
out verifications of it via direct computation in specific examples.

Remark 1.5.10. Classical examples of spaces with nonnegative scalar curvatures are ho-
mogenous spaces with normal metrics: given a compact real Lie group G with Lie algebra
g, an AdG-invariant inner product ⟨·, ·⟩ on g (e.g. the Killing form when g is semisimple),
and a closed (hence Lie) subgroup H ⊂ G, the homogenous space X = G/H admits a
G-invariant metric making G → X a Riemannian submersion. Except for the one case
of the flat torus, this metric then always has positive scalar curvature. Examples of this
sort are spheres and real and complex flag varieties (so in particular, real and complex
Grassmannians and hence projective spaces). This is a special case of a more general
result by Lawson and Yau that a compact manifold admitting a smooth, effective action
by a connected non-abelian Lie group admits a metric with positive scalar curvature.
The above theorem then says that whenever such a manifold is spin, its Â genus must
necessarily vanish. See the discussion following [2, Ch. IV, Cor. 4.2] and the article by
Lawson and Yau [20] in which they prove this result.

In closing, we remark only that this chapter barely scratches the surface of index
theory. Besides the theorems and applications already mentioned, there are

(a) equivariant versions of Theorem 1.1.10, generalizing, for instance, the Lefschetz
Fixed Point Formula to the Atiyah-Segal-Singer Fixed Point Theorem,

(b) generalizations of Theorem 1.1.10 to manifolds with boundary, such as the Atiyah-
Patodi-Singer Index Theorem,

and many more. These techniques then have a wide variety of applications in geom-
etry and topology, with ramifications even in theoretical physics; sample applications
include, in addition to the contents of Chapter 2, applications to problems of vector fields
on spheres, immersions of manifolds into Euclidean space, twistor geometry, reduced
holonomy on Calabi-Yau manifolds, and even to the positive mass conjecture in general
relativity. See the original article [8] and the textbooks [2] and [7] for an introduction to
the wide variety of things index theory can do.
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Examples

The only way to learn mathematics is to do mathematics.
Paul Halmos

In this chapter, we pursue an eclectic list of computations verifying, illustrating,
or giving sample applications of, the general theorems discussed in the previous chapter,
hopefully illuminating how far-reaching the consequences–how expansive the joy–of the
famed Atiyah-Singer Index Theorem really is. This chapter is the heart of the thesis.
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2.1 Spheres

I think our lives are surely but the dreams
Of spirits, dwelling in the distant spheres,

Who as we die, do one by one awake.
Poppies and Mandragora

Edgar Saltus

We start with the simplest examples of closed oriented manifolds, namely the
spheres. For n ≥ 0, let Sn denote the n-sphere, i.e.

Sn :=

{
(x1, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2i = 1

}
. (2.1)

The first, warm-up, computation is

Proposition 2.1.1. For n ≥ 0, we have

χ(Sn) = 1 + (−1)n.

Proof 1. The space Sn admits a CW decomposition with one 0-cell and one n-cell1, and
so we are done by the definition of the Euler characteristic of a finite CW complex as

χ(X) =
∞∑
i=0

(−1)ici,

where ci is the number of i-cells. Alternatively, we could give Sn a CW decomposition
with exactly two cells in each dimension j for 0 ≤ j ≤ n, with the property that the
j-skeleton of Sn is exactly Sj, and the two attaching maps of the (j + 1)-cells are both
the identity map Sj → Sj.2 With respect to this structure, the Euler characteristic is

χ(Sn) =
n∑

i=0

(−1)i · 2 = 1 + (−1)n.

Another slightly different way to phrase the same argument is to use that the
cohomology ring of Sn is given by

H∗(Sn;Z) = Z[α]/(α2) = Z⊕ Zα with |α| = n.3

It follows that the Betti numbers bi(S
n) of the sphere are all zero except for i ∈ {0, n},

with b0(S
0) = 2 and b0(S

n) = bn(S
n) = 1 for n ≥ 1. In both cases, the Poincaré

polynomial of Sn is
pt(S

n) = 1 + tn,

and plugging in t = −1 recovers the result. ■

1There is only one possible attaching map! Note that for n = 0, this is to be interpreted as saying
that S0 admits a CW decomposition with two 0-cells.

2The advantage of this decomposition is that it is Z/2-invariant under the identifications of the new
cells as the “upper” and “lower” hemispheres, and hence descends to a CW structure on RPn (see
Proposition 2.2.2).

3This really is saying something nontrivial, because, for instance, there is a way to compute this
cohomology ring inductively without invoking any CW structure on the sphere.
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Proof 2. This argument is adapted from [11, Ch. 3]. We compute the Lefschetz number
L(f) of a Lefschetz map f homotopic to the identity; the result then follows Corollary
1.2.5. Let π : Rn+1 ∖ {0} → Sn denote the projection map v 7→ v/|v|, and for t ∈ [0, 1)
the map ft : S

n → Sn given by

ft(x1, x2, . . . , xn, xn+1) = π(x1, x2, . . . , xn, xn+1 − t);

from this formula, it is clear that each ft is homotopic to f0 = idSn . For a fixed t ∈ (0, 1),
the map ft has exactly two fixed points, namely at the “poles” p± := (0, . . . , 0,±1). A
straightforward computation shows that

(dft)(p±) =
1

1∓ t+ t2
idTp±Sn .

In particular, for t ∈ (0, 1), this matrix does not have eigenvalue +1, so that ft is a
Lefschetz map. See Figure 2.1.

Figure 2.1: A pictorial representation of the map ft on the sphere Sn for t ∈ (0, 1). The
map ft is expanding near the “north pole” p+ by a factor of (1−t+t2)−1, and contracting
near the “south pole” by a factor of 1 + t+ t2.

Finally, the local Lefschetz numbers of ft at p± are given by

Lp±(f) = sign det
[
(dft)(p±)− idTp±Sn

]
= sign det

[(
±t− t2

1∓ t+ t2

)
idTp±Sn

]
= sign

(
±t− t2

1∓ t+ t2

)n

,

and this gives us
Lp+(ft) = 1 and Lp−(ft) = (−1)n.

Therefore, it follows from Corollary 1.2.5 that for any t ∈ (0, 1), we have

χ(X) = L(ft) =
∑
x∈X

Lx(ft) = Lp+(ft) + Lp−(ft) = 1 + (−1)n

as needed. ■
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Proof 3. We explicitly compute
´
Sn e(TS

n) and use the Chern-Gauss-Bonnet Theorem.
Recall (see Appendix 3.2.1) that for any smooth, closed, oriented n-manifold X, the Euler
class e(TX) of TX can be written as

e(TX) =

[
Pf

(
1

2π
Ω

)]
,

where Ω is locally the curvature matrix with respect to any connection and any orthonor-
mal frame of TX (with respect to any Riemannian metric on X), and Pf denotes the
Pfaffian of this n × n skew-symmetric matrix. We carry out the computation of this
Pfaffian explicitly for the Levi-Civita connection on Sn equipped with the round metric.

To do this, we give an oriented parametrization of the sphere Sn using spherical
coordinates θ1, . . . , θn, where θ1 ∈ [0, 2π) and θj ∈ [0, π) for j = 2, . . . , n. To simplify the
notation, let

cj := cos θj and sj := sin θj for j = 1, . . . , n.

With this notation, the parametrization is given by

xj = cj−1

n∏
k=j

sk for 1 ≤ j ≤ n+ 1,

where we adopt the convention that c0 = 1. As a column vector,

x1
x2
x3
...

xn−1

xn
xn+1


=



s1s2 · · · sn−1sn
c1s2 · · · sn−1sn
c2s3 · · · sn−1sn

...
cn−2sn−1sn
cn−1sn
cn


In these coordinates, the round metric on Sn is given by

g =
n∑

j=1

(
n∏

k=j+1

s2k

)
dθ2j .

Let U ⊂ Sn be the open subset defined by requiring θ1 ∈ (0, 2π) and θj ∈ (0, π) for
j = 2, . . . , n; then (θ1, θ2, . . . , θn) : (0, 2π) × (0, π)n−1 → U is a diffeomorphism that is
orientation-preserving for even n, and orientation reversing for odd n, if Sn = ∂Dn+1

is given its orientation as the boundary of the n + 1 ball Dn+1.4 Since the complement
Sn∖U of U in Sn has measure zero, to compute

´
Sn [Pf(Ω/2π)], it suffices to compute this

Pfaffian explicitly on U and integrate over U . To do this, we use the oriented orthonormal
frame e1, . . . , en+1 of TRn+1|Sn defined by

e = [e1, e2, . . . , en−1, en, en+1]

:=

[
1

s2 · · · sn
∂

∂θ1
,

1

s3 · · · sn
∂

∂θ2
, . . . ,

1

sn

∂

∂θn−1

,
∂

∂θn
,

n+1∑
i=1

xi
∂

∂xi

]
.

This frame has the property that e1, . . . , en is an oriented orthonormal frame for TSn|U .
The key step here is the explicit calculation of Ω as in

4This will not concern us, since we will stick to this orientation throughout, and the result about
e1, . . . , en+1 being an oriented frame of Rn+1 (see below) still remains correct. We will also only be
computing the Pfaffian for even n anyway.
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Lemma 2.1.2. Let Ω = [Ωij]
n
i,j=1 be the curvature matrix of the Levi-Civita con-

nection on Sn with respect to the oriented orthonormal frame e1, . . . , en of TSn|U .
Then

Ωij =

(
j∏

p=i+1

sp

n∏
q=j+1

s2q

)
dθi ∧ dθj for 1 ≤ i < j ≤ n,

with the rest of the entries determined by skew-symmetry.

For instance, for n = 4, we have

Ω =


0 s2s

2
3s

2
4 dθ1 ∧ dθ2 s2s3s

2
4 dθ1 ∧ dθ3 s2s3s4 dθ1 ∧ dθ4

−s2s23s24 dθ1 ∧ dθ2 0 s3s
2
4 dθ2 ∧ dθ3 s3s4 dθ2 ∧ dθ4

−s2s3s24 dθ1 ∧ dθ3 −s3s24 dθ2 ∧ dθ3 0 s4 dθ3 ∧ dθ4
−s2s3s4 dθ1 ∧ dθ4 −s3s4 dθ2 ∧ dθ4 −s4 dθ3 ∧ dθ4 0

 .
Postponing the proof of this lemma for a moment, we proceed as follows. The result
for odd n is clear, since the Pfaffian of a skew-symmetric matrix of odd order is zero.
Suppose, therefore, that we are working with S2n for n ≥ 1. We can now use Lemma 2.1.2
with the explicit formula from Lemma 3.2.5 to compute the form representing Pf(1/2πΩ).
To do this, let’s recall the notation used in the statement of Lemma 3.2.5. Let Σn denote
the set of unordered partitions of {1, 2, . . . , 2n} into pairs, and write any element σ ∈ Σn

as σ = {(i1, j1), . . . , (in, jn)}, where for 1 ≤ k ≤ n the ik = ik(σ) and jk = jk(σ) are
integers between 1 and 2n satisfying 1 ≤ i1 < · · · < in ≤ 2n and ik < jk. Given a σ ∈ Σn

we also let πσ ∈ 2n be the permutation of {1, . . . , 2n} such that for 1 ≤ k ≤ n we have

πσ(2k − 1) = ik and πσ(2k) = jk.

In this notation, Lemmas 2.1.2 and 3.2.5 tell us that

Pf

(
1

2π
Ω

)
=

1

(2π)n

∑
σ∈Σn

(−1)πσ ·
n∏

k=1

(
jk∏

p=ik+1

sp

2n∏
q=jk+1

s2q

)
dθik ∧ dθjk . (2.2)

Here’s the awaited magical simplification: for any σ ∈ Σn, we claim that

n∏
k=1

(
jk∏

p=ik+1

sp

2n∏
q=jk+1

s2q

)
= s2s

2
3 · · · s2n−2

2n−1s
2n−1
2n =

2n∏
ℓ=1

sℓ−1
ℓ .

Indeed, this is an immediate consequence of the following combinatorial lemma.

Lemma 2.1.3. For each ℓ such that 1 ≤ ℓ ≤ 2n and σ ∈ Σn, let aℓ and bℓ be integers
defined by

aℓ = #{k : 1 ≤ k ≤ n such that ik < ℓ ≤ jk}, and
bℓ = #{k : 1 ≤ k ≤ n such that jk < ℓ},

where the # denotes the cardinality of the specified set. Then

aℓ + 2bℓ = ℓ− 1.
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Proof. Let
cℓ := aℓ + bℓ = #{k : 1 ≤ k ≤ n such that ik < ℓ}.

It follows from i1 < i2 < · · · < in that cℓ is the largest integer between 1 and n such that
icℓ < ℓ. In particular, i1, . . . , icℓ constitutes a set of cℓ integers, each less than ℓ, and these
are the only ik’s which are less than ℓ. The remaining ℓ− 1− cℓ integers less than ℓ must
therefore be j’s, and there are bℓ of these. Therefore,

ℓ− 1− cℓ = bℓ,

which is equivalent to the claim in the lemma. ■

Returning to the main proof, note that the definition of the permutation πσ
implies that

(−1)πσ

n∏
k=1

dθik ∧ dθjk = dθ1 ∧ dθ2 ∧ · · · dθ2n−1 ∧ dθ2n.

Therefore, all the terms occuring in the sum in (2.2) are the same, this common value
being

s2s
2
3 · · · s2n−2

2n−1s
2n−1
2n dθ1 ∧ dθ2 ∧ · · · dθ2n−1 ∧ dθ2n.

Since there are
#Σn = (2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1

of these, it follows that

ˆ
Sn

Pf

(
1

2π
Ω

)
=

(2n− 1)!!

(2π)n
·
ˆ 2π

0

dθ1 ·
2n∏
ℓ=2

ˆ π

0

sinℓ−1 θℓ dθℓ.

Temporarily denoting the quantity on the right by tn, the result then follows from noting
that

t1 =
1

2π

ˆ 2π

0

dθ1

ˆ π

0

sin θ2 dθ2 =
1

2π
· 2π · 2 = 2,

and that for n ≥ 2, we have

tn
tn−1

=
2n− 1

2π

ˆ π

0

sin2n−2 θ2n−1 dθ2n−1

ˆ π

0

sin2n−1 θ2n dθ2n

=
2n− 1

2π
B

(
n− 1

2
,
1

2

)
B

(
n,

1

2

)
=

2n− 1

2π
· Γ(n)Γ(

1/2)

Γ(n+ 1/2)
· Γ(n−

1/2)Γ(1/2)

Γ(n)
= 1,

where B and Γ denote the beta and gamma functions respectively. ■

To finish the proof, it remains only to prove Lemma 2.1.2, which we do now.
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Proof of Lemma 2.1.2. If ∂x denotes the orthonormal basis for TRn+1 given by

∂x :=

[
∂

∂x1
, . . . ,

∂

∂xn+1

,

]
then the change-of-basis matrix a ∈ SOn+1 defined by

e = ∂x · a

is given explicitly by

aij =


ci−1

(∏j−1
k=i sk

)
cj, 1 ≤ i ≤ j ≤ n,

−sj, 1 ≤ j ≤ n and i = j + 1,

xi, 1 ≤ i ≤ n+ 1 and j = n+ 1,

0 else,

,

i.e. the matrix a looks like

a =


c1 s1c2 · · · s1 . . . sn−1cn s1 . . . sn
−s1 c1c2 · · · c1s2 · · · sn−1cn c1s2 . . . sn

−s2
. . .

...
...

. . . cn−1cn cn−1sn
−sn cn

 ,

where the unfilled spots represent entries that are zero. Now the connection matrix θEuce

for the Euclidean connection on TRn+1|Sn with respect to e is related to the connection
matrix θEuc∂ with respect to ∂x via

θEuce = a−1θEuc∂ a+ a−1da = at da, (2.3)

where we have used both that θEuc∂ = 0 and that a ∈ SOn+1. The connection matrix θ
for the Levi-Civita connection on Sn is the matrix obtained from θEuce by deleting its last
row and column. Using the explicit form of a and (2.3), we can then conclude from a
straightforward, if lengthy, computation that θ = [θij]

n
i,j=1 is given by

θij = −

(
j−1∏

k=i+1

sk

)
cj dθi

for 1 ≤ i < j ≤ n, where the rest of the entries are determined by skew-symmetry. For
instance, for n = 4, this matrix is given by

θ =


0 −c2 dθ1 −c3s2 dθ1 −c4s3s2 dθ1

c2 dθ1 0 −c3 dθ2 −c4s3 dθ2
c3s2 dθ1 c3 dθ2 0 −c4 dθ3
c4s3s2 dθ1 c4s3 dθ2 c4 dθ3 0

 .
The result then follows from the identity

Ω = dθ + θ ∧ θ,

and again a straightforward computation. ■
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2.1.1 Almost Complex Structures on Spheres

Next, we pursue the question of the existence of almost complex structures on spheres.5

The key result here is:

Theorem 2.1.4. [Borel-Serre, 1953] Let n ≥ 1 be an integer. If n /∈ {1, 3}, then the
sphere S2n does not admit an almost complex structure compatible with any smooth
structure on it.

We will return to various proofs of this result shortly; let us discuss the case
n ∈ {1, 3} now. The two remaining spheres S2 and S6 do indeed admit almost complex
structures. One the one hand, the situation with S2 is as simple as it gets: S2 has a
unique smooth structure and complex structure.6 The uniquess of the smooth structure
follows from the classification of smooth oriented surfaces up to diffeomorphism. The
uniqueness of the complex structure amounts to to saying that any Riemann surface of
(topological) genus 0 is biholomorphic to CP1, which is a standard result often proved
also as a consequence of the Riemann-Roch Theorem (see [17, Prop. VII.1.7]).

On the other hand, the six sphere S6 also admits a unique smooth structure.
This is a harder result and follows from the Smale’s resolution of the generalized Poincaré
conjecture (in the topological category) in dimensions at least 5, along with a computation
by Kervaire and Milnor that Θ6 = 0, where Θn is the group of h-cobordism classes of
oriented n-spheres; see [15] and [22].

The sphere S6 also admits an almost complex structure: in 1947, A. Kirchhoff
explicitly constructed an almost complex structure on S6 using the octonions (see [23]).
Subsequently, another proof of this result was obtained using obstruction theory. We
isolate this result below, giving these two proofs. However, the question of the existence
of an integrable complex structure on S6, referred to as the Hopf problem, is much harder;
see this expository article [24] for a history of this problem. Firstly, it was shown indepen-
dently by Ehresmann and Libermann [25] and Eckmann and Frölicher [26] in 1951 that
the particular almost complex structure constructed by Kirchhoff above is not integrable.
Since these papers are hard to locate (and in French), we reproduce their argument below
as well, following this excellent survey article [27]. For a slightly different argument that
applies more generally to any closed orientable hypersurface X ⊂ Im(O), see [28]. This
still leaves open the question of the existence of some other almost complex structure on
S6 that is integrable. This question has a long history riddled with controversy7, but this
problem is still open as of this writing in March 2024.

5We review the relevant definitions and fundamental results in Appendix 3.6.
6For surfaces, every almost complex structure is integrable. This follows simply from the Newlander-

Nirenberg Theorem 3.6.3 and the fact that if (X,J) is a closed real surface X with an almost complex

structure J , then ∂
2

J = 0 for dimensional reasons, because Ωp,q(X) = 0 for q ≥ 2. It can also be proven
quite directly; see for instance [21, Homework 10, Ex. 1(c)].

7See, for instance, the discussion on MathOverflow at https://mathoverflow.net/questions/1973/
is-there-a-complex-structure-on-the-6-sphere, or the several others linked to in [24].
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Let us now return to the case of S6.

Proposition 2.1.5. The six sphere S6 admits an almost complex structure.

Proof 1 of Proposition 2.1.5. We follow Kirchhoff’s classical argument from [23], follow-
ing [27]. Think of

S6 = {p ∈ Im(O) : p∗p = 1} ⊂ Im(O)

as the set of purely imaginary octonions of octonionic norm 1.8 Recall the identity

pq = ⟨p, q⟩+ p× q (2.4)

valid for all p, q ∈ Im(O), where × denotes the cross product of octonions defined by

p× q = 1

2
(pq − qp) ,

and ⟨·, ·⟩ is the usual Euclidean inner product on O. This identity, along with the fact
that p × q ⊥ p, implies immediately that left multiplication by p ∈ S6 preserves the
subspace p⊥∩Im(O) ⊂ Im(O) of Im(O) parallel to TpS

6, where p⊥ denotes the orthogonal
complement of the span of p with respect to ⟨·, ·⟩. Further, this operation squares to −1:
indeed, we have for any p ∈ S6 and q ∈ O that

p(pq) = (pp)q = (−p∗p)q = −∥p∥2 q = −q,

where in the first step we have used that the octonions, although not associative, form an
alternating algebra. It follows that if N is the normal vector field on S6 ⊂ Im(O) ∼= R7,
then left multiplication by N defines an endomorphism J = N · of TS6 that satisfies
J2 = − id, i.e. is an almost complex structure on S6. ■

Proof 2 of Proposition 2.1.5. We use obstruction theory as reviewed in Appendix 3.6;
specifically, we use Theorem 3.6.4. This theorem, coupled with the Hurewicz Theorem,
says that if X2n is a (2n − 1)-connected manifold, then the unique obstruction to the
existence of an almost complex structure on X lies in H2n(X; π2n−1(SO2n /Un)). In
our case of n = 3 and X = S6, the sphere S6 is 5-connected, so that this unique
obstruction lies in H6(S6; π5CP3), where we have also used Proposition 3.6.5 to identify
SO6 /U3

∼= CP3. But now the long exact sequence in homotopy associated to the fiber
bundle S1 → S7 → CP3 shows that π5CP3 = 0, and hence this obstruction vanishes. ■

Remark 2.1.6. In fact, since also π6CP3 = 0 from the same sequence, it follows again
from Theorem 3.6.4 that the space of almost complex structures on S6 is connected. In
fact, it is a conjecture of Sullivan from 1977 (see [30]) that the space of all almost complex
structures on S6 is homotopy equivalent to RP7. As far as I can tell, this conjecture is still
unresolved, although some progress has been made towards it. For instance, Milivojevic
has shown (see [31]) that this space is rationally homotopy equivalent to S7.

Next, we show that almost complex structure on S6 constructed in Proof 1 is
not integrable, again following [27].

8For a review of the basic properties of the octonions, see the excellent expository article [29].
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Proposition 2.1.7. The almost complex structure on S6 constructed in Proof 1 of
Proposition 2.1.5 using the octonions is not integrable.

Proof. We compute the Nijenhuis tensor explicitly, and show that it does not vanish,
concluding the argument using the Newlander-Nirenberg Theorem (Theorem 3.6.3). Re-
call that the Nijenhuis tensor on an almost complex manifold (X, J) is defined by the
property that if ξ, η are local vector fields on X, then

 (ξ, η) := [Jξ, Jη]− J [ξ, Jη]− J [Jξ, η]− [ξ, η]. (2.5)

To compute the Nijenhuis tensor for the almost complex structure (S6, N ·) constructed
above, note that we are in Euclidean space, so computation of Lie brackets is easy: if λ
is a vector field on S6, then we can think of it is a smooth map λ : S6 → Im(O) ∼= R7

such that at any p ∈ S6, we have λ(p) ⊥ p, and so its derivative dλ can be thought of as
an Im(O)-valued 1-form. In particular, given two vector fields λ, µ on S6 it makes sense
to apply dλ to µ and use the product structure of O to obtain a vector-valued function
dλ(µ) : S6 → O. In these terms, the Lie bracket [λ, µ] of two vector fields λ, µ on S6 can
then be written as

[λ, µ] = dµ(λ)− dλ(µ). (2.6)

Also, differentiating the identity
(Jλ)p = p · λp

for p ∈ S6 and using that the product structure on O is bilinear, we conclude from the
following “product rule” that

d(Jλ) (µ) = J (dλ(µ)) + µ · λ, (2.7)

where the second term is the pointwise product of the vector fields µ and λ. It follows
from (2.5), (2.6) and (2.7) after some straightforward simplification that the Nijenhuis
tensor of two vector fields ξ, η on S6 can be expressed as

 (ξ, η) = Jξ · η − Jη · ξ − J(ξ · η) + J(η · ξ);

in other words, we have for p ∈ S6 and q, r ∈ TpS
6 that

p(q, r) = (pq)r − (pr)q − p(qr) + p(rq)

= [p, q, r]− [p, r, q]

= 2[p, q, r],

where [p, q, r] = (pq)r − p(qr) is the associator in O and in the last step we have used
that the associator in O is alternating. In particular, the result follows from the fact that
this associator is not identically zero. ■

Remark 2.1.8. The non-integrability of Kirchhoff’s almost complex structure on S6,
therefore, comes really from the non-associativity of the octonions.
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Let us now return to Theorem 2.1.4, which we restate here for convenience.

Theorem 2.1.4. [Borel-Serre, 1953] Let n ≥ 1 be an integer. If n /∈ {1, 3}, then
the sphere S2n does not admit an almost complex structure compatible with any
smooth structure on it.

We will first give a proof using the Atiyah-Singer Index Theorem, which is quite
similar in outline to the original proof by Borel and Serre, although the latter used K-
Theory and Bott Periodicity directly to obtain Proposition 2.1.9 (see the original here
[32], or the review paper [33] if you prefer English). After that, we will give two other
proofs of this result that illustrate the breadth of the mathematics involved.

Proof 1 of Theorem 2.1.4. The key observation here is:

Proposition 2.1.9. If E → S2n is a complex vector bundle of rank n, then the top
Chern class ˆ

S2n

cn(E) ∈ Z

of E is divisible by (n− 1)!.

The result follows immediately from this observation: if for some n ≥ 1 there is a complex
rank n bundle E → S2n such that ER ∼= TS2n, then Proposition 2.1.9 combined with
Remark 3.4.23 and the Chern-Gauss-Bonnet Theorem (Theorem 1.2.1) tells us that

(n− 1)! divides

ˆ
S2n

cn(E) =

ˆ
S2n

e(TS2n) = χ(S2n) = 2,

proving n ≤ 3.9 This leaves only the case of S4, which we handle separately below in
Proposition 2.1.16. ■

It then remains to prove this proposition.

Proof of Proposition 2.1.9. Note that for n ≥ 1, the manifold S2n, equipped with any
smooth structure, admits a unique spin structure; indeed, this follows immediately for
n ≥ 2 from Theorem 1.5.2 and the sparsity of the cohomology ring H∗(S2n;Z/2), and
it follows for n = 1 from the fact that S2 admits a unique smooth structure which is
diffeomorphic to the Riemann surface CP1, and the fact that every Riemann surface is
spin (Corollary 1.5.4). It follows then from Theorem 1.5.5 that the integral

ˆ
S2n

ch(E) · Â(S2n) (2.8)

can be expressed as the index of an elliptic operator, and is in particular an integer. Next,
we observe that S2n is stably parallelizable. Precisely stated, we have

9Note also that we did not assume that the smooth structure on S2n is the “usual” one: this argument
only uses the Chern-Gauss-Bonnet Theorem and χ(S2n) = 2, which is a topological statement, and is
therefore vanish for any smooth structure on S2n.
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Lemma 2.1.10. If k ≥ 1 is an integer and X ⊂ Rk+1 is any closed orientable
hypersurface, then X is stably parallelizable, i.e. the tangent bundle TX of X is
stably trivial. In particular, the Pontryagin classes pj(X) vanish for j ≥ 1.

In particular, it follows that in the above case, the total Â-class of X is trivial, i.e. is
given by Â(X) = 1 ∈ H∗(X;Q).

Proof of Lemma 2.1.10. This follows from considering the short exact sequence of vector
bundles

0→ TX → TRk+1|X →X/Rk+1 → 0

on X, where the last bundle is the normal line bundle of the embedding. Since TX and
TRk+1|X are orientable, it follows from this sequence that X/Rk+1 is orientable; but an
orientable real line bundle is trivial. Therefore,

TX ⊕ RX
∼= TX ⊕X/Rk+1

∼= TRk+1|X ∼= Rk+1
X ,

telling us that TX is stably trivial. The vanishing of the higher Pontryagin classes then
follows from their multiplicativity. ■

Applying this lemma to X = S2n tells us that the quantity in (2.8) can be
expressed as ˆ

S2n

chn(E).

Now suppose γ1, . . . , γn are the Chern roots of E. Then

chn(E) =
1

n!
pn(γ) =

1

n!
(−1)n−1ncn(E) = (−1)n−1 cn(E)

(n− 1)!
,

where pn(γ) =
∑n

i=1 γ
n
i is the nth power sum in the γi, and in the second step we

have used the Newton’s Identity (1) and the fact that cn−i(E) ∈ H2n−2i(S2n;Z) = 0 for
i = 1, . . . , n− 1. Therefore, the result follows from the fact that the integer in (2.8) can
be written as

(−1)n−1

ˆ
S2n

cn(E)

(n− 1)!
.

■

Proof 2 of Theorem 2.1.4. A second proof carries out an outline initiated by Kirchhoff
that was completed by many crowning achievements of algebraic topology in the 20th

century. Kirchhoff showed in [23] that if S2n admits an almost complex structure, then
S2n+1 is parallelizable; again, this is easy to reproduce here and so we do it below. The
second part of the proof, then, is finding all parallelizable spheres. This is a very classical
problem in algebraic topology, closely related to the Hopf invariant one problem, and was
resolved in 1958 by the Bott and Milnor and independently by Adams (with the answer
being that the only parallelizable spheres are S1, S3 and S7). The proof of this result uses
either secondary operations in ordinary cohomology or primary operations (the Adams
operations) in K-theory. Since the literature on this latter topic is quite abundant and
standard (see the references below), we will not comment further on it. We now give
Kirchhoff’s argument, following again [27].
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Lemma 2.1.11. Let n ≥ 0. If Sn admits an almost complex structure, then Sn+1 is
parallelizable.

Proof. Using the coordinates (2.1), embed Sn ↪→ Sn+1 as the hyperplane section defined
by xn+2 = 0, or equivalently as the set of vectors perpendicular to the last basis vector
en+2. Given a point p ∈ Sn, let Tp ⊂ Rn+1 ⊂ Rn+2 be the n-dimensional subspace parallel
to TpS

n, and Jp : Tp → Tp the endomorphism satisfying J2
p = − idTp . By definition, we

have Tp ⊥ p. Extend Jp to a linear endomorphism J̃p : Rn+2 → Rn+2 by setting

J̃p|Tp = Jp, J̃p(en+2) = p, and J̃p(p) = −en+2.

Then it follows immediately that J̃2
p = − idRn+2 as well. Now any q ∈ Sn+1 other than

q = ±en+2 can be written as q = sin θ · p + cos θ · en+2 for some unique θ ∈ (0, π) and
p ∈ Sn, and we define for such a q the linear endomorphism σq : Rn+2 → Rn+2 by

σq := sin θ · J̃p + cos θ · idRn+2 .

We also define
σ±en+2 := ± idRn+2 .

Then each σq for q ∈ Sn+1 is a linear isomorphism, where for q ̸= ±en+2, the inverse of
σq is given by

σ−1
q = − sin θ · J̃p + cos θ · idRn+2 .

The claim is that for any q ∈ Sn+1, the restriction σq|Rn+1 of σq to the hyperplane
Rn+1 = {xn+2 = 0} ⊂ Rn+2 is an isomorphism onto q⊥, the orthogonal complement
of q in Rn+2; putting all of the σq|Rn+1 together then yields an isomorphism of vector
bundles σ : Rn+1 → TSn+1 over Sn+1. This claim is trivial for q = ±en+2, so suppose
that q ̸= ±en+2. Then, since σq is injective and dim q⊥ = n + 1, it suffices to show that
σq(p) ∈ q⊥ and σq(Tp) ⊂ q⊥, where q = sin θ · p+ cos θ · en+2 as before. The first of these
follows from

σq(p) = cos θ · p− sin θ · en+2,

and the second of these follows from the fact that if r ∈ Tp, then

σq(r) = sin θ · Jp(r) + cos θ · r,

and both r and Jp(r) are orthogonal to q. ■

For instance, for n = 0 and 2, the standard (almost) complex structures on S0 and S2

yield, via this construction, familiar parallelizations of the spheres S1 and S3. See Figure
2.2 for an illustration of the case n = 0.

As mentioned above, the rest of the proof is finished by the following hammer.

Theorem 2.1.12 (Adams). Let n ≥ 1. If Sn is parallelizable, then n ∈ {1, 3, 7}.

Proof. See [34, Chapter 24, §6] or [35, §2.3]. ■

■
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Figure 2.2: When n = 0, we have S0 = {±e1}. Then J̃±e1 = ±
[
0 1
−1 0

]
, and the map σq

for a point q = (x, y) ∈ S1 is given by σ(x,y) =

[
y x
−x y

]
. Thus, the trivialization of TS1

produced by this procedure is given by the nonvanishing vector field y
∂

∂x
− x ∂

∂y
on S1.

Proof 3 of Theorem 2.1.4. This third proof using Steenrod operations modulo an odd
prime p is due to Borel and Serre [36]; the following presentation has been adapted from
this MathOverflow answer by Sen, [37]. The key ingredient here is a weaker version of
Proposition 2.1.9 that can be proved with the mod p Steenrod operations.

Proposition 2.1.13. If E → S2n is a complex vector bundle of rank n, then the top
Chern class ˆ

S2n

cn(E) ∈ Z

of E is divisible by every odd prime p < n not dividing n.

As before, the result follows immediately from this: for n ≥ 4, there is an odd
prime p < n not dividing n, so if TS2n were a complex vector bundle we would conclude
as in Proof 1 that p divides 2, which is absurd. This shows that n ≤ 3; the case n = 2 is
again handled separately, as in Proposition 2.1.16. ■

Let’s now proceed to the proof of Proposition 2.1.13.

Proof of Proposition 2.1.13. If Un
1 ⊂ Un is the maximal torus, then for any coefficient

ring R, we know that

H∗(BUn;R) ∼= H∗(BUn
1 ;R)

n ∼= H∗((CP∞)n;R)n ∼= R[γ1, . . . , γn]
n ∼= R[c1, . . . , cn],

where the ci are the elementary symmetric polynomials in the γi (see Appendix 3.4).
Now, if R = Fp is a finite field of order p, then all of these cohomology algebras are
modules over the Steenrod algebra p. When p > 2, this algebra p is generated by
the Bockstein homomorphism β and the Steenrod reduced power operations Pi. We recall
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some fundamental properties of these operations now; see [12, §4.L] for the construction
and more details.

(a) For any space X and i, j ≥ 0, the Steenrod powers are Fp-linear maps

Pi : Hj(X;Fp)→ Hi+2j(p−1)(X;Fp)

where H∗(X;Fp) denotes the (say singular) cohomology of X with Fp coefficients.
These maps are natural in X.10

(b) (Cartan Relation) We have P0 = id, and

Pi(xy) =
∑
j+k=i

Pj(x)Pk(y)

for all i ≥ 0 and x, y ∈ H∗(X;Fp).
(c) If x ∈ H∗(X;Fp) is homogenous of degree |x|, then for any k ≥ 1, we have

Pk(x) =

{
xp, if |x| = 2k, and

0, if |x| < 2k.

Using these relations, we can now deduce

Lemma 2.1.14. If p > 2, then in the ring H∗(BUn;Fp), we have for each k with
1 ≤ k ≤ n that

P1(ck) = m(p,1k−1)(γ) =
∑

µ⊢ k+p−1

bµ
(p,1k−1)

cµ,

where m(p,1k−1)(γ) denotes the monomial symmetric function in γ of type given by
the partition (p, 1k−1) of k + p− 1, and the notation in the final expression is as in
Appendix 3.3, i.e. bµλ ∈ Z are the coefficients of the transition matrices from mλ to
eµ and satisfy the identity

mλ =
∑
µ

bµλeµ

in the ring Λ of symmetric polynomials in countably many variables.

Proof. Since the γj have degree 2, it follows from observation (c) above that P1(γj) = γpj
for each j. It then follows from the Cartan relation (b) that

P1(ck) = P1(ek(γ)) = m(p,1k−1)(γ)

as needed. ■

Now we use the following combinatorial observation:

10For this to be true as written, we must interpret H0(X;Fp) as the reduced singular cohomology of X
(which is now required to be based); then naturality holds for based maps. This will not be a problem
for us, since we will only deal with elements in positive degree.
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Lemma 2.1.15. For any integers s ≥ 3 and t ≥ 1, we have

b
(s+t−1)

(s,1t−1) = (−1)s+1(s+ t− 1).

Let us postpone the proof of this lemma for a moment, and show how this
implies the result. Applying the lemma to s = p and t = k, and recalling that p is an
odd prime, yields in H∗(BUn;Fp) the identity

(k + p− 1)ck+p−1 = P1(ck)−
∑

µ⊢ k+p−1
µ̸=(k+p−1)

bµ
(p,1k−1)

cµ. (2.9)

Now suppose that E → S2n is a complex vector bundle of rank n, and that
p < n is an odd prime not dividing n. Let k := n − p + 1. Then applying the universal
identity (2.9) to the complex bundle E → S2n, we conclude that

ncn(E) = P1(cn−p+1(E))−
∑
µ⊢n
µ̸=(n)

bµ(p,1n−p)cµ(E) ∈ H2n(S2n;Fp) (2.10)

where by cj(E) here we mean the jth mod p Chern class cj(E;Fp) ∈ H2j(S2n;Fp). Now,
however, we note that cn−p+1(E) = 0 and cµ(E) = 0 for all partitions µ ⊢ n, µ ̸= (n)
simply because H2j(S2n;Fp) = 0 for 1 ≤ j ≤ n−1. Therefore, recalling that n is invertible
mod p, we conclude from the identity (2.10) that

cn(E;Fp) = 0.

Since the mod p top Chern class cn(E;Fp) is simply the mod p reduction of the integral
top Chern class cn(E) = cn(E;Z), this finishes the proof of 2.1.13. ■

It remains only to prove Lemma 2.1.15.

Proof of Lemma 2.1.15. In the ring of symmetric polynomials Λ, we have for integers
s ≥ 3 and t ≥ 1 that

m(s,1t−1) = ps−1et −m(s−1,1t),

and
m(2,1t−1) = p1et − (t+ 1)et+1.

These two identities combined imply inductively that for s ≥ 3 and t ≥ 1,

m(s,1t−1) = ps−1et − ps−2et+1 + · · ·+ (−1)sp1es+t−2 + (−1)s+1(s+ t− 1)es+t−1. (2.11)

We can now express the pj for 1 ≤ j ≤ s− 1 in terms of the ej using Newton’s Identities
(1), but the resulting expressions cannot involve the term es+t−1 for degree reasons, since

t ≥ 1. It follows that the resulting coefficient b
(s+t−1)

(s,1t−1) in the expansion

m(s,1t−1) =
∑

µ⊢ s+t−1

bµ(s,1t−1)eµ

is the same as in expression (2.11). ■
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To end this discussion, it remains to handle the case of S4.11 This is the content
of the following the result, attributed to Ehresmann and Hopf, which is regarded as the
“beginning of a series of investigations into the question of existence of almost complex
structures on smooth manifolds” (quote from Hirzebruch’s [38], my translation).

Proposition 2.1.16. The four-sphere S4 does not admit an almost complex structure
compatible with any smooth structure on it.

The question of the existence of exotic 4-spheres is still open as of this writing,
so it is possible that the only smooth structure (up to diffeomorphism) on S4 is the
standard one and the above result is not as general as it seems at first glance. We give
two proofs of this result, one using characteristic classes, and another using obstruction
theory and the fundamentals of twistor theory.

Proof 1 of Proposition 2.1.16. We use Theorem 3.6.8, which says that if X is an oriented
closed 4-manifold and E → X a complex vector bundle such that TX ∼= ER, then

c1(E)
2 = 2 · χ(X) + 3 · Sign(X).

In our case of X = S4, we have that c1(E) ∈ H2(S4;Z) = 0, whereas χ(S4) = 2 and
Sign(S4) = 0. Putting these together gives us that if S4 were almost complex, then

0 = 2 · 2 + 3 · 0,

which is absurd. ■

Proof 2 of Proposition 2.1.16. Fix a Riemannian metric on S4. The proof of Proposition
3.6.5 shows that the bundle SOComp(S4) → S4, the fiber of which at a given x ∈ S4

is the set of orthogonal complex structures on TxS
4, and whose sections we are looking

for, can be identified explicitly as the sphere bundle (with respect to the induced metric)
of the vector bundle Λ2

−T
∨S2 → S2 of anti self-dual 2-forms on S4. The resulting fibre

bundle
S2 → S(Λ2

−T
∨S4)→ S4

has zero Euler class, but is nontrivial; indeed, it is the Penrose construction of the twistor
space of S4, and by a standard argument (see [39, Ch. 13] or [40, §2]) is isomorphic to
the bundle

CP1 → PC = CPHP1(−1)→ HP1

which we explain the notation for, and discuss, at some length in a more general context
in the next section, §2.2.2. In particular, the total space of this fibration is a CP3. If
this bundle admitted a smooth section (or even a topological section up to homotopy),
then for each k ≥ 1, the map πk(CP3) → πk(S

4) would be surjective, but π4(S
4) = Z,

whereas π4(CP3) = 0, this latter fact being an immediate consequence of the long exact
homotopy sequence associated to the different fibration S1 → S7 → CP3. ■

11Proposition 2.1.16 was the content of a homework exercise assigned for a class I took with Dan Freed
in the fall of 2023. It is to this problem I owe my interest in the subject of almost complex structures
on spheres. Thank you, Prof. Freed!

57



Chapter 2. Examples

2.2 Projective Spaces

Die Bemerkung, dass irgend dreien Puncten einer Ebene immer solche Gewichte beigelegt
werden können, dass ein gegebener vierter Punct der Ebene als Schwerpunct derselben

betrachtet werden kann, und dass diese drei Gewichte in Verhältnissen zu einander stehen,
die aus der gegenseitigen Lage der vier Puncte nur auf eine Weise bestimmbar sind, führte
mich weiter zu einer neuen Methode, die Lage von Puncten in einer Ebene zu bestimmen.

The observation that to any three points of a plane we can always assign weights in such
a way that a given fourth point of the plane can be regarded as their barycenter, and that

these three weights stand in a relationships to one another that can be uniquely
determined by the mutual positions of the four points, led me on to a new method of

determining the positions of points in a plane.
Vorrede, Der Barycentrische Calcül

August Ferdinand Möbius,
describing his discovery of homogenous barycentric coordinates, which were arguably the

beginnings of homogenous coordinates on projective space.

The next class of examples we treat are the projective spaces, which for geome-
ters come in three flavors: the real, complex, and quaternionic projective spaces. The
discussion for real projective spaces is simple: for each n ≥ 0, the quotient by the an-
tipodal involution gives a degree 2 covering map π : Sn → RPn, which for n ≥ 3 realizes
Sn as the universal cover of RPn. This map tells us that most of the theory for RPn is
a minor extension of the theory for Sn. Consequently, we have little more to say about
the real projective spaces. The case of complex projective spaces CPn is certainly more
interesting, but it is subsumed by our discussion of complex Grassmannians in §2.3 or
smooth complete intersections in §2.4 below. We will, nonetheless, briefly treat complex
projective spaces in this section (see §2.2.1) to give a preview of these more complicated
results, and because the results for CPn often serve as base cases when obtaining cor-
responding results for Grassmannians by induction. The spaces that we will be most
interested in here are therefore the quaternionic projective spaces HPn; see §2.2.2.

We recall the definition of projective spaces here.

Definition 2.2.1. Given any field F and integer n ≥ 0 the projective space of dimension
n over F, denoted FPn, is defined to be the quotient

FPn := {v ∈ Fn+1 ∖ {0}}/
(
v ∼ vλ for all v ∈ Fn+1 ∖ {0}, λ ∈ F× = F ∖ {0}

)
.

The same definition applies also when F is the skew field H, as long as we
follow the convention that we work with right H-submodules (see Conventions and Fun-
damentals). In what follows, let F denote R,C, or H, and let d := dimR F be 1, 2 or 4
correspondingly. We will try to give a uniform exposition of the basic theory for these
three flavors of projective space for as long as possible. Recall that the points of FPn can
be given homogenous coordinates [ξ0 : ξ1 : · · · : ξn] with ξi ∈ F for i = 0, . . . , n, not all
zero, such that for each λ ∈ F× we have

[ξ0 : ξ1 : · · · : ξn] = [ξ0λ : ξ1λ : · · · : ξnλ]
As a set, FPn is in bijection with the set of F-lines (i.e. one dimensional vector subspaces
over F) through the origin in Fn+1, and comes equipped with a unique smooth structure
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of dimension dn which makes the natural map π : Fn+1 ∖ {0} → FPn a smooth quotient
map. To verify that FPn is a manifold, we can check that if Uj for 0 ≤ j ≤ n is the open
subset of FPn defined by the nonvanishing of the jth coordinate ξj, then there is a natural
diffeomorphism

φj : Ui → Fn, [ξ0 : · · · : ξn]→ (ξ0ξ
−1
j , ξ1ξ

−1
j , . . . , ξj−1ξ

−1
j , ξj+1ξ

−1
j , . . . , ξnξ

−1
j ),

and the collection {(Uj, φj)}nj=0 then forms a smooth atlas on FPn. For future convenience,
we define for 0 ≤ j ≤ n, the coordinate points [ej] in FPn by setting

[ej] := φ−1
j (0) = φ−1

j (0, . . . , 0);

these are, of course, the projectivizations (i.e. images under π) of the standard basis
vectors e0, e1, . . . , en of Fn+1. The group GLn+1 F of invertible (n+ 1)× (n+ 1) matrices
with entries in F then acts transitively on FPn on the left. For F ∈ {R,C}, this map
factors through the quotient PGLn+1 F of GLn+1 F by the scalar matrices, although the
noncommutativity of H makes it difficult to define PGLn+1 H in a way that is intuitive
and consistent with the above definition.

The set of all unit vectors v ∈ Fn+1 forms the sphere Sd(n+1)−1 ⊂ Rd(n+1), and
the restriction of π to Sd(n+1)−1 is a surjective map π : Sd(n+1)−1 → FPn yielding the fibre
bundle

Sd−1 → Sd(n+1)−1 → FPn.

This tells us that FPn is a closed connected manifold. Here the groups

S0 = {±1} ⊂ R×,

S1 = U1 ⊂ C∗, and

S3 ∼= SU2
∼= Sp1

are Lie groups, and these bundles are, in fact, (the universal) principal Sd−1-bundles. For
d = 1 and n ≥ 1, this action of Sd−1 ∼= Z/2 on Sn is orientation-preserving iff n is odd,
so that RPn is orientable iff n is odd. For d ∈ {2, 4} and n ≥ 0, the corresponding action
of Sd−1 on Sd(n+1)−1 is orientation preserving, and hence CPn and HPn are orientable
closed manifolds. The above natural quotient maps π : Sd(n+1)−1 → FPn factor through
each other in the sense that for each n ≥ 0 there are maps

Sn → RPn,

S2n+1 → RP2n+1 → CPn, and

S4n+3 → RP4n+3 → CP2n+1 → HPn,

where at each stage all maps but the last one come from the previous stage, and the
composite is the map π : Sd(n+1)−1 → FPn described above. These maps already give
a sizeable family of fibre bundles with interesting geometry, which we will return to
momentarily.

Now we can give a uniform exposition of certain computations for projective
spaces. For instance, we have:
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Proposition 2.2.2. Let F be R,C, or H. Then

χ(FPn) =

{
1+(−1)n

2
, if F = R, and

n+ 1 if F = C or F = H.

Proof 1 of Proposition 2.2.2. We can give FPn a CW structure with one cell in each
dimension dj for 0 ≤ j ≤ n, such that for j ≤ n, the djth skeleton is exactly FPj, and for
j < n, the attaching map of the d(j + 1)-cell is the map π : Sd(j+1)−1 → FPj described
above.12 It follows then that

χ(FPn) =
n∑

j=0

(−1)dj,

which is equivalent to the result claimed. Another CW structure on FPn for with the
same cells can be obtained by considering the Morse theory associated with the function

fc([ξ]) =

∑n
j=0 cj|ξj|2∑n
j=0 |ξj|2

for any collection c = (cj)j of distinct real constants cj (see [41, Chapter 1, §4]). Finally,
this computation can also be done using our knowledge of the cohomology rings (see 2.12
below)13, which allows us the write the k-Poincaré polynomial of FPn as

pt(FPn; k) =
n∑

j=0

tdj,

where k = F2 if F = R and k = Q if F ∈ {C,H}. Evaluating at t = −1 then gives us the
required formulae for the Euler characteristic. ■

Proof 2 of Proposition 2.2.2. We compute the Lefschetz number L(f) of a Lefschetz map
f homotopic to the identity and use Corollary 1.2.5. For t ∈ [0,∞), consider the element
ft ∈ GLn+1 F given by the diagonal matrix

ft = diag(1, et, e2t, . . . , ent),

and think of ft as a map ft : FPn → FPn. Again, from the formula, it is clear the each
ft is homotopic to f0 = idFPn . For a fixed t ∈ (0,∞), the map ft has exactly n + 1
fixed points, namely at the coordinate points [ej].

14 To see that these are Lefschetz fixed
points, we note that each ft preserves each coordinate open subset Uj, and the action

of ft restricted to Uj
φj−→ Fn is linear in the coordinates afforded by φj on Fn, with the

corresponding matrix representing ft being given by

ft|Uj
= diag(e−jt, e−(j−1)t, . . . , e−t, et, . . . , e(n−j)t).

12For F = R, this is the CW structure descended from the Z/2-invariant CW structure on Sn mentioned
above (see Chapter 1, Footnote 2).

13Howevever, this is not saying much unless we first compute the cohomology rings without using the
CW structure. This is possible, for instance, using the Gysin sequence.

14I apologize for using the upright e for both Euler’s constant and basis vectors. Hopefully, this will
not cause any confusion.
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Since ft|Uj
is linear, its derivative is correspondingly represented by the same matrix in

GLn F. To compute its Lefschetz number, however, we need to think of it as a matrix in
GLdnR. For F = R itself, we get that

det
(
dft|[ej ] − idT[ej ]

RPn

)
=
(
e−jt − 1

) (
e−(j−1)t− 1

)
· · ·
(
e−t − 1

) (
et − 1

)
· · ·
(
e(n−j)t − 1

)
= (−1)j

j∏
k=1

(
1− e−kt

) n−j∏
ℓ=1

(
eℓt − 1

)
.

In general, to interpret dft|[ej ] as an element not of GLn F but of of GLdnR, we simply
replace each diagonal entry with an identity matrix of size d. The same computation
then tells us that for all F, we have

det
(
dft|[ej ] − idT[ej ]

FPn

)
=

[
(−1)j

j∏
k=1

(
1− e−kt

) n−j∏
ℓ=1

(
eℓt − 1

)]d
.

The nonvanishing of this determinant tells us that each [ej] is a Lefschetz fixed point of
ft, and since each term in the product is positive, we conclude that the local Lefschetz
number of the map ft at the point [ej] is

L[ej ](ft) = sign det
(
dft|[ej ] − idT[ej ]

FPn

)
= (−1)dj.

Therefore, for any t ∈ (0,∞), we get from Corollary 1.2.5 that

χ(FPn) = L(ft) =
n∑

j=0

L[ej ](ft) =
n∑

j=0

(−1)dj.

■

Remark 2.2.3. There are certainly other proofs of this result. For instance, the result
for RPn can be obtained from Proposition 2.1.1 combined with Corollary 3.5.3. One
could also do the same computation as in Proof 3 of Proposition 2.1.1 for the round
metric (i.e. metric of constant curvature +1 descended from that of Sn), noting that
the only modification necessary is to integrate over θ1 ∈ (0, π) in stead of θ1 ∈ (0, 2π).
For CPn, we may also the techniques of Chern classes (see Corollary 2.2.7). Note that
Proof 2 amounts to constructing an R+ action on FPn and counting the fixed points;
in the complex case, this can also be rephrased as counting fixed points, or applying
the holomorphic Lefschetz Theorem or equivariant Atiyah-Singer-Index Theorem, for a
suitable Tn+1 ⊂ GLn+1C action on CPn. Finally, we can also obtain the result for HPn

from that for CPn via the fiber bundle S2 → CP2n+1 → HPn discussed above along with
the multiplicativity of the Euler characteristic (Theorem 3.5.1)–see Remark 2.2.16.

One consequence of this computation (and the Lefschetz Fixed Point Theorem
machinery developed in §1.2) is the Fundamental Theorem of Algebra. This is a little bit
of a digression from the main topic of this thesis, but it’s a fun result, so we include it
anyway.
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Corollary 2.2.4.

(a) Any complex linear map between finite dimensional complex vector spaces has
an eigenvector.

(b) (Fundamental Theorem of Algebra) The field C is algebraically closed.

Proof. For (a), by choosing a basis, we may reduce the problem to showing that if n ≥ 0
is any integer and f : Cn+1 → Cn+1 is any linear map, then f has an eigenvector. If f is
not invertible, then any vector in the kernel ker f is an eigenvector of f with eigenvalue 0.
If f is invertible, then it descends to a map on projective spaces [f ] : CPn → CPn; then
saying that f has eigenvector is equivalent to saying that [f ] has a fixed point. Since by
Proposition 2.2.2), the Euler characteristic of CPn is χ(CPn) = n+1, by Corollary 1.2.6,
it suffices to show that f is homotopic to the identity, which follows from the fact that
GLn+1 C is path connected. Precisely, the polynomial P (t) := det((1− t) id+tf) ∈ C[t]
satisfies P (0) = 1 and P (1) ̸= 0, and is hence nonconstant. Since C ∖ P−1(0) is path
connected (this is where the proof fails over R!), there is a path γ : [0, 1]→ C such that γ
avoids P−1(0) and satisfies γ(0) = 0 and γ(1) = 1. Then t 7→ [(1− γ(t)) id+γ(t)f ] gives
a homotopy between idCPn and [f ], finishing the proof.

For (b), note that if K/C is a finite algebraic extension and α ∈ K, then
multiplication by α denotes a complex linear map Tα : K → K. By (a), this has an
eigenvector, so that there is a λ ∈ C such that Tα− λ idK = Tα−λ is not invertible. Since
K is a field, this is only possible if α− λ = 0, i.e. α ∈ C. ■

One final general observation: for F ∈ {R,C,H}, we can use the CW structure
described in Proof 1 of Proposition 2.2.2 above, along with Poincaré duality, to compute
the cohomology rings of projective spaces as

H∗(FPn;R) = R[ζ]/(ζn+1), where |ζ| = d, (2.12)

where R is any F2-algebra when d = 1 and any ring when d ∈ {2, 4}. Here, ζ is the
Poincaré dual to the fundamental class of the hyperplane [FPn−1] ∈ Hd(n−1)(FPn;R).
Over each FPn, we also have the tautological line subbundle , denoted FPn or FPn(−1),
of the trivial bundle Fn+1 × FPn, defined by

FPn = FPn(−1) := {(v, ℓ) ∈ Fn+1 × FPn : v ∈ ℓ} ⊂ Fn+1 × FPn, (2.13)

where we are thinking of FPn as the set of lines through the origin in Fn+1. Each
of these three tautological bundles are nontrivial, as is evidence by the Stiefel-Whitney,
Chern, and Pontryagin classes respectively. Explicitly, we have

w1(RPn(−1)) = −ζ ∈ H1(RPn;Z/2),
c1(CPn(−1)) = −ζ ∈ H2(CPn;Z), and
p1(HPn(−1)) = 2ζ ∈ H4(HPn;Z).

The first two of these are almost tautological (depending on your definition of these
characteristic classes!), whereas the third one is saying something nontrivial; we will
prove it in Proposition 2.21 below.
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Let’s focus now on the cases F = R and F = C. Then on FPn, we define for
each integer k ∈ Z, the line bundle FPn(k) by

FPn(k) := ⊗(−k)
FPn :=

{
⊗(−k)
FPn , when k ≤ 0, and

(∨
FPn)

⊗k , when k ≥ 0.

Note that, FPn = FPn(0) is just the structure sheaf (i.e. the trivial line bundle) on FPn,
and, again almost by definition, we have for any k ∈ Z that

w(RPn(k)) = 1 + kζ ∈ H∗(RPn;Z/2) and c(CPn(k)) = 1 + kζ ∈ H∗(CPn;Z).

Other than FPn , the most important vector bundle on FPn is the tautological quotient
bundle FPn defined by the short exact sequence

0→ FPn → ⊕(n+1)
FPn → FPn → 0, (2.14)

where the first nonzero map is the inclusion in (2.13). It is a standard fact in the theory of
projective spaces (and indeed Grassmannians, see 2.3), which we take as well-known (see
[42, Lemma 4.4] or [43, §3.2.4]), that the tangent bundle TRPn of RPn (resp. holomorphic
tangent bundle TCPn of CPn) is given by

TRPn ∼= ∨
RPn ⊗RPn (resp. TCPn ∼= ∨

CPn ⊗CPn). (2.15)

In what follows, we will often drop the subscripts on  and  for convenience. Now–and
this is special to projective spaces–since  is a line bundle, we may twist the sequence
(2.14) by ∨ = FPn(1) to obtain the Euler sequence, which for F = R looks like

0→ RPn → RPn(1)⊕(n+1) → TRPn → 0, (2.16)

and for F = C looks like

0→ CPn → CPn(1)⊕(n+1) → TCPn → 0. (2.17)

The Euler sequence really lies at the core of all characteristic class computations
on projective spaces, as we shall see below.
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2.2.1 Complex Projective Spaces

Let’s now study complex projective spaces in some detail. The bundles CPn(k) are of
fundamental importance in the study of complex projective spaces, and indeed of complex
projective varieties more generally. For instance, the line bundle CPn(1) is a positive line
bundle, where recall that a line bundle L → X over a compact complex manifold X is
said to be positive if the first Chern class c1(L) ∈ H2(X;Z) can be represented in de
Rham cohomology by a closed (1, 1)-form ω with positive definite associated Hermitian
form. In our case of CPn(1), this positive form can be taken to be, for instance, the
Fubini-Study form ωFS defined via

ωFS(z) =
i

2
∂∂ log |z|2.

The Kodaira Embedding Theorem says exactly that a compact complex manifold is
projective, i.e. admits an embedding into projective space (and hence by Chow’s Theorem
is an algebraic variety), iff it admits a positive line bundle, and the necessity of this
criterion really comes from the existence of this line bundle on CPn. The first fundamental
computation here, therefore, is of the χy-characteristic of the bundles CPn(k).

Theorem 2.2.5. For any k ∈ Z, we have the generating function

∞∑
n=0

χy (CPn,CPn(k)) tn =
(1 + yt)k−1

(1− t)k+1
.

Proof. The Euler sequence (2.17) tells us that for any n ≥ 0, the total generalized Todd
class of CPn is given by

Tdy(CPn) = Qy(ζ)
n+1 ∈ H∗(CPn;Q[y]) = Q[y, ζ]/(ζn+1),

where we recall that

Qy(z) =
z

R(z)
, with R(z) :=

1− e−z(1+y)

1 + ye−z(1+y)
.

From the Generalized Hirzebruch-Riemann-Roch Theorem (Theorem 1.4.3), we conclude
that for any k ∈ Z and n ≥ 0, we have

χy (CPn,CPn(k)) =

ˆ
CPn

chy CPn(k) · Tdy(CPn) =

ˆ
CPn

ekζ(1+y)ζn+1R(z)−n−1. (2.18)

The evaluation (2.18) amounts to obtaining the coefficient of ζn in the series

ekζ(1+y) ζn+1

R(ζ)n+1
,

which we can then express as a residue calculation as

[ζn]ekζ(1+y) ζn+1

R(ζ)n+1
= Res

ζ=0

ekζ(1+y)

R(ζ)n+1
dζ.
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To compute this residue, we make the change of variables t = R(ζ), which for all y is a
holomorphic change of coordinates in a neighborhood of ζ = 0. With this substitution,
we have

eζ(1+y) =
1 + yt

1− t
,

so we conclude that the desired quantity is

Res
t=0

(
1 + yt

1− y

)k

· 1

tn+1
· 1

(1 + yt)(1− y)
dt = [tn]

(1 + yt)k−1

(1− y)k+1
,

as needed. ■

Now we relish in the consequences of this result.

Corollary 2.2.6. The generating function for the χy-characteristic of complex pro-
jective spaces is

∞∑
n=0

χy(CPn)tn =
1

(1 + yt)(1− t)
.

In other words, we have for n ≥ 0 that

χy(CPn) = 1− y + y2 + · · ·+ (−1)nyn =
1− (−y)n+1

1 + y
.

Proof. Set k = 0 in Theorem 2.2.5. ■

This result seems more natural to state using the “−y”-convention (see Remark 2.3.2) as

χ−y(CPn) =
1− yn+1

1− y
.

Corollary 2.2.7. We have for n ≥ 0 that χ(CPn) = n+ 1.

Proof. Set y = −1 in Corollary 2.2.6. ■

Corollary 2.2.8. We have for n ≥ 0 that

Sign(CPn) =
1 + (−1)n

2
.

Proof 1 of Corollary 2.2.8. Set y = 1 in Corollary 2.2.6. ■

Proof 2 of Corollary 2.2.8. For odd n, the signature Sign(CPn) = 0 by definition, whereas
for even n = 2k, the middle cohomology H2k(CP2k;Z) is generated as a Z-module by ζk,
with the intersection matrix given simply by [1]. ■
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Corollary 2.2.9. For any k ∈ Z, we have

∞∑
n=0

χ (CPn,CPn(k)) tn =
1

(1− t)k+1
.

In other words, we have for any n ≥ 0 and k ∈ Z that

χ (CPn,CPn(k)) =


(
n+k
k

)
, if k ≥ 0,

(−1)n
(−k−1

n

)
, if k ≤ −n− 1,

0 else.

.

Proof 1 of Corollary 2.2.9. Set y = 0 in Theorem 2.2.5. ■

Proof 2 of Corollary 2.2.9. This result is often presented as a standard consequence of
the following cohomology computation: for any i ≥ 0, we have

hi (CPn,CPn(k)) =


(
n+k
k

)
if i = 0 and k ≥ 0(−k−1

n

)
if i = n and k ≤ −n− 1, and

0 else.

(2.19)

Indeed, the top line expresses that the space of homogenous polynomials in degree k ≥ 0
in n+1 variables has dimension

(
n+k
k

)
, whereas the second line is forced by Serre Duality

and the computation that ωPn = Pn(−n − 1) (see [16, §2.4]). The vanishing of middle
cohomology can be then proved in the holomorphic category15 as a consequence of the
Kodaira Vanishing Theorem (see [16, Example 5.2.5]) or of the ideal sheaf sequence
corresponding to the hyperplane divisor CPn−1 = V(ξn), namely

0→ CPn(−1)→ CPn → CPn−1 → 0,

and its twists
0→ CPn(k − 1)→ CPn(k)→ CPn−1(k)→ 0

for k ∈ Z. Indeed, we can use these to sequences to perform double induction on (n, k),
where n ≥ 1 and we use forward and backward induction on k, starting with k = 0. The
base case of n = 1 can be performed “by hand”, whereas the base case of k = 0 uses
the Borel-Weil-Bott Theorem, which says that hi(X,X) = 0 for all i > 0 and complete
homogenous space X = G/P , where G is a semisimple complex Lie group and P ⊂ G a
parabolic subgroup (the classic reference being [44]). A key step in the induction on k is
the observation that the restriction map

H0 (CPn,CPn(k))→ H0
(
CPn−1,CPn−1(k)

)
is surjective for all k ≥ 0 and an isomorphism for k = 0. The details are both standard
and straightforward, and therefore omitted. ■

It is very interesting to see by comparing these proofs how, once the hammer of
the Atiyah-Singer Index Theorem is proven, these computations become trivial. We end
this section with a couple of other fun results.

15That is, as opposed to performing it in the algebraic category as in [5, Ch. III] and invoking Serre’s
GAGA Theorems.
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Proposition 2.2.10. For any n ≥ 0, we have

χ (CPn,TCPn) = n(n+ 2).

Proof. The Euler sequence (2.17) along with the additivity of the holomorphic Euler
characteristic in short exact sequences yields

χ(CPn,TCPn) = (n+ 1)χ (CPn,CPn(1))− χ(CPn,CPn).

Using Corollary 2.2.9, we can write this as quantity as (n+1)2− 1 = n(n+2) as needed.
Another way to rephrase this argument is to say that the long exact sequence in coho-
mology arising from the Euler sequence (2.17), along with the cohomology computation
(2.19), tells us that

hi(CPn,TCPn) = 0 for i > 0,

so that
χ(CPn,TCPn) = h0(CPn,TCPn),

which is the dimension of the space of global holomorphic vector fields on CPn.16 Tracing
through the isomorphism (2.15) tells us that in the short exact sequence

0→ H0 (CPn,CPn)→ H0 (CPn,CPn(1))⊕(n+1) → H0(CPn,TCPn)→ 0,

the surjection is given explicitly by taking (ℓ0, . . . , ℓn) 7→
∑n

i=0 ℓi
∂
∂ξi
, where the ℓi ∈

H0(CPn,CPn(1)) are linear polynomials in the coordinates ξi, subject only to the relation
that the Euler vector field

∑n
i=0 ξi ·

∂
∂ξi

vanishes on CPn.17 Of course, this shows again
that

χ(CPn,TCPn) = h0(CPn,TCPn) = (n+ 1)2 − 1.

As a final remark, this result can also be obtained from differentiating the isomorphism

PSLn+1C→ AutCPn

at the identity to obtain a Lie algebra isomorphism (up to a negative sign18)

sln+1 C→ H0(CPn,TCPn),

so that
h0(CPn,TCPn+1) = dimC sln+1C = (n+ 1)2 − 1.

■
16Note, by the way, that h1(CPn,TCPn) = 0 tells us that the complex structure on CPn is rigid–that

there is no deformation theory of CPn.
17Here we are using that if the ℓi are linear, then the vector field

∑n
i=0 ℓi

∂
∂ξi

on Cn+1∖{0} is invariant
under the action of C× and hence descends via π to a vector field on CPn.

18This negative shown shows up for an important and subtle reason. The map sln+1 C →
H0(CPn,TCPn) is given as follows: given a X ∈ sln+1 C, we can take a curve γ : ∆(ε) → PSLn+1 C
representing it, and then consider the vector field X on CPn+1 defined by taking a local holomorphic f
to Xf defined by Xf(z) := d

dt |t=0f(γ(t)z). The exponential map Vect(CPn) → AutCPn+1 is given by
considering the flow, and hence for X,Y ∈ sln+1 C, we have

([X,Y ]f) (z) =
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

f(etXesY e−tXz) =
∂

∂t

∣∣∣∣
t=0

Ye−tXz((e
tX)∗f) = −(XY )f.

This negative sign shows up, by the same computation, whenever we have a Lie group G acting on a man-
ifold X, and we consider similarly that induced map g→ Vect(X), which is a Lie algebra homomorphism
up to this negative sign.
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Finally, we compute the Â-genus of CPn.

Proposition 2.2.11. The generating function for the Â-genus of complex projective
spaces is

∞∑
n=0

Â(CPn)tn =

(
1 +

t2

4

)−1/2

.

In other words, we have for k ≥ 0 that Â(CP2k+1) = 0, whereas

Â(CP2k) = (−1)k 1

24k

(
2k

k

)
.

Proof. Proceeding identically to the proof of Theorem 2.2.5, but this time using the series
QÂ(z) = (z/2) csch(z/2) instead, we conclude that the total Â-class of CPn is exactly

Â(CPn) = QÂ(ζ)
n+1 =

(
ζ

2 sinh(ζ/2)

)n+1

∈ H∗(CPn;Q).

Therefore, we conclude that

Â(CPn) =

ˆ
CPn

(
ζ

2 sinh(ζ/2)

)n+1

= Res
ζ=0

1

(2 sinh(ζ/2))n+1
dζ,

where we have expressed the computation as a residue calculation as before. To carry
out this computation, use the change of variables

t = 2 sinh(ζ/2)

to get

Â(CPn) = Res
t=0

1

tn+1

(
1 +

t2

4

)−1/2

dt = [tn]

(
1 +

t2

4

)−1/2

as needed. The explicit formula then follows from plugging x = −t2/16 in the the
generating function of the central binomial coefficients given by

∞∑
k=0

(
2k

k

)
xk = (1− 4x)−1/2.

■

Remark 2.2.12. Note that for any k ≥ 0, we have∣∣∣Â(CP2k)
∣∣∣ ≤ 1

22k
.

In particular, for any k ≥ 1, this has no hope of being an integer. This does not violate
Corollary 1.5.6 because CP2k is never spin; indeed, the Euler sequence (2.17) tells us that
the total Chern class of CPn is given by c(CPn) = (1+ ζ)n+1, so that c1(CPn) = (n+1)ζ.
In particular, we conclude from Corollary 1.5.3 that CPn is spin iff n is odd. This gives
us a family of (necessarily non-spin) manifolds with non-integral Â-genus. Note that CPn

admits a metric of positive Ricci curvature (the Fubini-Study metric!), so this example
tells us that the condition that the manifold be spin is necessary for the conclusion of
Theorem 1.5.9 to hold.
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2.2.2 Quaternionic Projective Spaces

Let us investigate the existence of almost complex structures on projective spaces. Note
first that for n ≥ 1, the space RP2n is non-orientable and hence cannot be almost complex,
while complex projective spaces CPn are complex (almost tautologically!). Therefore,
the question of existence of almost complex structures on projective spaces is only really
interesting for quaternionic projective spaces.

Hirzebruch showed in 1953 in [38] that the quaternionic projective space HPn

for n = 1 and n ≥ 4 does not admit an almost complex structure compatible with its
usual smooth structure. He also showed, using Wu’s result that the the mod 3 Pontryagin
classes are topological invariants of smooth manifolds, that the same statement is true
with respect to any smooth structure on HPn when n ≡ 1 (mod 3) (so for n = 1, this
result gives another proof of Proposition 2.1.16), as well as the fact that if HPn for
n ∈ {2, 3} admits an almost complex structure, then CP2n+1 admits an “exotic” almost
complex structure with Chern classes different from the usual complex structure. As the
story goes, Hirzebruch announced at his 1958 lecture at the International Congress of
Mathematicians that Milnor had been able to use K-theory to prove the result also for
n = 2, 3, but before this result was published, William Massey also published a uniform
proof of this result in the 1962 article [45]. In what follows, we will give Hirzebruch’s and
Massey’s proofs (except for some standard results from K-theory which we will delegate
to references, since we do not develop the machinery of K-theory in any detail). We
will then also show how to use these characteristic class techniques to compute invariants
such as χ(HPn), Sign(HPn), and Â(HPn). The key player in this discussion will be the
fibre bundle CP1 → CP2n+1 → HPn mentioned in the previous section, which we analyze
in more detail below.

To begin this discussion, recall that the the tautological line subbundle on HPn,
denoted  := HPn(−1)→ HPn, is a quaternionic vector bundle, and hence by restriction
of scalars can be thought of as both a complex vector bundle C of rank 2 and a real
vector bundle R of rank 4. It then follows from the Gysin sequence that the cohomology
of HPn is given by

H∗(HPn;Z) = Z[ξ]/(ξn+1)

where we choose our cohomology generator to be

ξ := −e(R) = −c2(C).

Since c1(C) ∈ H2(HPn;Z) = 0, we conclude from the relation between Chern and
Pontryagin classes (see Appendix 3.4) that the Pontryagin classes of R are given by

p1(R) = c1(C)
2 − 2c2(C) = 2ξ and p2(R) = c2(C)

2 = ξ2.

In other words, we have shown:

Lemma 2.2.13. With the above choice of generator ξ ∈ H4(HPn;Z), we have

c(C) = 1− ξ and p(R) = 1 + 2ξ + ξ2.

Note, in particular, how this result for n = 1 implies the existence of real 4-plane
bundles on S4 with first Pontryagin class an arbitrary even multiple of the generator of
top cohomology (see [42, Lemma 20.9] and the following discussion).

69



Chapter 2. Examples

The key observation now is that the complex projectivization PC of  can be
naturally identified with the fiber bundle CP1 → CP2n+1 π−→ HPn in way that identifies
PC(1) with CP2n+1(1). If we let ζ = c1(CP2n+1(1)) ∈ H2(CP2n+1;Z) be the generator
of the cohomology ring of H∗(CP2n+1;Z), then we can describe the pullback map π with
respect to these generators via

Lemma 2.2.14. If ζ ∈ H2(CP2n+1;Z) and ξ ∈ H4(HPn;Z) are the generators chosen
above, then under the pullback map π∗ : H∗(HPn;Z)→ H∗(CP2n+1;Z), we have

π∗ξ = ζ2.

In particular, π∗ is injective.

Proof 1 of Lemma 2.2.14. It it follows from the definition of the Chern classes and using
the identification CP2n+1 = PC that the relation satisfied by ζ in H∗(CP2n+1;Z) is

0 = ζ2 + π∗ (c1(C)) ζ + π∗ (c2(C)) = ζ2 − π∗ξ,

where in the last step we have used Lemma 2.2.13. ■

Proof 2 of Lemma 2.2.14. If we make the identification

C2n+2 ∋ (z0, . . . , z2n+1) = (z0 + jz1, . . . , z2n + jz2n+1) ∈ Hn+1,

thought of as right C-modules, then the fiber of the pullback bundle π∗C over a point
[z0 : z1 : · · · : z2n+1] ∈ CP2n+1 consists exactly of the complex 2-plane spanned in C2n+2

by the two vectors of the form

(z0, z1, . . . , z2n+1) and (z0, z1, . . . , z2n+1) · j = (−z1, z0,−z2, z1, . . . ,−z2n+1, z2n),

for any choice of lift (z0, . . . , z2n+1) of [z0 : · · · : z2n+1]. This follows from the fact that if
u, v ∈ C, then in H we have the relation

(u+ jv)j = −v + ju.

The upshot of this discussion is that the complex 2-plane bundle π∗C on CP2n+1 can be
identified with the bundle

π∗C ∼= CP2n+1(−1)⊕ CP2n+1(−1) ∼= CP2n+1(−1)⊕ CP2n+1(1),

where the first isomorphism is canonical, but the second one uses that if E → X is a
complex vector bundle, then a choice of Hermitian metric on E induces an isomorphism
E → E∨, where E denotes the conjugate bundle and E∨ the dual bundle to E. It follows
from this isomorphism that

−π∗ξ = π∗(c2(C)) = c2(π
∗C) = c2 (CPn(−1)⊕ CPn(1)) = −ζ2,

where in the last step we have used

c2 (CPN (a)⊕ CPN (b)) = ab · ζ2

for any a, b ∈ Z and N ≥ 0. ■

In what follows, we will give H∗(CP2n+1;Z) the structure of a module over
H∗(HPn;Z) via π∗, and in particular stop writing π∗ explicitly.
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The next step now is to study the relative tangent bundle Tπ of the projection
map π : CP2n+1 → HPn, which by definition fits into the short exact sequence

0→ Tπ → TCP2n+1 dπ−→ π∗THPn → 0 (2.20)

of vector bundles on CP2n+1 (see the discussion preceding Proof 2 of Theorem 3.5.1 for a
reminder on the basics). Since Tπ is a real oriented bundle of rank 2, by the isomorphism
U1 →∼ SO2, it can be thought of as a complex line bundle as well. In particular, we may
speak of its first Chern class. Specifically, we have:

Lemma 2.2.15. The total Chern and Pontryagin classes of Tπ are

c(Tπ) = 1 + 2ζ and p(Tπ) = 1 + 4ζ2.

Proof. Note that for any q ∈ HPn, the fiber of π over q, namely CP1 ∼= π−1(q) ↪→ CP2n+1

is simply an embedded line. In particular, if ι : CP1 ↪→ CP2n+1 denotes the inclusion
map, then the pullback ι∗ via ι, i.e. the restriction map on the cohomology rings of CP1

and CP2n+1, is given simply by obvious projection

ι : Z[ζ]/(ζ2n+2) ↠ Z[ζ]/(ζ2).

Next, we know that ι∗Tπ
∼= TCP1, and, in fact, the structure of the complex vector

bundle obtained from the above discussion on Tπ, and hence ι∗Tπ, is exactly that of the
holomorphic tangent bundle TCP1 of CP1. In particular, since χ(CP1) = 2, we conclude
from the Gauss-Bonnet Theorem that

ι∗c1(Tπ) = c1(ι
∗Tπ) = c1(TCP1) = 2ζ.

The first then follows from the above observation that ι∗ : H2(CP2n+1;Z) → H2(CP1;Z)
is an isomorphism. The second follows as before from the relation between Chern and
Pontryagin classes. ■

Remark 2.2.16. Note how this lemma allows us to give a different proof of the computa-
tion of χ(HPn), if we know it for CPn (using characteristic classes, say). Indeed, (2.20),
along with the multiplicativity and naturality of the Euler class, gives us that

e(TCP2n+1) = e(Tπ) · π∗e(THPn).

By Lemma 2.2.15, we have e(Tπ) = 2ζ, so using the Chern-Gauss-Bonnet Theorem
(Theorem 1.2.1), the calculation χ(CP2n+1) = 2n+ 2, and Lemma 2.2.14, we have

(2n+ 2)ζ2n+1 = 2ζ · χ(HPn)ζ2n, so χ(HPn) = n+ 1.

Of course, this is the same argument as in Proof 2 of Theorem 3.5.1.

Since it is clear from the computations in the previous section §2.2.1 that the
total Pontryagin class of CP2n+1 is

p(TCP2n+1) = (1 + ζ2)2n+2,

the sequence (2.20), combined with Lemma 2.2.15 and the multiplicativity of the total
Pontryagin class, gives us that

p(π∗THPn) = (1 + ζ2)2n+2(1 + 4ζ2)−1.

The naturality of the total Pontryagin class, along with Lemma 2.2.14 then immediately
yields the following result.
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Lemma 2.2.17. The total Pontryagin class of HPn is given by

p(HPn) = (1 + ξ)2n+2(1 + 4ξ)−1.

Note how for n = 1, this says p(HP1) = 1, which is something we had observed
already in Proof 1 of Proposition 2.1.16 to be a consequence of the stable parallelizability
of HP1 ∼= S4. This computation shows us also that HPn is not stably parallelizable if
n ≥ 2. We now quickly sketch a second proof of this result.

Sketch of Proof 2 of Lemma 2.2.17. Following [42, Exercise 20-A], we can use a version
of the Euler sequence, or equivalently a direct computation of the tangent bundle for HPn

similarly to those for RPn and CPn, to show that

THPn = HomH( ,⊥),

where ⊥ ⊂ Hn+1 is the orthogonal complement to the tautological line bundle  . It
follows from this that

THPn ⊕ HomH( ,) ∼= HomH( ,⊥ ⊕ ) ∼= HomH( ,Hn+1) ∼= HomH( ,H)⊕(n+1).

Next, we can argue from Lemma 2.2.13 that

p (HomH( ,H)) = (1 + ξ)2 = 1 + 2ξ + ξ2.

To show the result, therefore, it suffices to show that

p (HomH( ,)) = 1 + 4ξ.

Note that HomH( ,) is not a quaternionic vector bundle, but only a vector bundle over
the center of H, namely R, i.e. a real bundle of rank 4. In fact, however, the identity
map id splits off a trivial summand R ∼= R id ⊂ HomH( ,), so the only nontrivial
Pointryagin class of HomH( ,) is the first one, p1. To compute this, note that there is
an isomorphism of complex vector bundles

HomH( ,)⊗R C→ HomC(C,C)

given locally by taking φ⊗ (x+ yi) 7→ x ·φ+ y ·φ ◦ i, where x, y ∈ R, and φ ◦ i represents
the composition of the morphisms C → C given by multipling by i and then taking φ.
It follows from this that

p1 (HomH( ,)) = −c2 (HomC(C,C)) = −c2(∨
C ⊗C C).

To compute this last quanitity, we use the splitting principle. By Lemma 2.2.13, the
Chern roots of both C and ∨

C are ±
√
ξ, and so the splitting principle tells us that the

total Chern class of ∨
C ⊗C C is given by

c(∨
C ⊗C C) = (1 + 2

√
ξ) · (1− 2

√
ξ) · (1 +

√
ξ −

√
ξ) · (1−

√
ξ +

√
ξ) = 1− 4ξ,

finishing the proof. ■

We are now ready to give Hirzebruch’s proof from [38].
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Theorem 2.2.18 (Hirzebruch). For all integers n ≥ 1, except possibly n ∈ {2, 3},
the quaternionic projective space HPn does not admit an almost complex structure
compatible with its usual smooth structure.

Proof. Suppose there were a complex vector bundle E → HPn of rank 2n such that
ER ∼= THPn. Then we would conclude from Lemma 2.2.17 and the connection between
Chern and Pontryagin classes of a complex vector bundle (Remark 3.4.22) that

(1− ξ)2n+2(1− 4ξ)−1 =
∞∑
i=0

(−1)ipi(HPn) = c(E)c(E). (2.21)

Since ci(E) = (−1)ici(E) and H2i(HPn;Z) = 0 for odd i, it follows that

c(E) = c(E)

and hence from (2.21) that the total Chern class of E is completely determined as

c(E) = (1− ξ)n+1(1− 4ξ)−1/2,

so that recalling the identity (1− 4x)−1/2 =
∑∞

i=0

(
2i
i

)
xi, we get

c2n(E) =

(
n+1∑
j=0

(−1)n+1−j

(
n+ 1

j

)(
2j − 2

j − 1

))
ξn.

On the other hand, the Chern-Gauss-Bonnet Theorem (Theorem 1.2.1) tells us that

c2n(E) = χ(HPn)ξn = (n+ 1)ξn,

where we are using the computation in Proposition 2.2.2. It therefore suffices to show
that if we let an be the sequence of integers defined by

an =
1

n+ 1

(
n+1∑
j=0

(−1)n+1−j

(
n+ 1

j

)(
2j − 2

j − 1

))
, (2.22)

then an ̸= 1 for all integers n ≥ 1 other than n = 2, 3. To do this, it suffices to show the
recurrence relation

an+1 =
n∑

j=0

ajan−j + (−1)n+1 (2.23)

valid for n ≥ 0 along with a0 = 0, since from these it follows that the an are nonnegative
integers satisfying an+1 ≥ 2an−1 for all n ≥ 0, and hence, in particular, an > 1 for n ≥ 4.
To show this recurrence relation, note that from (2.22), it is clear that for any n ≥ 0 we
have |an| ≤ 23n+1, so that if f(t) =

∑∞
n=0 ant

n is the generating function of the sequence
an, then f(t) defines a convergent power series and holomorphic function at least when
|t| < 1/8. On here, if we let g(t) be the function defined by

g(t) := f(t) + tf ′(t) =
∞∑
n=0

(n+ 1)ant
n,
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then we can write g(t) using the residue theorem as

g(t) =
∞∑
n=0

tn[ξn](1− ξ)n+1(1− 4ξ)−1/2 =
∞∑
n=0

tn

(
1

2πi

˛
|ξ|=ε

(
1− ξ
ξ

)n+1

(1− 4ξ)−1/2dξ

)
.

for any ε < 1/4. For a fixed choice of ε < 1/4, we have for all ξ such that |ξ| = ε that

|1− ξ−1| ≤ 1 + ε−1 and |(1− 4ξ)−1/2| ≤ (1− 4ε)−1/2.

Therefore, for 0 ̸= t with |t| ≪ 1 (specifically t < min{1/8, ε(1 + ε)−1}), we are justified
in switching the order of summation and integration to write this as

g(t) =
1

2πi

˛
|ξ|=ε

1

t

[
∞∑
n=0

(
t(1− ξ)

ξ

)n+1
]
(1− 4ξ)−1/2dξ

=
1

2πi

˛
|ξ|=ε

(1− ξ)(1− 4ξ)−1/2

ξ(1 + t)− t
dξ.

To evaluate this integral, we note that for |t| ≪ 1, the only pole of the integrand in the
disc bound by |ξ| = ε is ξ = t/(1 + t), so we may write this computation via the Residue
Theorem as

g(t) = Res
ξ=t/(1+t)

(1− ξ)(1− 4ξ)−1/2

ξ(1 + t)− t
dξ = (1− 3t)−1/2(1 + t)−3/2.

From this formula, we can recover f(t) by solving the differential equation

f(t) + tf ′(t) = (1− 3t)−1/2(1 + t)−3/2

as

f(t) =
1

t

ˆ t

0

(1− 3s)−1/2(1 + s)−3/2ds =
1

2t

(
1−

√
1− 3t

1 + t

)
.

Finally, from this last explicit formula, we can conclude that f(t) satisfies the functional
equation

f(t) = tf(t)2 + (1 + t)−1,

which is equivalent to the desired recurrence relation (2.23). ■

Remark 2.2.19. From the proof, it is clear that the reason this argument fails for n = 2, 3
is the numerical coincidence a2 = a3 = 1.

Now, we give Massey’s argument, which works also for n = 2, 3. The idea is to
study the image of the Chern character homomorphism

ch : K(HPn)→ H∗(HPn;Q),

and to show that the image of the complexified tangent bundle THPn
C of C under this

homomorphism is “indivisible by two” in the image, which is what it would need to be if
HPn were almost complex. Let’s now carry this program out.
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Theorem 2.2.20 (Massey). For any n ≥ 0, the Chern character homomorphism is

ch : K(HPn)→ H∗(HPn;Q)

is an isomorphism onto the subring Z[θ] ⊂ H∗(HPn;Q) generated by

θ := 2 cosh
√
ξ = 2

n∑
j=0

1

(2j)!
ξj.

Proof. Recall that we showed in Lemma 2.21 that the Chern class of C is c(C) = 1− ξ,
so that the Chern roots of C are ±

√
ξ. It follows immediately from this that

chC = e
√
ξ + e−

√
ξ = θ,

showing us that the image certainly contains Z[θ].

To show that this is all of the image, we will first need the fact that ch :
K(HPn)→ H∗(HPn;Q) is a monomorphism, which follows from the fact that H∗(HPn;Z)
has no torsion. More precisely, we have

Proposition 2.2.21 (Peterson). Suppose that X is a manifold of dimension at most
2N for some integer N ≥ 1. If for 1 ≤ j ≤ N , the only torsion in H2j(X;Z) is
coprime to (j − 1)!, then a complex vector bundle E → X is trivial iff its Chern
classes vanish, i.e. cj(E) = 0 for 1 ≤ j ≤ N .

Note that, by the Newton Identities (1), saying that a complex bundle E → X
is trivial iff cj(E) = 0 for 1 ≤ j ≤ N is equivalent to saying that the Chern character
homomorphism ch : K(X) → H∗(X;Q) is injective. In particular, if X has torsion-
free integral cohomology, then this result always applies, telling us in particular that
ch : K(HPn)→ H∗(HPn;Q) is injective.

Sketch of Proof of Proposition 2.2.21. The idea is to look at the classifying space BUn =
Grn,∞C and its Postnikov tower. Recall that given a path connected space X, its Postnikov
tower is an inverse system of spaces

· · · → X(k) → X(k−1) → · · · → X(1) → 0

with inverse limit X satisfying in particular that each X(k) → X(k−1) is a fibration
with homotopy fiber the Eilenberg-MacLane space K(πk(X), k). When X = BUn, Bott
Periodicity tells us that in the stable range 0 ≤ j ≤ n, we have πj(BUn) is 0 if j is odd
and Z if j is even, and also that

π2n+1(BUn) = Z/(n!). (2.24)

This fact implies that in the Postnikov tower of BUn, the maps BU(2k+1)
n → BU(2k)

n can be
taken to be the identity whenever 0 ≤ 2k+1 ≤ n. Now suppose E → X is a vector bundle
of rank n and fE : X → BUn its classifying map. If c(E) = 1, then we can solve the
obstruction-theoretic problem of the homotopy-triviality of fE by considering the maps
f
(k)
E : X → BU(k)

n and lifting them succesively, using at the last stage the computation
(2.24) and that H2n(X;Z) has no (n− 1)!-torsion. See [46, Theorem 3.2] for details. ■
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Returning now to the proof of this injectivity, we can show that Z[θ] is all of
chK(HPn) via induction on n ≥ 0. This is where the following proof in this article
becomes a little less self-contained, since we do not discuss K-theory exact sequences or
Bott periodicity here, but we present the argument anyway. The case n = 0 is clear, and
suppose n ≥ 1 and that we have shown the result for n−1. Then we have a commutative
diagram

K(HPn,HPn−1) K(HPn) K(HPn−1)

0 H∗(HPn,HPn−1;Q) H∗(HPn;Q) H∗(HPn−1;Q),

ch ch ch

which in light of the injectivity of ch gives rise to an exact sequence of the images

0→ chK(HPn,HPn−1)→ chK(HPn)→ chK(HPn−1).

Now HPn/HPn−1 ∼= S4n, and Bott Periodicity tells us also that for any even m ≥ 0, the
map

K(Sm)→ H∗(Sm;Q)

maps to the generator of Hm(Sm;Z). Applying this to HPn/HPn−1 ∼= S4n, we conclude
that

chK(HPn,HPn−1) = Z⟨ξn⟩ = Z⟨(θ − 2)n⟩,
On the other hand, by our inductive hypothesis, we have

chK(HPn−1) = Z[θ] ⊂ H∗(HPn−1;Q).

These two results combined then tell us that chK(HPn) cannot be any larger than Z[θ],
as needed. ■

Now, we compute the Chern character of the complexified tangent bundle THPn
C.

Lemma 2.2.22. For any n ≥ 0, we have

chTHPn
C = (2n+ 2)θ − θ2.

Proof. From Lemma 2.2.17, we know that

c(THPn
C) =

∞∑
i=0

(−1)ipi(HPn) = (1− ξ)2n+2(1− 4ξ)−1.

Suppose the Chern roots of THPn
C are γ1, . . . , γ4n. Then taking the logarithm on both

sides of
4n∏
i=1

(1 + γi) = (1− ξ)2n+2(1− 4ξ)−1

and using the Taylor expansion of log(1± z) around z = 0, we can write this as

∞∑
i=1

(
(−1)i+1

i

)
pi(γ) = −

∞∑
i=1

(
2n+ 2− 4i

i

)
ξi,
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where pi(γ) is the power sum of degree i in γ. It follows that

pi(γ) =

{
0 i odd,

2(2n+ 2− 4i/2)ξi/2, i even, i ≥ 2.

It follows that

ch(THPn
C) = 4n+

∞∑
i=1

pi(γ)

i!

= 4n+
∞∑
i=1

2(2n+ 2− 4i)ξi

(2i)!

= (2n+ 2)(2 cosh
√
ξ)− 2 cosh

√
4ξ − 2

= (2n+ 2)θ − θ2

as needed. ■

We are now ready to give Massey’s proof.

Theorem 2.2.23 (Massey). For any n ≥ 1, the space HPn does not admit an almost
complex structure compatible with its usual smooth structure.

Proof. Suppose there is some complex vector bundle E → HPn of rank 2n such that
THPn ∼= ER. Then THPn

C
∼= E ⊕ E, so that

ch(THPn
C) = ch(E) + ch(E).

For any integer i ≥ 0, the ith-graded component of ch(E) is

chi(E) = (−1)i ch(E).

Since H2i(HPn;Z) = 0 for odd i, it follows from this as before that

ch(E) = ch(E).

In particular, Lemma 2.2.22 gives us

ch(E) =
1

2
chTHPn

C = (n+ 1)θ − 1

2
θ2,

which does not lie in Z[θ], contradicting the result of Theorem 2.2.20. ■

In both approaches, the proof involves computing certain characteristic classes
of the tangent bundle THPn and showing that these characteristic classes cannot be
“halved”, which is what would be needed for HPn to have a complex structure.

We end this section by computing using characteristic class techniques the sig-
nature and Â-genus of quaternionic projective spaces.
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Proposition 2.2.24. For any integer n ≥ 0, we have

Sign(HPn) =
1 + (−1)n

2
.

Proof 1 of Proposition 2.2.24. When n is odd, the middle cohomology H2n(HPn;Z) has
rank zero, so that so is the signature Sign(HPn). On the other hand, when n is even,
the same middle cohomology group has rank 1, and is in fact generated by ξn/2 with the
intersection matrix given by [1]. ■

Proof 2 of Proposition 2.2.24. We use the Hirzebruch Signature Theorem (Theorem 1.3.1).
The exact sequence (2.20) of vector bundles tells us that the total L-classes of these vector
bundles on CP2n+1 are related as

L(CP2n+1) = L(Tπ) · π∗L(HPn).

We know from Subsection 2.2.1 and Lemma 2.2.15 respectively that

L(CP2n+1) =

(
ζ

tanh ζ

)2n+2

and L(Tπ) =
2ζ

tanh 2ζ
.

Combining these three results with Lemma 2.2.14 then gives us

L(HPn) =

( √
ξ

tanh
√
ξ

)2n+2

· tanh 2
√
ξ

2
√
ξ

,

where we have by definition (see Appendix 3.3) that

√
z

tanh
√
z
:=

∞∑
n=0

22nB2n

(2n)!
zn.

Therefore, Theorem 1.3.1 tells us that

Sign(HPn) = L(HPn) =

ˆ
HPn

( √
ξ

tanh
√
ξ

)2n+2

· tanh 2
√
ξ

2
√
ξ

.

Evaluating this integral amounts to computing the coefficient of ξn in the power series
given by the integrand, which can express as the residue calculation

[ξn]

( √
ξ

tanh
√
ξ

)2n+2

· tanh 2
√
ξ

2
√
ξ

= Res
ξ=0

1

(tanh
√
ξ)2n+2

· tanh 2
√
ξ

2
√
ξ

dξ.

To evaluate this residue, make the change of variables t = tanh2√ξ.19 Via this change of
variables, and using the identity tanh 2x = 2 tanh x(1 + tanh2 x)−1, we can express this
residue calculation as

Res
t=0

1

tn+1
· 2

√
t

(1 + t) tanh−1
√
t
· tanh

−1
√
t

(1− t)
√
t
dt = [tn]

1

1− t2
,

which is equivalent to the claim. ■

19In other words, we let t(ξ) be the unique holomorphic function t(ξ) defined and biholomorphic in a
neighborhood of 0 and satisfying t(0) = 1 and t(ξ2) = tanh2 ξ.
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Proposition 2.2.25. For any integer n ≥ 1, we have

Â(HPn) = 0.

Clearly, Â(HP0) = 1.

Proof 1 of Proposition 2.2.25. It follows from Theorem 1.5.2 that HPn always has a
unique spin structure compatible with any given smooth structure on it. Since HPn

is a homogenous space for the compact symplectic group Sp(n + 1), it follows from Re-
mark 1.5.10 that for n ≥ 1, the space HPn dmits a metric of positive scalar curvature,
and hence from Theorem 1.5.9 that Â(HPn) = 0. ■

Proof 2 of Proposition 2.2.25. Repeating the argument from Proof 2 of Proposition 2.2.24,
we can write the total Â class of HPn as

Â(HPn) =

( √
ξ/2

sinh
(√

ξ/2
))2n+2

· sinh
√
ξ√

ξ
,

where, as before (see Appendix 3.3),

Q̃Â(z) =

√
z/2

sinh(
√
z/2)

is the unique function defined, holomorphic, and nonzero in a neighborhood of z = 0
satisfying

Q̃Â(z
2) sinh

(z
2

)
=
z

2
.

Therefore,

Â(HPn) = [ξn]

( √
ξ/2

sinh
(√

ξ/2
))2n+2

· sinh
√
ξ√

ξ
= Res

ξ=0

1

(2 sinh
(√

ξ/2
)
)2n+2

· sinh
√
ξ√

ξ
dξ.

To evaluate this residue, we make the change of variables t = 4 sinh2(
√
ξ/2) to write this

as

Res
t=0

1

tn+1
·
sinh

(
2 sinh−1(

√
t/2)

)
2 sinh−1(

√
t/2)

· 2 sinh
−1(
√
t/2)

√
t
√

1 + (t/4)
dt.

Noting now that

sinh

(
2 sinh−1

(√
t

2

))
=

1

2

(√1 +
t

4
+

√
t

2

)2

−

(√
1 +

t

4
−
√
t

2

)2


=
√
t

√
1 +

t

4
,

we find that this residue is

Â(HPn) = Res
t=0

1

tn+1
dt = [tn](1),

which is equivalent to the desired result. ■
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2.3 Grassmannians

Denn die Wahrheit ist ewig, ist göttlich; und keine Entwicklungsphase der Wahrheit, wie
geringe auch das Gebiet sei, was sie umfasst, kann spurlos vorübergehen; sie bleibt

bestehen, wenn auch das Gewand, in welches schwache Menschen sie kleiden, in Staub
zerfällt.

[This is] because truth is eternal, is godly; and no period of discovery of the truth, no
matter how minor the subject that it encompasses be, can pass over without a trace; it

endures, even when the mantle in which mortal men clothe it crumbles to dust.
Vorrede, Die Ausdehnungslehre: Vollständing und in strenger Form bearbeitet von

Hermann Graßmann,
on mathematical truth and the rejection of his work by his contemporaries.

As our next collection of examples, we generalize the results of the previous
section by considering the Grassmannian manifolds, often simply called Grassmannians.
Generally speaking, Grassmannians, named after the prolific German mathematician
Hermann Grassmann, are manifolds that parametrize linear subspaces of a given vector
space. They come in various flavors: of course, we have real, complex, and quaternionic
Grassmannians, but we also have oriented real Grassmannians, as well as Lagrangian and
isotropic variants. Grassmannians, and their generalizations, flag manifolds, are the sim-
plest examples of complete homogenous spaces and have a very rich geometric structure.
In this section, we briefly recall the definition some basic properties of Grassmannians
and flag bundles. We then specialize to the case of complex Grassmannians, for which
we compute the basic invariants such as the χy-characteristic, Euler characteristic, signa-
ture, etc. using “direct methods”. Due to the complicated nature of their holomorphic
tangent bundles and the resulting combinatorics, it is not clear (to me) how to carry
out these computations at this level of generality purely using characteristic classes, as
we have done in previous sections. Of course, we’ve handled one special case in §2.2; in
the next subsection, §2.3.1, we show how to do these computations for the simplest new
case of the Grassmannian parametrizing 2-dimensional linear subspaces (or equivalently
projective lines).

We begin by recalling the basic definition.

Definition 2.3.1. For any field F and integers m,n ≥ 0, we define the Grassmannian
manifold of m-planes in Fm+n as

Grm,n
F := {V m ⊂ Fm+n},

i.e. as the set of m-dimensional F-linear subspaces of Fm+n. More generally, suppose
that r ≥ 1 is an integer and m = (m1, . . . ,mr) is sequence of nonnegative integers
mj. Let |m| := m1+ · · ·+mr. We define the flag manifold of type m over F, denoted
FlmF or Flm1,...,mr

F , to be the set of all flags of type m in F|m|, i.e. all sequences
(V1, . . . , Vr−1) of vector subspaces of Fm+n such that

0 =: V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr−1 ⊂ Vr = F|m|,

and that for j = 1, . . . , r, we have dimF Vj/Vj−1 = mj.
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We may also speak of the flag manifold of a given type m consisting of subspaces
of an abstract F-vector space W of dimension |m|; this is usually denoted by FlmF (W ).
For any n ≥ 0, we have FPn = Gr1,nF and for any m,n ≥ 0 that Grm,n

F = Flm,n
F . It is clear

by definition that the Grassmannian Grm,n
F also parametrizes projective (m− 1)-planes in

FPm+n−1, and is hence sometimes also written as FG(m− 1,m+n− 1), although we will
not use this notation. In particular, for m = 2 and any n ≥ 0, the Grassmannian Gr2,nF
parametrizes projective lines ℓ ∼= FP1 in FPn+1, and is hence often called the Grassmannian
of lines. Note finally that Grm,n

F
∼= Grn,mF for any m,n ≥ 0, given by taking a V m ⊂ Fm+n

to its annihilator Ann(V )n ⊂ (Fm+n)∨. Note also that we call a flag of type (1, 1, . . . , 1)
a complete flag, and the corresponding flag manifold Fl1

r

F the complete flag manifold.

An element of Grm,n
F is given by (the image of) a full rank (m+n)×mmatrix with

values in F, where we identify two such matrices iff they differ by an action of a matrix in
GLm F on the right. This gives us a surjection π : Matfr(m+n)×m F→ Grm,n

F from the space
of full rank (m + n) ×m matrices onto Grm,n

F , which allows to give Grm,n
F the quotient

topology if F is a topological field. When F ∈ {R,C,H}, the space Grm,n
F comes equipped

with a unique smooth structure of real dimension dmn, where d = dimR F ∈ {1, 2, 4}
as before, which makes π a smooth quotient map. To verify that Grm,n

F is a manifold,
we can give charts generalizing those for projective spaces as follows. Given a collection
I = {i1, . . . , im} of integers satisfying 1 ≤ i1 < i2 < · · · < im ≤ m+ n, consider the locus
UI ⊂ Grm,n

F given by those matrices with non-vanishing m×m minor coming from taking
rows in I. Then UI ⊂ Grm,n

F is open and, similarly to projective space, we can write down
a diffeomorphism φI : UI → Fmn: each element in UI can be represented by a unique
(m+n)×m matrix A such that the m×m minor of A with rows in I is just the identity
matrix, and the remaining mn entries give the coordinates of φI : UI → Fmn. More
coordinate-invariantly, UI is the set of subspaces that may be written as the graph of a
map FI → F(m+n)−I , where FI is spanned by the basis vectors ei1 , . . . , eim , and F(m+n)−I

is spanned by the remaining basis vectors and may be identified by Fm+n/FI . For F = R
(resp. C, H), the group SOm+n (resp. SUm+n, Spm+n) acts transitively on Grm+n

F on the
left, showing us that Grm+n

F is in fact a connected closed manifold. When F is a field,

there is a natural map Λm : Grm,n
F → FP(

m+n
m )−1 taking a vector subspace V m ⊂ Fm+n

to its determinant line ΛmV ⊂ ΛmFm+n in the mth exterior power of Fm+n. This map
is injective with closed image (in the say Zariski topology or classical topology when
available), the image being the set of totally decomposable vectors in ΛmFm+n, and in
the case of F ∈ {R,C} is easily seen to give us a smooth embedding, called the Plücker
embedding, of Grm,n

F into projective space as a closed submanifold.20 In particular, in the
case F = C, the Grassmannian Grm,n

C is a compact Kähler manifold.

Similarly, it is a standard result that when F = {R,C,H}, the space FlmF
is a smooth manifold of real dimension d · e2(m), where d ∈ {1, 2, 4} as before and
e2(m) is the second elementary symmetric polynomial in mj. The obvious map FlmF →∏r

j=1Gr
mj ,|m|−mj

F embeds FlmF as a closed subvariety of a product of Grassmannians, and
hence expresses it as a smooth projective variety when F ∈ {R,C}. In particular, FlmC is
a compact Kähler manifold of complex dimension e2(m).

20The Plücker embedding, does not, in fact, exist when F = H. Not only is it not clear how to define
the usual notions of linear algebra, such as exterior powers, when working with quaternionic vector
spaces, but there is also a topological obstruction: there is no continuous map Grm,n

H → HPN for any
m,n,N such that the pullback of the first Pontryagin class of the tautological bundle HPN (−1) over
HPN is the first Pontryagin class of the tautological line bundle  over Grm,n

H ; see [47].
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As a final general remark, we note that the construction of flag bundles is
natural, so, for instance, when F = {R,C}, and we have a sequence m and an F-vector
bundle E → X on a space X, then we can form an associated bundle

Flm(E)→ X,

whose fiber at a point x ∈ X is the flag manifold FlmF (E(x)) consisting of tuples of
subspaces of the fiber E(x) ∼= F|m|. In particular, we get this way the projectivization
PE → X of E, as well as the Grassmannian bundles Grm(E)→ X for 0 ≤ m ≤ rankE.

We now compute some numerical invariants of complex Grassmannians. In the
following discussion, we will assume familiarity with their cohomology rings. For the
convenience of the reader, we summarize this beautiful bit of theory in Appendix 3.7.

Remark 2.3.2. In stating the following formulae relating to the χy-characteristic of Grass-
mannians, it is convenient to adopt the convention where we flip the sign of y, talking
about the “χ−y-characteristic” instead.

Theorem 2.3.3. For any m,n ≥ 0, we have

χ−y (Grm,n
C ) =

m∏
j=1

1− yn+j

1− yj
.

Proof. The result is clear for n = 0; suppose then that n ≥ 1. The key to proving this
result is the multiplicativity of the χy-characteristic in fibre bundles (Theorem 3.5.6),
along with the observation that for any m ≥ 0, the flag manifold Flm,1,n−1

C fibers over
both Grm,n

C and Grm+1,n−1
C with fibers projective spaces. Specifically, we can look at the

diagram

Flm,1,n−1
C

Grm,n
C Grm+1,n−1

C ,

P Grm

where the first projection map

Flm,1,n−1
C = {V m ⊂ Wm+1 ⊂ Cm+n} → Grm,n

C = {V m ⊂ Cm+n}
expresses the flag manifold as the projectivized tautological quotient bundle P of Grm,n

C
with fibers CPm−1, whereas the the second projection map

Flm,1,n−1
C = {V m ⊂ Wm+1 ⊂ Cm+n} → Grm+1,n−1

C = {Wm+1 ⊂ Cm+n}
expresses the flag manifold as the mth Grassmannian bundle Grm of the tautological
subbundle of Grm+1,n−1

C , with fibers Grm,1
C = (CPm)∨ ∼= CPm. Using Corollary 3.5.7 to

write the χy-characteristic of Flm,1,n−1
C in two ways, we get

χy

(
Flm,1,n−1

C
)
= χy (Grm,n

C )χy(CPm−1) = χy

(
Grm+1,n−1

C
)
χy(CPm), (2.25)

so the result follows from (2.25) by induction, with the base case being Corollary 2.2.6. ■
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Remark 2.3.4. We mention three other proofs of Theorem 2.3.3.

(a) For complex algebraic homogeous manifolds X = G/H, we have

χ−y(X) = p√y(X),

i.e. the χy-characteristic and the Poincaré polynomial agree up to a sign and up to
replacing y by

√
y. Then, by the Leray-Hirsch Theorem, the Poincaré polynomial of

a homogenous manifold G/H, where G andH have the same rank, can be computed
from those of G and H. See the classic references [48] and [49] for details.

(b) Alternatively, once this observation is made, we can also reduce the computation of
the Poincaré polynomial to a calculation of the size #Grm,n

Fq
of the Grassmannian

over a finite field Fq, which can be done explicitly using either the Orbit-Stabilizer
Theorem or the Schubert cell decomposition. See [10, Corollary 3.2.5], where it is
explained why these approaches are the same, and why the equivalence of these
approaches is a special case of the Weil conjectures noticed by Weil himself.

(c) Finally, we can construct action of the torus Tm+n on Grm+n
C and apply the holomor-

phic Lefschetz formula, or equivalently the equivariant Atiyah-Singer Index Theo-
rem, to the resulting action. A version of this argument is carried out in [50], and
we will do a version of this argument in Proof 3 of Corollary 2.3.5.

Corollary 2.3.5. For any m,n ≥ 0, the Euler characteristic of Grm,n
C is

χ (Grm,n
C ) =

(
m+ n

m

)
.

Proof 1 of Corollary 2.3.5. From the previous result, we get

χ (Grm,n
C ) = lim

y→1
χ−y (Grm,n

C ) =
m∏
j=1

n+ j

j
=

(
m+ n

m

)
.

■

Proof 2 of Corollary 2.3.5. The Schubert cell decomposition of Grm,n
C gives us a CW

structure on Grm,n
C with only even dimensional cells in one-to-one correspondence with

partitions λ ⊂ m × n or equivalently, m-element subsets of {1, . . . ,m + n} (see Lemma
3.7.1 if needed). In particular, there are exactly

(
m+n
m

)
of these. ■

Proof 3 of Corollary 2.3.5. Similarly to Proof 2 of Proposition 2.2.2, we calculate the
Lefschetz number L(f) of a map f homotopic to the identity. In fact, a version of the
same map works; for t ∈ [0,∞), consider the map ft : Fm+n → Fm+n given by the
diagonal matrix

ft = diag(et, e2t, . . . , . . . , e(m+n)t) ∈ GLm+nC

and the induced map ft : Grm,n
C → Grm,n

C taking V to ft(V ). Then for t ∈ (0,∞),
it is easy to check that ft has exactly

(
m+n
n

)
fixed points, namely the

(
m+n
n

)
subspaces

VI := ⟨ei1 , . . . , eim⟩ spanned by some m of the n+m standard basis vectors e1, . . . , em+n,
indexed by subsets I ⊂ {1, . . . ,m+ n} of size m. Indeed, let V m ⊂ Cm+n be fixed under
ft for some t ∈ (0,∞). Then f |V : V → V must have a nonzero eigenvector v, and so by
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the Proof 2 of Proposition 2.2.2, this v must be one of the ej’s. Then we can replace V
by V/⟨ej⟩ ⊂ Cm+n/⟨ej⟩ and proceed by induction. We claim that each VI is a Lefschetz
fixed point of f with Lefschetz number LVI

(f) = 1; this would finish the proof.

Given an I = {i1, . . . , im}, let J = {1, . . . ,m + n} ∖ I = {j1, . . . , jn} be its
complement. To compute the Lefschetz number, we can look at the neighborhood UI

of VI in Grm,n
C and the chart φI : UI → Fnm defined above; recall that UI is defined

as the subset of Grm,n
C consisting of V ∈ Grm,n

C described by the non-vanishing of the
row-I minor of size m × m of any (m + n) × m matrix representing V , and the chart
φI : UI → Fnm is given by setting this minor be the identity, and taking the coefficients
to be the entries of the remaining n ×m matrix. It is easy to see that ft preserves UI ,
and the map φI ◦ ft ◦φ−1

I : Fnm → Fnm given by taking an n×m matrix A to the matrix

diag(ej1t, ej2t, . . . , ejnt) · A · diag(e−i1t, e−i2t, . . . , e−imt),

i.e. by [aℓk] 7→ [e(jℓ−ik)taℓk] for 1 ≤ ℓ ≤ n and 1 ≤ k ≤ m. In particular, φI ◦ ft ◦ φ−1
I is

linear, and hence so equals its own derivative at any point. The eigenvalues of this map
are clearly e(jℓ−ik)t for 1 ≤ ℓ ≤ n and 1 ≤ k ≤ m, and this quantity never equals 1, since
I and J are disjoint and t ∈ (0,∞). Therefore, VI is a Lefschetz fixed point. Arguing
similarly to Proof 2 of Proposition 2.2.2, we compute that

det
(
dft|VI

− idTVI
Grm,n

C

)
=

∏
1≤ℓ≤n,
1≤k≤m

(
e(jℓ−ik)t − 1

)2
.

In particular, this determinant is the square of some nonzero real number, and is hence
positive, finishing the proof. ■

Remark 2.3.6. We chose to do the case F = C above because it is the simplest and most
illustrative, but the same arguments as in Proofs 2 and 3 above show also that

χ (Grm,n
H ) =

(
m+ n

n

)
.

A similar argument can be made for Grm,n
R , but now we have to account for signs. Either

using Proof 2 or 3, we can then conclude that

χ (Grm,n
R ) =

∑
λ⊂m×n

(−1)|λ| =

{(⌊(m+n)/2⌋
⌊m/2⌋

)
if 2 | mn, and

0, else,

where ⌊·⌋ denotes the floor function, and the second equality is a simple combinatorial
check, a version of which will be done in Proof 2 of Corollary 2.3.8 below. Note that trying
to adapt Proof 1 of Corollary 2.3.5 using the multiplicativity of the Euler characteristic
(Theorem 3.5.1) doesn’t work on the nose because χ(RPn) = 0 for odd n, but its extension
to Poincaré polynomials (Theorem 3.5.4) works and shows in exactly the same way that
the F2-Poincaré polynomial of Grm,n

R is given by

pt (Grm,n
R ;F2) =

m∏
i=1

1− tn+j

1− tj
∈ Z[t],

and so the result follows from Lemma 2.3.7 below.
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Lemma 2.3.7. For any integers m,n ≥ 0, we have

lim
t→−1

m∏
i=1

1− tn+j

1− tj
=

{(⌊(m+n)/2⌋
⌊m/2⌋

)
if 2 | mn, and

0, else.

Proof. This is a simple case-by-case check. When m and n are both odd, the exact power
of 1 + t dividing the numerator is (1 + t)(m+1)/2, while that dividing the denominator is
(1+t)(m−1)/2, so the quotient has limit 0 as t→ −1. When either one ofm or n is even, the
numerator and denominator are divisible by the same power of 1+ t, namely (1+ t)⌊m/2⌋,
and the limit is nonzero. The evaluation of this limit follows from the observation that

lim
t→−1

1− ta

1− tb

is 1 if a ≡ b ≡ 1 (mod 2) and a/b if a ≡ b ≡ 0 (mod 2). ■

The same calculation gives also the signature of the complex Grassmannian.

Corollary 2.3.8. For any m,n ≥ 0, the signature of Grm,n
C is given by

Sign (Grm,n
C ) =

{(⌊(m+n)/2⌋
⌊m/2⌋

)
if 2 | mn, and

0, else.

Proof 1 of Corollary 2.3.8. Take y → −1 in Theorem 2.3.3 and use Lemma 2.3.7. ■

Proof 2 of Corollary 2.3.8. By Proposition 3.7.4, we have a complete description of the
intersection pairing on the middle cohomology

Hmn(Grm,n
C ;Z) =

⊕
λ⊂m×n
|λ|=mn/2

Zσλ

as follows. We say that a partition λ ⊂ m × n is self-complementary if λ = λ̂, i.e. if the
complement of the Ferrers diagram of λ in the m × n rectangle is an inverted copy of
itself. The non-self-complementary partitions λ satisfying |λ| = mn/2 come in pairs (λ, λ̂)

and the corresponding Schubert cycles σλ, σλ̂ span a hyperbolic plane U =

[
0 1
1 0

]
in the

middle cohomology, whereas σλ for self-complementary λ gives rise to an orthonormal
summand. In other words, if Pm,n is the number of pairs of non-self-complementary λ
with |λ| = mn/2, and Qm,n is the number of self-complementary λ so that the middle
Betti number of Grm,n

C is bmn(Grm,n
C ) = 2Pm,n + Qm,n, then the matrix representing the

intersection pairing on Hmn(Grm,n
C ;Z) can be written as a block direct sum

UPm,n ⊕ [1]Qm,n .

Since this is an orthogonal decomposition and Sign(U) = 0, we conclude that

Sign(Grm,n
C ) = Pm,nSign(U) +Qm,nSign([1]) = Qm,n.
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Therefore, the signature of Grm,n
C is the number of self-complementary partitions λ ⊂

m × n. If mn is odd, this number is clearly zero (in fact, in this case Pm,n = 0 as well
and bmn(Grm,n

C ) = 0). When m is odd but n is even, a self-complementary λ determines
and is determined by the sequence n ≥ λ1 ≥ · · ·λ(m−1)/2 ≥ n/2 with λ(m+1)/2 = n/2, and
when m is even, with n arbitrary, a self-complementary λ determines and is determined
the sequence n ≥ λ1 ≥ · · ·λm/2 ≥ n/2. In either case, it is not hard to see that there are
exactly

Qm,n =

(
⌊(m+ n)/2⌋
⌊m/2⌋

)
such sequences.

■

Remark 2.3.9. The signature of real and quaternionic Grassmannians can be described
as follows. Firstly, in the quaternionic case, the signature agrees with the complex case,
namely

Sign (Grm,n
H ) = Sign (Grm,n

C ) =

{(⌊(m+n)/2⌋
⌊m/2⌋

)
if 2 | mn, and

0, else.

Finally, the signature of the real Grassmannian is giving by pushing further in the 2-
divisibility, namely

Sign (Grm,n
R ) =

{(⌊(m+n)/4⌋
⌊m/4⌋

)
if 8 | mn, and

0, else.

To prove these results, one could try to mimic Proof 2 of Corollary 2.3.8 above, but the
computation seems to be much more involved. A better proof can be given by constructing
suitable torus actions on these Grassmannians and using the equivariant Atiyah-Singer
Index Theorem; since we do not build the technology of the equivariant case, we refer
the reader to [50] and [51] for details.

Let’s talk briefly about the two other invariants we have been interested in–
holomorphic Euler characteristics of vector bundles, and the Â-genus. Firstly, we have:

Proposition 2.3.10. We have for any sequence m = (m1, . . . ,mr) that

χ
(
FlmC ,FlmC

)
= h0

(
FlmC ,FlmC

)
= 1.

Proof. This is an immediate consequence of the Borel-Weil-Bott Theorem (see [44])–since
FlmC is a complete homogenous space, we have hi

(
FlmC ,FlmC

)
= 0 for all i > 0. ■

It is possible to calculate also the cohomology and hence Euler characteristic
of other vector bundles, such as those arising from linear algebraic operations on the
tautological bundels j on FlmC using techniques in Geometric Representation Theory.
The key idea is to reduce the computation to that of line bundles via the following two
observations:
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• If f : Y → X is a holomorphic fibre bundle of closed complex manifolds and  → X
is a coherent sheaf, then

χ(Y,) =
∞∑
i=0

(−1)iχ(X,Ri f∗),

where Ri f∗ is the ith derived functor of the pushforward f∗. This is a consequence
of the Leray-Serre Spectral sequence Hp(Y,Rq f∗) ⇒ Hp+q(X,), along with the
fact that the Euler characteristic of the pages of a spectral sequence is constant.

• If E → X is a holomorphic vector bundle of rank n + 1 and π : PE → X its
projectivization, then we have for each k ∈ Z the line bundle PE(k)→ PE whose
restriction to a given fiber PE(x) ∼= CPn is exactly PE(x)(k) ∼= CPn(k). Then we
can concretely describe the higher pushforwards of this vector bundle as

Ri π∗PE(k) =


Symk E∨, if i = 0, k ≥ 0,

Sym−n−k−1E, if i = n, k ≤ −n− 1, and

0 else.

This is simply the relative version of the cohomology computation we carried out
in Proof 2 of Corollary 2.2.9, and essentially follows from that computation.

Therefore, if E → X is a holomorphic vector bundle of rank n+ 1, then

χ (PE,PE(k)) =


χ(X, Symk E∨), k ≥ 0,

(−1)nχ
(
X, Sym−n−k−1E

)
, k ≤ −n− 1,

0 else.

For instance, this allows us to conclude, for Grassmannians Gr2,nC of lines, that

χ
(
Gr2,nC ,Gr2,nC

)
= −χ

(
Fl1,1,nC ,⊗3

0

)
,

reducing the computation to line bundles on the flag manifold Fl1,1,nC . Once we have
performed this reduction, we can then appeal to Geometric Representation Theory to
express this calculation using weights of certain representations. A detailed discussion
will take us too far afield, and we refer the reader to [52, Chapter 4] for details.

Finally, for the Â-genus, we have:

Proposition 2.3.11. If for m = (m1, . . . ,mr), the flag manifold FlmC is spin, then

Â (FlmC ) = 0.

Proof. As observed in Remark 1.5.10, this follows from Theorem 1.5.9. ■

We will show below (see Proposition 2.3.13) that a Grassmannian Grm,n
C is spin iff m ≡ n

(mod 2). In particular, we conclude that Â(Grm,n
C ) = 0 whenever m ≡ n (mod 2). When

m and n have different parity, there is no guarantee that Â will be an integer. We saw this
for m = 1 and n = 2k in Remark 2.2.12. One can check also that Â(Gr2,3C ) = −1/1024.

87



Chapter 2. Examples

We now explain why obtaining the above results using the techniques of the
Atiyah-Singer Index Theorem or Hirzebruch-Riemann-Roch Theorem is very difficult.
The key difficulty lies in computing the Todd class

Td(Grm,n
C ) ∈ H∗(Grm,n

C ;Z)

at this level of generality. To do this, we need to talk about characteristic class of TGrm,n
C

more generally, which we now do.

On the flag bundle FlmF , we have a sequence 1,2, . . . ,r of r vector bundles,
called the tautological subquotient bundles, where for j = 1, . . . , r, the fiber of j at a
flag (V1, . . . , Vr−1) is exactly Vj/Vj−1. By definition, the bundle j is an F-vector bundle
of rank mj; this is the reason for our choice of notational convention for Grassmannians
and flag bundles.21 When the flag manifold is a one-step flag bundle, i.e. r = 2 and
the manifold is a Grassmannian Grm,n

F , the bundle 1 is simply denoted by  and is
called the tautological subbundle, whereas the bundle 2 is denoted by  and is called the
tautological quotient bundle. By definition, for F ∈ {R,C}, we have a short exact sequence
of vector bundles

0→  → ⊕(m+n)

Grm,n
F

→ → 0 (2.26)

on the Grassmannian Grm,n
F . Similarly to projective spaces, then the tangent bundle

TGrm,n
R (resp. holomorphic tangent bundle TGrm,n

C ) can be described as

TGrm,n
R
∼= ∨

R ⊗R (resp. TGrm,n
C
∼= ∨

C ⊗C), (2.27)

where as before we have included the base field for emphasis and to distinguish the two
cases. However, since  is not a line bundle in general, this makes it obtaining the total
Chern class, or other characteristic classes and numbers of Grm,n

F more difficult by direct
means.

The first computation, in any case, is that of the Chern classes of ∨ and :

Theorem 2.3.12. For any m,n ≥ 0, if  and  denote the tautological sub- and
quotient bundles on Grm,n

C , then

c (∨) = 1 + σ1 + σ12 + · · ·+ σ1m , and

c () = 1 + σ1 + σ2 + · · ·+ σn.

This we take as a standard theorem, so we only indicate sketches of two proofs.

Sketch of Proof 1 of Theorem 2.3.12. Any ℓ ∈ (Fm+n)∨ gives rise to a global section of
∨, whereas any v ∈ Fm+n gives rise to a global section of . We can then finish by using
these sections and the description of Chern classes as degeneracy loci; see [43, §5.6.2]. ■

Sketch of Proof 2 of Theorem 2.3.12. To do the case of , using the nondegeneracy of
the intersection product and Proposition 3.7.4, it suffices to show that ck() · σλ is 1 iff
λ = k̂ is the complementary partition to (k) (see [10, Prop. 3.5.5]). Then to deduce the
class of ∨, it suffices to consider the sequence (2.26) and to use the algebraic identity

(1− σ1 + σ12 + · · ·+ (−1)mσ1m) (1 + σ1 + σ2 + · · ·+ σn) = 1,

which can be proven using Pieri’s formula (see [43, Corollary 4.10]). See also [4, §3.3]. ■

21This is also how, for instance, Macaulay2 encodes flag varieties.
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Theorem 2.3.12, combined with the decomposition 2.27 and the splitting prin-
ciple, allows us to calculate the total K-class of Grm,n

C for any multiplicative sequence K.
Namely, suppose that γ1, . . . , γm are the Chern roots of ∨ so that for 1 ≤ i ≤ m we have

ei(γ) = σ1i ,

and suppose that δ1, . . . , δn are the Chern roots of , so that for 1 ≤ j ≤ n we have

ej(δ) = σj.

Then if the multiplicative sequence K corresponds to the characteristic series Q(z), we
can write the total K-class of Grm,n

C as

K (Grm,n
C ) =

m∏
i=1

n∏
j=1

Q (γi + δj) .

For instance, we have

Tdy(Grm,n
C ) =

m∏
i=1

n∏
j=1

(γi + δj)
(
1 + ye−(γi+δj)(1+y)

)
1− e−(γi+δj)(1+y)

∈ H∗ (Grm,n
C ;Q[y])

and now it is clear how difficult of a problem it is to express this in terms of Schubert
cycles in general. Already for K = id and Q(z) = 1 + z, this gives us a nontrivial
expression for the total Chern class of Grm,n

C as

c (Grm,n
C ) =

m∏
i=1

n∏
j=1

(1 + γi + δj), (2.28)

and it is not clear how to extract individual cj from this for general j, although it is not
to hard do so for small j. For j = 1, we get:

Proposition 2.3.13. The first Chern class of the Grassmannian Grm,n
C is given by

c1 (Grm,n
C ) = (m+ n)σ1.

In particular, Grm,n
C is spin iff m ≡ n (mod 2).

Proof. From (2.28), we get that

c1 (Grm,n
C ) =

m∑
i=1

n∑
j=1

(γi + δj) =
m∑
i=1

(nγi + σ1) = nσ1 +mσ1 = (m+ n)σ1.

The second part follows from this computation and Corollary 1.5.3. ■

Similarly, it is possible, although more painful, to derive a formula for c2(Grm,n
C ).

The top Chern class, on the other hand, is

cmn(Grm,n
C ) =

m∏
i=1

n∏
j=1

(γi+ δj) = Res(tm−σ1tm−1+ · · ·+(−1)mσ1m , tn+σ1tn−1+ · · ·+σn),

where Res denotes the resultant of the two polynomials with coefficients in H∗(Grm,n
C ). It

is harder to go any further and to calculate this resultant using only combinatorics and
Schubert calculus and get the answer

(
m+n
m

)
σnm predicted by Chern-Gauss-Bonnet. In

the next section, we carry out this computation for m = 2.
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2.3.1 Grassmannians of Lines

In this section, we carry out the computation of the top Chern class of the Grassmannian
of lines Gr2,nC . In this case, we let for simplicity α := γ1 and β := γ2. Then, following the
notation of the previous section, the top Chern class of Gr2,nC is given by

n∏
j=1

(α + δj)(β + δj) = (αn + σ1α
n−1 + · · ·+ σn)(β

n + σ1β
n−1 + · · ·+ σn),

where this computation is to be carried out in the ring

Rn := H∗(Gr2,nC ;Z)[α, β]/(α + β − σ1, αβ − σ1,1). (2.29)

To aid in this computation, we can actually “let n → ∞”, i.e. work instead with the
infinite Grassmannian Gr2,∞C (see Appendix 3.7). Doing this allows us to use induction
to do this computation, having done which, we may extract the desired quantity in the
cohomology H4n(Gr2,nC ;Z) of the finite Grassmannian as the term corresponding to σn,n.
Therefore, the required verification boils down to

Theorem 2.3.14. In the ring

R := H∗(Gr2,∞C ;Z)[α, β]/(α + β − σ1, αβ − σ1,1),

we have for each n ≥ 0 the identity

(αn+σ1α
n−1+· · ·+σn)(βn+σ1β

n−1+· · ·+σn) =
n∑

j=0

[(
n+ 2

2

)
−
(
j + 1

2

)]
σn+j,n−j.

To prove this result, we first make the following combinatorial observation. In
what follows, we adopt the convention that σi,j = 0 if 0 ≤ i < j.

Lemma 2.3.15. In the ring R, we have for each k ≥ 1 that

αk + βk = σk − σk−1,1.

Proof. We induct on k. The result is clear for k = 1, and for k = 2 we have

α2 + β2 = (α + β)2 − 2αβ = σ2
1 − 2σ1,1 = (σ2 + σ1,1)− 2σ1,1 = σ2 − σ1,1.

Suppose now that k ≥ 2. Then we have

αk+1 + βk+1 = (α + β)(αk + βk)− αβ(αk−1 + βk−1)

= σ1(σk − σk−1,1)− σ1,1(σk−1 − σk−2,1).

Using the product formula for the Grassmannian of lines, Proposition 3.7.5, we know
that for all a ≥ b ≥ 0, we have

σ1σa,b = σa+1,b + σa,b+1 and σ1,1σa,b = σa+1,b+1.

Therefore, we conclude that

αk+1 + βk+1 = (σk+1 + σk,1)− (σk,1 + σk−1,2)− σk,1 + σk−1,2 = σk+1 − σk,1
as needed. ■
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Remark 2.3.16. This lemma also implies, by the way, a formula for the Chern character
of  or ∨ on the Grassmannian of lines. Namely, we have for any n ≥ 1, we have in
H∗(Gr2,nC ;Z) that

ch∨ = 2 +
n∑

k=1

σk − σk−1,1

k!
− σn,1

(n+ 1)!
.

We can now proceed to the proof of Theorem 2.3.14.

Proof of Theorem 2.3.14. We proceed by induction, with the case n = 0 being clear. For
any n ≥ 0, let

ξn := (αn + σ1α
n−1 + · · ·+ σn)(β

n + σ1β
n−1 + · · ·+ σn).

The key step in the induction is the observation that for any n ≥ 0, we have the recursion

ξn+1 = αβ · ξn + σn+1

n∑
j=0

σj(α
n+1−j + βn+1−j) + σ2

n+1.

Using that αβ = σ1,1, and using the previous lemma, this can then be written as

ξn+1 = σ1,1ξn + σn+1

n∑
j=0

σj (σn+1−j − σn−j,1) + σ2
n+1.

It is easy to see from Proposition 3.7.5 that

σj(σn+1−j − σn−j,1) =


σn+1 − σn−j,j+1, if 2j ≤ n− 1,

σn+1, if 2j = n, and

σn+1 + σj,n+1−j, if 2j ≥ n+ 1.

From this calculation, it follows that

n∑
j=0

σj(σn+1−j − σn−j,1) = (n+ 1)σn+1

and so
ξn+1 = σ1,1ξn + (n+ 2)σ2

n+1.

But now, by induction,

σ1,1ξn =
n∑

j=0

[(
n+ 2

2

)
−
(
j + 1

2

)]
σn+1+j,n+1−j =

n+1∑
j=0

[(
n+ 2

2

)
−
(
j + 1

2

)]
σn+1+j,n+1−j

and by Pieri’s formula (Proposition 3.7.5) we have

σ2
n+1 =

n+1∑
j=0

σn+1+j,n+1−j.

The result then follows from combining these identities and using the simple observation
that (

n+ 2

2

)
+ (n+ 2) =

(
n+ 3

2

)
.

■
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Remark 2.3.17. In fact, the ring Rn (resp. R) can be identified itself as the cohomology
ring a different space, namely Fl1,1,nC (resp. the direct limit lim−→n

Fl1,1,∞C ). We will explain
this for finite n; the result for n =∞ simply follows by taking the direct limit over all n.
Note that by eliminating one of α or β, we can write Rn as

Rn = H∗(Gr2,nC ;Z)[ζ]/(ζ2 − σ1ζ + σ1,1),

and by the Leray-Hirsch Theorem for the cohomology of projective bundles (or by the
definition of Chern classes–depending on your definition!), this is the cohomology ring of
some projective bundle PE → Gr2,nC , where E → Gr2,nC is a complex vector bundle of rank
2 with Chern classes c1(E) = σ1 and c2(E) = σ1,1. Indeed,  is one such vector bundle,
and we conclude that pulling back via the projection map

π : Fl1,1,nC = P → Gr2,nC

gives us an isomorphism of H∗(Gr2,nC ;Z)-algebras between Rn and H∗(Fl1,1,nC ;Z), where
ζ = c1(P(1)) = c1(∨

1 ). In this algebra, we have the relation

ζk = σk−1ζ − σk−1,1

for any k ≥ 1, proven easily via induction on k, which gives another way of seeing why

αk + βk = ζk + (σ1 − ζ)k = σk−1σ1 − 2σk−1,1 = σk − σk−1,1.

More generally, for any complex vector bundle E → X of rank r on any space
X, we may describe the cohomology of the complete relative flag bundle π : Fl1

r

E → X,
given an H∗(X;Z)-module via π∗, as

H∗(Fl1
r

E;Z) = H∗(X;Z)[ζ1, . . . , ζr]/(ei(ζ)− ci(E))ri=1,

where ek(ζ) is the kth elementary symmetric polynomial in the ζj’s. Here, ζj = c1(j)
for j = 1, . . . , r, where j as before denotes the jth tautological subquotient bundle on
Fl1

r

E. For a proof of this result, see [10, Proposition 3.8.1]. We may now apply this
formula to the tautological subbundle  → Grm,n

C for arbitrary m,n, and noting that
Fl1

m = Fl1
m,n

C , we conclude that

H∗(Fl1
m,n

C ;Z) = H∗(Grm,n
C ;Z)[γ1, . . . , γm]/(ei(γ)− σ1i)mi=1,

where we have used γj to be consistent with the notation above. Then by the same
argument as before, we can write the computation of the top Chern class of Grm,n

C as a
computation in this ring, namely that of

m∏
i=1

(γni + σ1γ
n−1
i + · · ·+ σn) =

∑
λ⊂m×n

σλ̂mλ(γ) =
∑

λ⊂m×n

∑
µ

σλ̂b
λ
µeµ(γ),

where we have argued as in, and used the notation of, Appendix 3.3, and where for any
λ we define σλ :=

∏ℓ(λ)
i=1 σλi

. (Recall that λ̂ is the complementary partition to λ.) Note

that eµ(γ) =
∏ℓ(µ)

i=1 σ1µi . But now it is not clear to me at all how we can massage this last
expression for general m,n into looking like

(
m+n
n

)
σnm , which is what we expect it to be.
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2.4 Smooth Complete Intersections

As our final collection of examples, we treat smooth complete intersection varieties, fol-
lowing [13, Appendix One]. We start with some general remarks about smooth projective
varieties, i.e. complex submanifolds of CPN . Recall that if X ⊂ CPN is any smooth com-
plex submanifold of dimension say n with 1 ≤ n ≤ N , then we denote for each k ∈ Z by
X(k) the restriction of CPN (k) to X (i.e. the pullback under the inclusion map). For
k ≥ 1, the bundle X(k) is again a positive line bundle; indeed, naturality of the Chern
class implies that we have for each k ∈ Z that

c(X(k)) = 1 + kζX ,

where ζX ∈ H2(X;Z) is the hyperplane class in X, i.e. the restriction of the hyperplane
class ζ ∈ H2(CPN ;Z) to X. The Hard Lefschetz Theorem says that for each i with
0 ≤ i ≤ n, multiplication by ζ iX induces an isomorphism Hn−i(X;Q) → Hn+i(X;Q),
making Poincaré duality for X explicit. With integer coefficients, this map is not quite
an isomorphism; we have for instance that

ζnX = (degX)ηX ,

where ηX ∈ H2n(X;Z) is the Poincaré dual to a point (i.e. algebraic dual to the fun-
damental class of X) and degX is the degree of X. Indeed, this can be taken to be a
definition of the degree of a smooth projective variety.

The simplest class of such varieties is the class of smooth complete intersections.
Given an integer r ≥ 0 and a tuple of positive integers d = (d1, . . . , dr) of length r, let
Xn

d ⊂ CPn+r be a complete intersection of type d, i.e. a smooth complete intersection
of hypersurfaces of degrees d1, . . . , dr. This has degree degXn

d = |d| :=
∏r

i=1 di. In what
follows, we let ej(d) be the elementary symmetric polynomial in d1, . . . , dr of degree j
for each j ≥ 1, so we have that |d| = er(d). The principal idea employed in this section
is that the numerical invariants of Xn

d such as χ(Xn
d ), Sign(X

n
d ), χ(X

n
d ,X), Â(X

n
d ), or

any other invariants computed purely using characteristic classes, do not depend on the
specific isomorphism type of Xn

d , but are functions of n and d (or more precisely ej(d)).

The key to these computations is the fact that we have a much better under-
standing of the cohomology groups H∗(Xn

d ;Z) and the tangent bundle TXn
d of Xn

d than
we do for general X. This is what we explain now.

• Since the line bundles X(k) for k ≥ 1 are all positive, an inductive application of
the Weak Lefschetz Theorem tells us that the restriction (resp. inclusion) map

Hi(CPn+r;Z)→ Hi(Xn
d ;Z) (resp. Hi(X

n
d ;Z)→ Hi(CPn+r;Z))

is an isomorphism for all i ≤ n−1 and injective for i = n. Combined with Poincaré
duality, this gives us all the cohomology groups Hi(Xn

d ;Z) for 0 ≤ i ≤ 2n, except
possibly for the middle one, i.e. where i = n. However, we can completely determine
this as well. Indeed, the Universal Coefficient Theorem tells us that we have a short
exact sequence

0→ Ext1Z(Hn−1(X
n
d ;Z),Z)→ Hn(Xn

d ;Z)→ HomZ(Hn(X
n
d ;Z),Z)→ 0.

Since Hn−1(X
n
d ;Z) = 0, it follows that the natural map

Hn(Xn
d ;Z)→ HomZ(Hn(X

n
d ;Z),Z)
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is an isomorphism; in particular, Hn(Xn
d ;Z) is torsion-free, and hence, since it is

of finite rank, it is free abelian of rank bn(X
n
d ). This determines the cohomology

groups completely, namely

Hi(Xn
d ;Z) =


Z, if 0 ≤ i ≤ 2n,with even i ̸= n,

Z⊕bn(Xn
d ), if i = n, and

0 else.

In particular, the Euler characteristic of Xn
d is given by

χ(Xn
d ) =

{
n+ bn(X

n
d ) for n even, and

n+ 1− bn(Xn
d ) for n odd.

(2.30)

Therefore, the calculation of the middle Betti number bn(X
n
d ) of X

n
d is equivalent

to the calculation of this Euler characteristic. This can be achieved using the
characteristic class computations which we carry out below; see Corollary 2.4.4.

• Recall that if Y is a compact complex manifold and X ⊂ Y a smooth complex
hypersurface, then the normal bundle X/Y is simply the restriction of the bundle
Y (X) to X, what is often denoted by X(X); this comes from the identification
of the conormal bundle  ∨

X/Y as X/X2 , where X is the ideal sheaf of X in Y .
The upshot of this is that repeated application of this formula then tells us that the
normal bundle Xn

d /CPn+r of Xn
d can be identified with

⊕r
i=1Xn

d
(di)

22, i.e. there
is a short exact sequence of vector bundles on Xn

d given by

0→ TXn
d → TCPn+r|Xn

d
→

r⊕
i=1

Xn
d
(di)→ 0. (2.31)

Combining this with the Euler sequence (2.17) for CPn+r restricted to Xn
d , namely

0→ Xn
d
→ Xn

d
(1)⊕(n+r+1) → TCPn+r|Xn

d
→ 0, (2.32)

allows us to easily carry out the characteristic class computations.

For instance, we have the two following results:

Lemma 2.4.1. Let Xn
d be a complete intersection of dimension n and type d. Then

the canonical bundle of Xn
d is given by

ωXn
d
= Xn

d
(e1(d)− n− r − 1) .

Proof. From the multiplicativity of the determinant in short exact sequences, we conclude
from (2.31) that the anticanonical bundles of Xn

d and CPn+r are related via

ω−1
CPn+r |Xn

d
= ω−1

Xn
d
· Xn

d
(e1(d)).

From this, we can finish using that ω−1
CPN = CPN (N + 1) for any N ≥ 0. ■

22More precisely, this only tells us that the normal bundle admits a filtration with successive quotients
the Xn

d
(di). But, in fact, this normal bundle splits as a direct sum of these line bundles. Of course, in

the topological category, every exact sequence is split; since we are only dealing with characteristic class
computations, this will not concern us.
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Lemma 2.4.2. The complete intersection variety X = Xn
d has first Chern class

c1(X) = (n+ r + 1− e1(d))ζX ,

where, as above, ζX is the hyperplane class on X. In particular, X is always spin
when n = 1 and for n ≥ 2, it is spin iff

n+ r + 1 ≡ e1(d) (mod 2).

Proof. The sequences (2.31) and (2.32) imply that the total Chern class of X is

c(X) = (1 + ζX)
n+r+1

r∏
i=1

(1 + diζX)
−1, (2.33)

giving us c1(X). Note that for n = 1, we have ζX = |d|ηX , and hence

c1(X
1
d) = |d|(r + 2− e1(d))ηX ,

the coefficient of which is always even (if |d| is odd, then e1(d) ≡ r (mod 2)), as it must
be, being the Euler characteristic of a Riemann surface; Riemann surfaces are always
spin (Corollary 1.5.4). For n ≥ 2, the Weak Lefschetz Theorem tells us that ζX generates
H2(X;Z), so that Corollary 1.5.3 tells us that for n ≥ 2, the manifold X is spin iff this
coefficient of ζX in c1(X) is even, which is equivalent to the above condition. ■

The first important computation here is the content of

Theorem 2.4.3. For any d as above and k ∈ Z, the generating function of the series
of χy-characteristics of the line bundles Xn

d
(k) on Xn

d for n ≥ 0 is given by

∞∑
n=0

χy

(
Xn

d ,Xn
d
(k)
)
tn+r =

(1 + yt)k−1

(1− t)k+1

r∏
i=1

(1 + yt)di − (1− t)di
(1 + yt)di + y(1− t)di

.

Proof. Given any k, n and d, he sequences (2.31) and (2.32) allow us to express the total
generalized Todd class of X = Xn

d as

Tdy(X) = Qy(ζX)
n+r+1

r∏
i=1

Qy(diζX)
−1 ∈ H∗(X;Q[y]),

where as before

Qy(z) =
z

R(z)
, with R(z) :=

1− e−z(1+y)

1 + ye−z(1+y)
.

Therefore, the Generalized Hirzebruch-Riemann-Roch Theorem 1.4.3 tells us that we
have

χy(X,X(k)) =

ˆ
X

chy X(k) · Tdy(X) =

ˆ
X

ekζX(1+y) · ζn+r+1
X

R(ζX)n+r+1

r∏
i=1

R(diζX)

diζX
.
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Since
´
X
ζjX is |d| =

∏r
i=1 di for j = n and zero otherwise, this integral can be obtained

as the coefficient of ζn in the power series ekζ(1+y)ζn+1R(ζ)−n−r−1
∏r

i=1R(diζ), which can
in turn be expressed as the residue calculation

[ζn]ekζ(1+y) ζn+1

R(ζ)n+r+1

r∏
i=1

R(diζ) = Res
ζ=0

ekζ(1+y)

R(ζ)n+r+1

r∏
i=1

R(diζ) dζ.

To compute this residue, we make the same substitution as in the proof of Theorem 2.2.5,
namely t = R(ζ), and note that this implies

R(diζ) =
(1 + yt)di − (1− t)di
(1 + yt)di + y(1− t)di

.

It follows then that this residue is given by

Res
t=0

(
1 + yt

1− t

)k

· 1

tn+r+1
·

r∏
i=1

(1 + yt)di − (1− t)di
(1 + yt)di + y(1− t)di

· 1

(1 + yt)(1− t)
dt

=[tn+r]
(1 + yt)k−1

(1− t)k+1

r∏
i=1

(1 + yt)di − (1− t)di
(1 + yt)di + y(1− t)di

,

which is equivalent to the claimed result. ■

As previously, we obtain from this computation a delicious sequence of corollaries.

Corollary 2.4.4. For any d as above, we have

∞∑
n=0

χ(Xn
d )t

n =
|d|

(1− t)2
r∏

i=1

1

1− (1− di)t
.

In other words, we have for any n ≥ 0 and d that

χ(Xn
d ) = |d|

n∑
i=0

(n− i+ 1)hi(1− d) = |d|
n∑

i=0

(−1)i
(
n+ r + 1

n− i

)
hi(d),

where hi(1 − d) (resp. hi(d)) denotes the ith complete symmetric polynomial in
1− d1, . . . , 1− dr (resp. d1, . . . , dr).

Proof. Plug in k = 0 and then take the limit as y → −1 in Theorem 2.4.3, noting that

lim
y→−1

(1 + yt)di − (1− t)di
(1 + yt)di + y(1− t)di

=
dit

1− (1− di)t
.

The first explicit formula then follows from (1 − t)−2 =
∑∞

i=0(i + 1)ti and the
fact that for any variables x = (x1, . . . , xr), the generating function for the complete
symmetric polynomials hj(x) in x is

∞∑
j=0

hj(x)t
j =

r∏
i=1

1

1− xit
.

The second explicit formula can then be obtained by relating hi(1− d) and hi(d), but we
can also obtain it as an immediate consequence of (2.33). ■

96



Chapter 2. Examples

Remark 2.4.5. The computation of this Euler characteristic along with (2.30) finishes
the computation of bn(X

n
d ) and hence of the cohomology groups (or equivalently Betti

numbers, by the freeness of cohomology) of Xn
d .

Corollary 2.4.6. For any d as above, we have

∞∑
n=0

Sign(Xn
d )t

n+r =
1

1− t2
r∏

i=1

(1 + t)di − (1− t)di
(1 + t)di + (1− t)di

.

Proof. Plug in k = 0 and y = 1 in Theorem 2.4.3. ■

Corollary 2.4.7. For any d as above and k ∈ Z, we have

∞∑
n=0

χ
(
Xn

d ,Xn
d
(k)
)
tn =

1

(1− t)k+1

r∏
i=1

[
1− (1− t)di

t

]
.

Proof. Plug in y = 0 in Theorem 2.4.3. ■

Finally, we compute that Â-genera of the spaces Xn
d .

Theorem 2.4.8. For any d as above, the generating function of the Â-genus of Xn
d

for n ≥ 0 is given by

∞∑
n=0

Â (Xn
d ) t

n =

(
1 +

t2

4

)−1/2 r∏
i=1

sinh
(
di sinh

−1 (t/2)
)

t/2

=

(
1 +

t2

4

)−1/2 r∏
i=1

1

t

(√1 +
t2

4
+
t

2

)di

−

(√
1 +

t2

4
− t

2

)di
 .

Proof. Applying the same technique as in the proof of Theorem 2.4.3, this time to the
characteristic series QÂ(z), we conclude that

Â(Xn
d ) =

ˆ
X

[
ζX/2

sinh(ζX/2)

]n+r+1 r∏
i=1

sinh(diζX/2)

diζX/2

= Res
ζ=0

1

[2 sinh(ζ/2)]n+r+1

r∏
i=1

2 sinh

(
diζ

2

)
dζ,

where again we have used that
´
X
ζjX is |d| =

∏r
i=1 di for j = n and zero otherwise. This

time, we use the change of variables t = 2 sinh(ζ/2) to get

Â(Xn
d ) = Res

t=0

1

tn+r+1

r∏
i=1

[
2 sinh

(
di sinh

−1

(
t

2

))]
·
(
1 +

t2

4

)−1/2

dt,

which is equivalent to the first result. The second formula can then be obtained by using
the identities sinh−1(x) = ln

(√
1 + x2 + x

)
and (

√
1 + x2 + x)(

√
1 + x2 − x) = 1. ■
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Remark 2.4.9. Plugging in r = 0 (so d = ∅) in the above results recovers the results of
§2.2.1. Note also how, in all the above expressions, adding additional 1’s at the end of
the d, i.e. replacing d = (d1, . . . , dr) by d = (d1, . . . , dr, 1, 1, . . . , 1) for any number of 1’s,
does not change the value of the invariants χ(Xn

d ), Sign(X
n
d ), χ(X

n
d ,Xn

d
(k)) and Â(Xn

d ).
It is clear why this must be the case; indeed, intersecting with additional hyperplanes
amounts to just working in a smaller dimensional projective space.

Although these closed-form expressions for the generating functions are quite
neat, extracting an individual coefficient seems quite untractable in general. However, for
small n and r, this is not too difficult, and we do this now for n ≤ 2 and arbitrary r (com-
plete intersection curves and surfaces) here, and r = 1 and arbitrary n (hypersurfaces) in
the next subsection, §2.4.1.

Corollary 2.4.10. For a given d, consider the complete intersection curve X1
d . Then:

(a) For each k ∈ Z, we have

χy(X
1
d ,X1

d
(k)) = |d|

(
r + 2− e1(d)

2
(1− y) + k(1 + y)

)
,

where e1(d) =
∑r

i=1 di.
(b) The Euler characteristic of X1

d is

χ(X1
d) = |d| (r + 2− e1(d)) .

Therefore, the genus of X1
d is

g(X1
d) = 1 +

1

2
|d| (e1(d)− r − 2) .

Proof. For (a), we divide both sides of the result in Theorem 2.4.3 by tr and extract the
coefficient of t. For (b), this follows from Lemma 2.4.1 and noting that for a Riemann
surface X of genus g, we have degωX = 2g − 2; we can also specalize the result in (a) to
k = 0 and y = −1, or note using Corollary 2.4.4 that

χ(X1
d) = |d| [h1(1− d) + 2h0(1− d)] = |d| [r − e1(d) + 2] .

■

Remark 2.4.11. Note that this formula tells us that the genus increases with the di,
whereas (as we observed above) stays put when extending the tuple d by 1’s. Therefore, we
may easily enumerate all possible numbers that occur as genera of complete intersection
curves as

0, 1, 3, 4, 5, 6, 9, 10, 13 . . . .

In particular, g = 2 is not possible–indeed, any curve of genus 2 is hyperelliptic (see [17,
Prop. VII.1.10], and hyperelliptic curves of genus g ≥ 2 cannot be complete intersections,
since the canonical sheaf of a complete intersection curve is very ample. Indeed, for X1

d of
genus g ≥ 2, Lemma 2.4.1 gives us ωX1

d
= X1

d
(e1(d)−r−2) with e1(d)−r−2 = 2g−2 ≥ 1,

so that since already X1
d
is very ample, so is this multiple ωX1

d
. On the other hand, the

canonical sheaf of hyperelliptic curve is not very ample ([17, Prop. VII.2.2]).
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Similarly, we have:

Corollary 2.4.12. For a given d, consider the complete intersection surfaceX2
d . Then:

(a) The Euler characteristic of X2
d is

χ(X2
d) = |d|

[(
r + 3

2

)
− (r + 3)e1(d) + (e1(d)

2 − e2(d))
]
.

(b) The signature of X2
d is

Sign(X2
d) =

|d|
3

(
r + 3− e1(d)2 + 2e2(d)

)
.

(c) The Todd genus of X2
d is

χ(X2
d ,X2

d
) =
|d|
12

[
2
(
e1(d)

2 + e2(d)
)
− 6(r + 1)e1(d) + (r2 + 9r + 12)

]
.

(d) The Â genus of X2
d is

Â(X2
d) = −

|d|
24

(
r + 3− e1(d)2 + 2e2(d)

)
.

Proof. This amounts to extracting the coefficient of t2 (or tr+2 as the case may be) from
the above formulae, and is a straightforward computation. ■

Remark 2.4.13. This last computation nontrivially verifies Corollary 1.5.6, which says in
our case that, when X2

d is spin, Â(X2
d) is an even integer. To show this from the formula

above, note first that for any d we have Â(X2
d) ∈ 1

8
Z (this was also observed in the proof

of Corollary 1.5.7). Indeed, if 3 ∤ |d|, then d2i ≡ 1 (mod 3) for i = 1, . . . , r, so

r + 3− e1(d)2 + 2e2(d) = r + 3−
r∑

i=1

d2i ≡ 0 (mod 3).

Therefore, it suffices to consider powers of 2. By Lemma 2.4.2, X2
d is spin iff

r + 1 ≡ e1(d) (mod 2),

which happens iff there is an odd number, say k, of i’s such that di is even. It suffices to
show that in this case, |d|(r+ 3− e1(d)2 + 2e2(d)) is divisible by 16. Since |d| is divisible
by 2k, the only cases of interest are k ∈ {1, 3}. Relabel the di’s if needed to assume that
d1, . . . , dk are even and that dk+1, . . . , dr are odd. When k = 3, we have

r + 3− e1(d)2 + 2e2(d) = r + 3−
3∑

i=1

4

(
di
2

)2

−
r∑

i=4

d2i ≡ r + 3− (r − 3) ≡ 2 (mod 4),

and we are done. When k = 1, so d1 is even, we have

r + 3−
r∑

i=1

d2i ≡ r + 3− 4

(
d1
2

)2

− (r − 1) ≡ 4

(
1−

(
d1
2

)2
)

(mod 8).

Therefore, if d1 is divisible by 4, then |d| contributes the required additional power of 2,
whereas if d1 ≡ 2 (mod 4), this power comes from the second factor.
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2.4.1 Hypersurfaces

An interesting special case of the computations in the previous section is when r = 1, so
that d is simply a positive integer and Xn

d ⊂ CPn+1 is a smooth hypersurface of degree d
and dimension n. For these hypersurfaces, we can obtain surprisingly explicit formulae for
the above numerical invariants. Firstly, from Corollary 2.4.4, we immediately obtain

Corollary 2.4.14. For integers n ≥ 0 and d ≥ 1, the Euler characteristic of Xn
d is

given by

χ(Xn
d ) =

n∑
j=0

(−1)j
(
n+ 2

j + 2

)
dj+1 =

1

d

(
(1− d)n+2 + (n+ 2)d− 1

)
.

Similarly, Corollary 2.4.6 gives us

Corollary 2.4.15. For a given integer d ≥ 1, the generating function of the signatures
of Xn

d for n ≥ 0 is given by

∞∑
n=0

Sign(Xn
d )t

n =
1

t(1− t2)
· (1 + t)d − (1− t)d

(1 + t)d + (1− t)d
.

It is harder to extract an explicit formula for Sign(Xn
d ) from this; however, not

all is lost. Note that Sign(Xn
d ) is zero for odd n, and for even n = 2k, is expressible as an

odd polynomial of degree 2k+1 in d. Since this polynomial takes integer values at integer
d, and it is expressible as an integral linear combination of the binomial coefficients

(
d
j

)
for 1 ≤ j ≤ 2k + 1. For 0 ≤ k ≤ 3 these polynomials are

Sign(X0
d) = d

Sign(X2
d) = d− 2

(
d

2

)
− 2

(
d

3

)
Sign(X4

d) = d+ 16

(
d

3

)
+ 32

(
d

4

)
+ 16

(
d

5

)
, and

Sign(X6
d) = d− 2

(
d

2

)
− 50

(
d

3

)
− 368

(
d

4

)
− 864

(
d

5

)
− 816

(
d

6

)
− 272

(
d

7

)
.

Next, from Corollary 2.4.7, we obtain

Corollary 2.4.16. For integers n, d, k with n ≥ 0 and d ≥ 1, the holomorphic Euler
characteristic of the bundle Xn

d
(k) on Xn

d is

χ(Xn
d ,Xn

d
(k)) =

n∑
j=0

(−1)j
(
n− j + k

n− j

)(
d

j + 1

)
.

Of course, this expression is the Hilbert polynomial of Xn
d in k; as a sanity check,

this clearly has degree n and leading coefficient d/n! as a polynomial in k.
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Finally, from Theorem 2.4.8, we can compute the Â-genera of Xn
d as in

Corollary 2.4.17. For any k ≥ 0, we have Â(X2k+1
d ) = 0, whereas

Â(X2k
d ) =

1

22k(2k + 1)!

k∏
j=−k

(d− 2j) = 2

(
(d/2) + k

2k + 1

)
.

Proof. From Theorem 2.4.8, we conclude that

∞∑
n=0

Â(Xn
d )t

n =
1

t

(
1 +

t2

4

)−1/2
(√1 +

t2

4
+
t

2

)d

−

(√
1 +

t2

4
− t

2

)d
 (2.34)

Using that d is a positive integer, we may use the Binomial Theorem to expand this as

∞∑
i=0

(
d

2i+ 1

)(
1 +

t2

4

)(d/2)−i−1(
t

2

)2i

=
∞∑

i,j=0

(
d

2i+ 1

)(
(d/2)− i− 1

j

)(
t

2

)2(i+j)

,

from which we conclude that

Â(X2k
d ) =

1

22k

k∑
i=0

(
d

2i+ 1

)(
(d/2)− i− 1

k − i

)
.

To bring this into the desired form, it suffices to show the corresponding identity of
polynomials. Observe that for 0 ≤ i ≤ k, the ith term in the sum is a polynomial of
degree k + i + 1 in d, so the sum is a polynomial of degree 2k + 1 in d, with leading
coefficient the same as that of 2−2k

(
d

2k+1

)
, namely

1

22k(2k + 1)!
.

Since it is clear from (2.34) that Â(X2k
d ) is an odd polynomial in d, to show the result, it

suffices to show that Â(X2k
d ) = 0 whenever d = 2j for some 1 ≤ j ≤ k. This follows from

the fact that when 1 ≤ j ≤ k and 0 ≤ i ≤ k, the product(
2j

2i+ 1

)(
j − i− 1

k − i

)
is always zero, since the first factor is zero for i ≥ j, whereas the second factor is zero for
i < j, which is equivalent to 0 ≤ j − i− 1 < k − i. ■

Remark 2.4.18. Again, Corollary 2.4.17 verifies Corollary 1.5.6. By Lemma 2.4.2, the
hypersurface Xn

d for n ≥ 2 is spin iff n ≡ d (mod 2). In particular, when n = 2k for
k ≥ 1, this tells us that X2k

d is spin iff d is even, in which case Â(X2k
d ) = 2

(
(d/2)+k
2k+1

)
is

clearly an even integer for all k (and not just odd k, as guaranteed by Corollary 1.5.6).
The evenness of Â(X2k

d ) for even k seems to come from some additional symmetry of
these hypersurfaces, which is not shared by all manifolds23; an independent proof of this
result would be illuminating. In contrast, when d is odd, it is clear again from the first
formula in Corollary 2.4.17 that Â(X2k

d ) is not an integer, giving us another huge class of
(necessarily non-spin) manifolds with non-integral Â-genus.

23For instance, there is a smooth spin manifold of dimension 8, which can be constructed by plumbing,
which has Â-genus 1; see [53]
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Remark 2.4.19. We can also show that Â(X2k
2j ) = 0 for 1 ≤ j ≤ k using the Calabi-Yau

Theorem combined with Theorem 1.5.9. Indeed, as observed in (2.33) above, the first
Chern class of X = X2k

2j is
c1(X) = 2(k + 1− j)ζX .

In particular, for 1 ≤ j ≤ k, the first Chern class of X can be represented by the positive
form 2(k + 1 − j)ωFS|X , where ωFS is the Fubini-Study form on the ambient CP2k+1. It
follows from the Calabi-Yau Theorem that X admits a Kähler metric with Ricci form
given by 2(k+1−j)ωFS|X , and then the underlying Riemannian metric must consequently
have positive Ricci, and hence scalar, curvature. It follows then from Theorem 1.5.9 that
Â(X2k

2j ) = 0.

The next case, namely j = k + 1, is then the critical Calabi-Yau case, i.e. the
case of vanishing Ricci curvature. In this case we have Â(X2k

2k+2) = 2. The nonvanishing

of the Â-genus in this case then implies the existence of harmonic spinors, and hence
globally parallel spinor fields, since the scalar curvature κ is 0 (see [2, Cor. II.8.10]). This
then reduces the holonomy group of the Calabi-Yau manifolds X2k

2k+2; see [2, §IV.10].

Example 2.4.20. The simplest case of the above Calabi-Yau case is when k = 1; then
X2

4 ⊂ CP3 is a smooth quartic surface, which is an example of K3 surface. Corollary 2.4.14
tells us that χ(X2

4 ) = 24 so that b2(X
2
4 ) = 22, and we can determine the cohomology

groups of X2
4 as

H∗(X2
4 ;Z) =


Z, ∗ = 0, 4,

Z22, ∗ = 2, and

0, else.

Now Corollary 2.4.15 tells us that the signature of X2
4 is Sign(X2

4 ) = −16. One
can then use both of these facts–true of any K3 surface–along with unimodularity of
this pairing and the observation by Wu that the intersection pairing of any spin complex
manifold is even, to pin down the intersection matrix of X2

4 uniquely as

ΛK3 := U⊕3 ⊕ E8(−1)⊕2,

where U is the hyperbolic plane given by

U =

[
0 1
1 0

]
,

and E8(−1) is the E8 lattice mentioned in Remark 1.5.8 twisted by −1. This observation
is the starting point for the moduli theory of complex K3 surfaces; see [54, Ch. 1].
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Appendices

In these appendices, we collect the details of several technical tools used in the above
exposition, which we find to be worth reviewing in more detail than is achieved in the
section on Conventions and Fundamentals.
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3.1 Differential Operators

One important character in the story narrated in this thesis is the notion of a differential
operator between vector bundles and its symbol. There are many settings and many
equivalent ways to define this notion. Some of these, ordered roughly in increasing order
of abstractness and generality, include

(I) using local coordinates,
(II) using jet bundles,
(III) proceeding inductively and using the Leibniz rule,
(IV) using the “universal” sheaf of relative differential operators.

Here we briefly present all four. In what follows, we will use the letters E,F to denote
total spaces of vector bundles, and  , for their locally free sheaves of sections; we will
then use the notation x to denote the stalk of the sheaf  at a point x in the base, and
E(x) or (x) to denote the fiber of E over x; see Appendix 3.4 for a discussion of this
relationship. We will also use Γ(X,E) or Γ(X, ) to denote the vector space of smooth
sections on X, and use the Einstein summation convention as needed.

Definition (I), using local coordinates, is perhaps the easiest to explain.

Definition 3.1.1 (I). Let X be a smooth manifold, E,F → X be smooth complex
vector bundles, and k ≥ 0 be an integer. Then a differential operator D : E → F
of order at most k is a complex linear map D : Γ(X,E) → Γ(X,F ) that has the
following local form. Around each point x ∈ X, pick coordinates x = (x1, . . . , xn)
on X and local frames e = (e1, . . . , er) of E and f = (f1, . . . , fs) of F . If u ∈ Γ(X,E),
then in these coordinates, u can be written as u = uµeµ for some local smooth
functions uµ. In this case, Du ∈ Γ(X,F ) is required to locally have the form

Du = aνλµ(∂
λuµ)fν ,

where aνλµ are local complex-valued smooth functions on X that depend only on x, e,
and f, but not u, and where λ = (λ1, . . . , λr) is a sequence of nonnegative integers
with |λ| := λ1 + · · ·+ λr ≤ k and

∂λ := (−i)|λ|
(

∂

∂x1

)λ1
(

∂

∂x2

)λ2

· · ·
(

∂

∂xr

)λr

.

In this case, we also write
D = aνλµ(∂

λeµ·)fν .

Remark 3.1.2. A similar definition to the one above can also be made for smooth real
vector bundles on smooth manifolds (without the (−i)|λ|), as well as holomorphic vector
bundles on complex manifolds. The factor of (−i)|λ| is usually included to make the
formulae involving Fourier inversion look nicer, and is a matter of convention.

Remark 3.1.3. Despite the notation D : E → F , a differential operator is not a vector
bundle (i.e. X-module) morphism; in fact, it follows easily from the definition that
differential operators satisfy a higher analog of the Leibniz rule. For this (good) reason,
some authors choose to use a different notation for a differential operator; we will not.
Hopefully, it is clear from context what is meant by a map D : E → F .
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We note here also that a differential operator D is said to have order k if it has
order at most k but not at most k − 1; this amounts to saying that at least one aνλµ is
nonzero somewhere for some λ with |λ| = k. The same definition will apply everywhere
below, and we will not repeat it.

To give the second definition, we first recall the notion of a jet bundle. Given a
smooth vector bundle E → X, for each k ≥ 0, there is a vector bundle JkE → X called
the kth jet bundle over E whose fiber (JkE)(x) over a point x is the set of equivalence
classes of local sections of E around x under the equivalence relation that their Taylor
series in x (with respect to some local chart on X and frame on E) agree to order k.
Equivalently, the fiber of JkE over x is exactly Jk(E)(x) = x/m

k+1
X,xx, where mX,x ⊂

X,x is the maximal ideal of functions vanishing at x and x is the stalk of of  at x.
This formulation makes it clear that if E has rank r and dimX = n, then the bundle
JkE has rank r

(
n+k
n

)
. Another construction of this bundle in the complex or holomorphic

category is given by taking

Jk() = π2,∗(π
∗
1 ⊗ X×X/k+1

∆ ),

where πi : X×X → X are the projection maps, and ∆ ⊂ X×X is the ideal sheaf of the
diagonal ∆; in other words, X×X/k+1

∆ is the structure sheaf of an order k-thickening
of the diagonal ∆ ⊂ X ×X; then this defintion can be applied not just to vector bundles
but arbitrary quasicoherent sheaves  (see [4, §7.2]).

Returning to the case of a smooth vector bundle E → X there is universal
prolongation differential operator jkE : Γ(X,E) → Γ(X, JkE) given simply by taking
a section σ ∈ Γ(X,E) its equivalence class at each fiber in Γ(X, JkE). This is, by
definition, a “differential operator of degree at most k” in the above sense, and we may
use this universal case to define all other differential operators, as in

Definition 3.1.4 (II). Let X be a smooth manifold, E,F → X smooth complex
vector bundles, and k ≥ 0 be an integer. Then a differential operator D : E → F of
order at most k ≥ 0 is a vector bundle homomorphism D : Jk(E)→ F .

From this definition, we may recover the map Γ(X,E) → Γ(X,F ) on global
sections as the composition Γ(X,D) ◦ jkE.

The first definition leaves something to be desired, implicit already in the second
definition. Namely, differential operators are local operators, and the definition using
spaces Γ(X,E) and Γ(X,F ) of global sections obscures this fact. A better definition,
therefore, involves working with the sheaves  and  directly. The second definition,
along with the observation that

x/m
k+1
X,xx

∼= x ⊗X,x
X,x/m

k+1
X,x

also makes it clear that it suffices to work with the trivial bundle E = C; all the differential
information is captured in the jet bundle JkC, elements of which can be thought of as
differential operators D : C → C of order at most k. For instance, it is clear from
either definition that a differential operator D : C → C of order 1 is given by a map
D : Γ(X,X)→ Γ(X,X) of the form f 7→ ξ(f)+gf for some vector field ξ ∈ Γ(X,TX)
and smooth function g ∈ Γ(X,X).
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Finally, it is clear also from either of the first two definitions that if D : E → F
is a differential operator of order k and D′ : F → G is a differential operator of order
k′, then we may compose D and D′ to obtain a differential operator D′ ◦D : E → G of
order k+ k′. Now if E = F = G = C, then we may also consider the composition D ◦D′

and hence the bracket
[D,D′] := D ◦D′ −D′ ◦D.

A priori, this is only a differential operator of degree k + k′ on C, but, in fact, it is easy
to see using the Leibniz rule that the “top” differential terms cancel out and that

[D,D′] is an operator of degree k + k′ − 1. (3.1)

When k = k′ = 1, the observation (3.1) is saying that the Lie bracket of two vector
fields is another vector field. The observation (3.1) then enables us to make an indutive
definition of differential operators as in

Definition 3.1.5 (III). Let X be a smooth manifold, X be the sheaf of smooth
complex valued functions on X, and and k ≥ 0 be an integer. The sheaf Diffk of kth

order differential operators on X is the left X-submodule

Diffk ⊂ EndC(X)

of the complex endomorphism sheaf EndC(X) of X defined inductively as follows.
We define Diff−1 = 0 and for k ≥ 0, and U ⊂ X open, we say that an operator

EndC(X)(U) ∋ D : X |U → X |U

belongs to Diffk(U) if for each open V ⊂ U and f ∈ X(V ), the map

[D,mf ] : X |V → X |V

lies in Diffk−1(V ), where mf ∈ EndC(X)(U) is the map given by multiplication by
f and the bracket is taken in EndC(X)(U).

Left multiplication then allows us to think of each Diffk as a left X-module.1

Using this definition as model, given any vector bundles  , on X, we can then define
the sheaf Diffk( ,) of differential operators from  to  of order at most k ≥ 0 to be a
subsheaf

Diffk( ,) ⊂ HomC( ,)

either similarly to, or using, Definition III, with the details being straightforward, if
tedious. Admittedly, this definition is hard to parse, but it nonetheless makes it clear
that a differential operator is, in fact, a local operator. The Diffk form an increasing
sequence of sheaves that exhausts EndC(X), in the sense that if we allow differential
operators to have orders that are locally finite but globally arbitrarily large, then, in
fact, any complex sheaf endomorphism, D : X → X is a differential operator. This
is a theorem of Jaak Peetre; see [55] and the Wikipedia page linked there. Finally, this
definition makes it clear that there was nothing special to smooth manifolds that we used

1In fact, Diffk clearly has a structure of an X -bimodule, but the right and left module structures are
very different.
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here, and we could have also worked with arbitrary R-ringed spaces (see Conventions
and Fundamentals for a reminder on the definition), the above special case corresponding
to when X is a smooth manifold, R = CX is constant sheaf with values in C, and X is
the sheaf of smooth complex valued functions on X. This motivates

Definition 3.1.6 (IV). Let X be an R-ringed space, let X be a topological space
equipped with a sheaf R of rings and another sheaf X of R-algebras.

(a) The tangent sheaf of X is the left X-submodule

TX ⊂ EndR-Mod(X)

of R-module endomorphisms of X that satisfy the Leibniz rule, i.e. such that
if U ⊂ X is any open set and TX(U) ∋ D : X |U → X |U , then for any open
V ⊂ U and f, g ∈ X(V ), we have

D(fg) = Df · g + f ·Dg,

where in this formula, D denotes D(V ) : X(V )→ X(V ).
(b) We define the sheaf Diff1 of first order differential operators to be the subsheaf

Diff1 := TX ⊕ X ⊂ EndR-Mod(X).

Note that this is a sub-X-bimodule.
(c) We define the connection algebra of X to be an R-algebra CX with an R-

module homomorphism ρ : X → CX , turning CX into an X-bimodule, and
an X-bimodule homomorphism

ρ1 : Diff1 → CX

that restricts to ρ on X , that is universal with respect to these properties.
The class in CX of any local section η of TX is denoted by ∇η = ρ1(η).

(d) We define the algebra of differential operators to be the quotient of CX by the
curvature relations, i.e.

DX := CX/([∇η,∇ξ]−∇[η,ξ])η,ξ.

Both CX and DX are filtered via the obvious epimorphisms from the tensor algebra
T∗

X
(Diff1)→ CX , and this filtration is nothing but that by order. We denote these

filtrations by C
(•)
X and D

(•)
X respectively. Finally,

(e) Finally, we define a differential operator of order at most k between X-

modules  and  to be a right X-module homomorphism  →  ⊗X
D

(k)
X ,

or equivalently a global section of the tensor product ⊗X
D

(k)
X ⊗X

 , where
we have used the bimodule structure of DX .

For more details about this definition, see [3]. Note that in the above terminol-
ogy, a connection on an X-module  is nothing but a lift of its X-module structure
to one of a CX-module; this justifies the name. Similarly, a DX-module is nothing but
an X-module with a flat connection. Definition (IV), being the most abstract, is also
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the most general. For instance, if we take π : X → S to be a relative scheme and
R := π−1S, then the above definition of TX recovers the the relative tangent sheaf
TX/S of X over S, and CX recovers the sheaf of relative differential operators. This level
of generality is the beginning of the theory of D-modules, describing even the basics of
which would take us way too far afield. To quote Michael Ende, das ist aber eine andere
Geschichte, und soll ein andermal erzählt werden.

We end this appendix with some brief remarks on the symbol of a differential
operator, interpreting it from these various perspectives. If D : E → F is a differential
operator between smooth vector bundles on a smooth manifold X, then the symbol of D,
denoted σ(D), gives us for each (x, ξ) ∈ T∨X a linear map σ(D, ξ) : E(x) → F (x) that
for fixed x is polynomial of degree k in ξ if D has order k. The symbol can be thought
of as

• a vector bundle morphism π∗E → π∗F on the total space of the cotangent bundle
T∨X between the pullbacks of E and F via π : T∨X → X, or

• a vector bundle homomorphism on X given as

σ(D) : Symk T∨X → Hom(E,F ).

Roughly speaking, the symbol captures exactly the kth order part of D. This symbol has
the following property. If f : X → C is any smooth function, then the operator

Γ(X,E)→ Γ(X,F ), u 7→ e−itfD eitfu

can be written as
∑k

j=0 t
k−jDf

j u, where D
f
j : E → F is a differential operator of order

j that does depends only D and f but not u. Then the vector bundle homomorphism
Df

0 : E → F depends only on the 1-form df in the sense we have

σ(D, df) = Df
0 .

This result is often expressed as

σ(D, df) = lim
t→∞

1

tk
e−itfD eitf .

Since this property is local, this equality can be used to define the symbol σ(D),
but we can also connect this to our four definitions above as follows.

(I) If D is given in local coordinates as D =
∑

|λ|≤k| a
ν
λµ(∂

λeµ·)fν , then the symbol in

the same local coordinates, along with cotangent coordinates ξidx
i, is given

σ(D, ξ) =
∑
|λ|=k

aνλµξ
λeµfν ,

where ξλ := ξλ1
1 · · · ξλn

n . That this is polynomial in ξ of degree k is clear; one has
to then check that this definition glues together to give a well-defined global vector
bundle morphism σ(D) : π∗E → π∗F .

(II) If x1, . . . , xn are local coordinates on X and e1, . . . , er a local frame of E, then the
jet bundle JkE has a local frame eµδλ for µ = 1, . . . , r and |λ| ≤ k, where δλ is
the “universal dual” to ∂λ in the sense that the prolongation map jkE is given by
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taking a section u = uµeµ to (∂λuµ)eµδλ. In these terms, the symbol of the universal
prolongation operator jkE : E → JkE is simply given as the map

σ(jkE, ξ) : E(x)→ JkE(x), γµeµ(x) 7→
∑
|λ|=k

ξλγµeµδλ(x).

For an abritrary differential operator D : E → F thought of as a vector bunder
homomorphism D : Jk(E)→ F the symbol σ(D, ξ) is then given as the composition

σ(D, ξ) = D(x) ◦ σ(jkE, ξ) : E(x)→ F (x).

That this is polynomial in ξ of degree k is again clear; one has to then check again
that this gives us a global section σ(D) : π∗E → π∗F .

(III) If f1, . . . , fk are any local smooth functions, then the inductive definition of Diffk

tells us that the the operator [. . . [[D,mf1 ],mf2 ], . . . ,mfk ] is an order zero operator,
i.e. vector bundle homomorphism, E → F . This can be now used as follows:
given D and given cotangent vectors ξ1, . . . , ξk at a point x ∈ X, we may pick local
functions f1, . . . , fn at x with dfj = ξj for 1 ≤ j ≤ k. Then the map

[. . . [[D,mf1 ],mf2 ], . . . ,mfk ](x) : E(x)→ F (x)

is easily seen to be independent of the choice of fj’s, giving us a multilinear map
(T∨X)k → HomR(E(x), F (x)). Finally, using the Jacobi identity, this is easily seen
to be symmetric in the ξj and hence gives us a morphism

σ(D)(x) : Symk T∨
xX → HomR(E(x), F (x)).

One, then has to check again, that these homomorphisms patch together to give us
a smooth vector bundle homomorphism σ(D) : Symk T∨X → Hom(E,F ).

(IV) Finally, we can show that for each k ≥ 0, there is a symbol sequence

0→ D
(k−1)
X → D

(k)
X

σ−→ Symk TX → 0,

which is to say that the associated graded algebra of the filtered algebra of differ-
ential operators D

(•)
X is nothing but the symmetric algebra Sym•TX of the tangent

sheafTX . This follows essentially from the observation (3.1). If we think of an order
k differential operator D between  and  as a right X-module homomorphism
 →  ⊗X

D
(k)
X , then σ gives rise to an X-module homomorphism

 →  ⊗X
Symk TX ,

which can then be tought of as an X-module homomorphism

σ : Symk T∨
X → ∨ ⊗X



as needed.

It is then a straightforward exercise–important for the reader encountering these
ideas for the first time–to check that these five (!) definitions of a symbol all agree.
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3.2 The Pfaffian and the Euler Class

The determinant of a skew-symmetric matrix is, somewhat surprisingly, the square of a
polynomial in the coefficients of that matrix with integer coefficients. This polynomial,
suitably normalized, is called the Pfaffian of the matrix. Pfaffians, named by Arthur
Cayley after the German mathematician Johann Friedrich Pfaff, show up in a variety of
mathematical contexts, from the combinatorics of braids, to Chern-Weil Theory of the
the Euler class, and to the geometry of the Grassmannian of lines. Here we will give a
quick overview of the proof of their existence. We will then mention an explicit formula
for the Pfaffian and include a small digression on the Grassmannian on lines. Finally,
we will review definitions of the Euler class of an oriented vector bundle and connect
Pfaffians and the Euler class via Chern-Weil Theory. The starting point here is

Theorem 3.2.1. Let n ≥ 1 be a positive integer, and let R := Z[xij]1≤i<j≤2n be the
polynomial ring generated by the n(2n−1) variables xij. LetX2n be the unique skew-
symmetric square matrix of size 2n with entries in R such that for 1 ≤ i < j ≤ 2n,
the (i, j) entry of X2n is xij. Then there is an element Pfn ∈ R such that

detX2n = (Pfn)
2.

Since R is an integral domain, the element Pfn is unique up to sign, and we pick a
normalization to pin it down uniquely, as in

Definition 3.2.2. For any n ≥ 1,the Pfaffian polynomial of degree n is defined to be
the polynomial Pfn ∈ R given by Theorem 3.2.1 and normalized so that upon setting
x12 = x34 = · · · = x2n−1,2n = 1 and the remaining variables to 0, we get Pfn = 1.

The first couple of these are given by

Pf1 = x12 and Pf2 = x12x34 − x13x24 + x14x23.

Note that Pfn has degree exactly n in the xij. Clearly, the above universal set-up tells
us that the same result holds when we specialize to an arbitrary skew-symmetric matrix
over any ring. Evaluating the Pfaffian polynomial at a specific skew-symmetric matrix
X yields its Pfaffian, denoted Pf(X), so that

Pf(X) = Pfn|X
when X has order 2n, and by convention Pf(X) = 0 when X has odd order.

We now proceed to a proof of Theorem 3.2.1, following [56, §25.3]. The main
ingredient in the proof is the following linear algebraic result. To state this result, note
first that any N × N matrix X with coefficients in a field k, where N ≥ 1, can be
interpreted as a bilinear form ωX on the vector space kN with Gram matrix X. Then ωX

is symmetric (resp. alternating), iff X is, where recall that a matrix is called alternating
if it is skew-symmetric and the entries on its principal diagonal are zero. When the
characteristic of k is different from 2, alternating is the same as skew-symmetric, but in
characteristic 2, a matrix is symmetric iff it is skew-symmetric and alternating matrices
form a subclass of symmetric matrices. It is in this subclass that we are interested, but
eventually, to do the “universal” case, we will restrict to characteristic 0 anyway. We now
have

110



Chapter 3. Appendices

Lemma 3.2.3. Let k be a field and N ≥ 1 an integer. Given an alternating N ×N -
matrix X ∈ MatN(k), there is a T ∈ GLN(k) such that the matrix T tXT can be
expressed in block diagonal form as

T tXT = S⊕r ⊕ [0]⊕s

where

S =

[
0 1
−1 0

]
appears r times and the zero matrix [0] appears s times for some integers r, s satis-
fying 2r + s = N . The integers r and s are uniquely determined by X.

Proof. As in the discussion above, think of X as the Gram matrix of an alternating form
ω on the vector space V := kN , and proceed by induction on N . When N = 1, the
result is clear; suppose N ≥ 2. If ω = 0, we are done; else, there are e1, f1 ∈ V such
that ω(e1, f1) ̸= 0, and so, by rescaling f1 as needed, we may assume that ω(e1, f1) = 1.
Consider the subspace W := ke1 + kf1 ⊂ V and its ω-orthogonal complement subspace
W⊥ := {v ∈ V : ω(v,W ) = 0}. The claim, then, is that the natural map W ⊕W⊥ → V
is an isomorphism; translating this result back into the language of matrices then finishes
the proof by induction. To show injectivity, note that if w = λe1 + µf1 ∈ W ∩W⊥, then

µ = ω(e1, w) = 0 and λ = ω(−f1, w) = 0

so that w = 0. To show surjectivity, note simply that any v ∈ V can be written as

v = (−ω(f1, v)e1 + ω(e1, v)f1) + (v + ω(f1, v)e1 − ω(e1, v)f1) ,

where the term in the first pair of parentheses is in W , and that in the second pair of
parentheses is inW⊥. The integer s is determined as the dimension of the kernel of ω. ■

This result shows also that there are no nondegenerate alternating forms on a
vector space of odd dimension in any characteristic.

Proof of Theorem 3.2.1. Apply Lemma 3.2.3 to the fraction field k = Q(xij) of R, taking
N = 2n and X = X2n to find a matrix T ∈ GL2n(k) as in the conclusion of the lemma.
Then r = n and s = 0; indeed, otherwise, it would follow that detX2n = 0, which is
incorrect. (This we know, for instance, by specalizing to x12 = x34 = · · · = x2n−1,2n = 1
and setting the other variables to 0.) From the resulting equation, we conclude then that

(detT )2 detX2n = det
(
T tX2nT

)
= det

(
S⊕n

)
= (detS)n = 1,

so taking Pfn := 1/ detT ∈ K shows the existence of such an element in K. It remains
to show that Pfn is in R. But now R is a unique factorization domain, so we may write
Pfn = p/q for some coprime p, q ∈ R. The defining equation then yields q2 detX2n = p2,
but since p and q are coprime, it follows from this that q ∈ R is a unit, which is to say
that q = ±1, proving the claim.

■
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Next, we will need the following “change of variables” property of the Pfaffian.

Lemma 3.2.4. Let n ≥ 1 be a positive integer, and let R = Z[xij]1≤i<j≤2n and X2n

be as before. Consider further the ring R[a] := R[aij]1≤i,j≤2n. Let A = [aij] ∈
Mat2n(R[a]) be another matrix of indeterminates. Then we have

Pf(AtX2nA) = det(A) · Pfn ∈ R[a] = Z[xij, aij].

Proof. Note that AtX2nA is also skew-symmetric and that

Pf(AtX2nA)
2 = det

(
AtX2nA

)
= det(A)2 detX2n = det(A)2Pf2n,

so, we must have
Pf(AtXA) = ± det(A) · Pfn

for some universally defined choice of sign. Specializing to the identity matrix A = id2n

tells us that the positive sign must hold. ■

Note again that this universal set-up implies the same result holds when we
specialize to an arbitrary ring. We end by mentioning a combinatorial formula for the
Pfaffian, namely

Lemma 3.2.5. Let Σn be the set of all unordered partitions of {1, 2, . . . , 2n} into
pairs. Given an element σ ∈ Σn, write σ = {(i1, j1), . . . , (in, jn)}, where 1 ≤ ik, jk ≤
2n for k = 1, . . . , n satisfy 1 ≤ i1 < · · · < in ≤ 2n and ik < jk for k = 1, . . . , n.a For
each σ ∈ Σ, let πσ ∈ 2n be the permutation of {1, . . . , 2n} given by

πσ(2k − 1) = ik and πσ(2k) = jk for 1 ≤ k ≤ n.

Then

Pfn =
∑
σ∈Σn

(−1)πσ

n∏
k=1

xik,jk .

aNote that the integers ik = ik(σ) and jk = jk(σ) depend on, and uniquely determine, σ, but
we suppress them in the notation.

Proof. A proof can be found in the classic reference [57, Chapter 7]. ■

Remark 3.2.6. Pfaffians are closely related to the Plücker relations describing Grassman-
nians of lines. When V is a vector space over a field F, the Grassmannian of lines in PV ,
i.e. the Grassmannian Gr2F(V ) embeds via the Plücker embedding

Gr2F(V ) ↪→ PΛ2V

as (the image of) the set of totally decomposable vectors in Λ2V . The space Λ2V can
be then identified with the space of all alternating forms on V . It then turns out that,
when chF ̸= 2, the set of all totally decomposable alternating forms, i.e. Gr2F(V ), can be
described as set of all [ω] ∈ PΛ2V satisfying the equation

ω ∧ ω = 0.
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Indeed, to show the nontrivial direction, supoose that this is true and take any nonzero
λ ∈ V ∗. Then the interior product λ ¬ ω ∈ V has the property that

0 = λ ¬ (ω ∧ ω) = 2ω ∧ (λ ¬ ω),

so that if chF ̸= 2, we can conclude from this that λ¬ω divides ω, so that, in particular,
ω is decomposable. If we pick a basis e1, . . . , en of V (where n := dimV ) and write
ω =

∑
1≤i<j≤n xijei ∧ ej for some xij, then we have

ω ∧ ω =
∑

1≤k1<k2<k3<k4≤n

(xk1k2xk3k4 − xk1k3xk2k4 + xk1k4xk1k3) ek1 ∧ ek2 ∧ ek3 ∧ ek4

=
∑

1≤k1<k2<k3<k4≤n

Pfk1k2k3k4(X) · ek1 ∧ ek2 ∧ ek3 ∧ ek4 ,

where Pfk1k2k3k4(X) is the Pfaffian of the 4 × 4 minor of the skew-symmetric matrix
X = [xij]

n
i,j=1 representing ω given by taking rows and columns in k1, k2, k3, k4. It follows

that Gr2F(V ) is described as the subvariety of PΛ2V ∼= FP(
n
2)−1 cut out by the vanishing

of these
(
n
4

)
Pfaffians of all 4 × 4 “symmetric” minors of X. In particular, Gr2F(V ) is

the intersection of quadrics. For instance, when n = 4, this expresses Gr2,2F ⊂ FP5 as a
quadric with very interesting geometry; see [58, Lecture 6].

Finally, we explain how the Pfaffian relates to the Euler class of oriented real bundles.
Suppose that X is a sufficiently nice (e.g. paracompact Hausdorff) topological space, and
π : E → X an oriented real vector bundle of rank r. To each such bundle E, we can
associate a Characteristic class

e(E) ∈ Hr(X;Z)
called the Euler class of E.2 There are quite a few ways to define this class, and the
equivalence of these definitions is a nontrivial result that unifies different disciplines in
math. We mention three perspectives–those of algebraic topology, differential topology,
and from differential geometry. In what follows, we also assume for simplicity that X is
compact; for noncompact X, one must either use cohomology relative to the complement
of the zero section or cohomology with compact vertical supports.We do not give proofs
or pretend to give a comprehensive treatment of this very broad subject; missing details
can be found in [9], [42] and [56].

(a) (Algebraic Topology) The Thom Isomorphism Theorem in cohomology says that
there is a uniquely defined class

ΘE ∈ Hr
c(E;Z)

called the Thom class of E, with the property that for each point x ∈ X, under the
restriction map

Hr
c(E;Z)→ Hr

c(E(x);Z)
2Here we could work with singular cohomology or sheaf cohomology when X is nice (e.g. a manifold,

or a locally contractible space). In sheaf cohomology, the Thom isomorphism can be proven from the
Leray-Serre spectral sequence associated to the map E → X. In singular cohomology, ifX is a topological
manifold then we can also use Poincaré duality to prove it.
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to the fiber E(x) ⊂ E of E over x, the Thom class ΘE maps to the specified
orientation class of E. This class has the property that the map ΘE defined by

ΘE : H∗(X;Z)→ H∗+r
c (E;Z), η 7→ ΘE ⌣ π∗η

is an isomorphism, called the Thom isomorphism, where π∗ : H∗(X,Z) → H∗(E;Z)
is the pullback map, and

⌣ : Hi(E;Z)× Hj
c(E;Z)→ Hi+j

c (E;Z)

is the cup product in cohomology with compact supports. If j : X → E is the
inclusion of the zero section then, since j is proper, we get a pullback map in
compactly supported cohomology

j∗ : H∗
c(E;Z)→ H∗(X;Z),

and the Euler class of E is defined as the pullback

e(E) := j∗ΘE

of the Thom class by j. Of course, the same thing can be done by replacing Z
with any ring R (and slightly more generally if we replace “orientable” with “R-
orientable”).3 Note that the resulting characteristic class is natural, and so has one
further important property. If E is a vector bundle of odd rank r, then the map

E → E, (x, v) 7→ (x,−v)

given by fiberwise negation is an orientation-reversing isomorphism of E. Therefore,
the naturality of the Euler class says that

e(E) = −e(E) so 2e(E) = 0 ∈ Hr(X;Z).

In particular, if Hr(X;Z) has no two-torsion, or if we are working over a Z[1/2]-
algebra R, then we must have in this case also that e(E) = 0.4

(b) (Differential Topology) Note that we can also perform the same computation as
above replacing Z with say Q,R or C. Suppose now that X is a smooth manifold
and E → X is a smooth real vector bundle; for simplicity, we assume also that X
is closed and oriented. Then translating between singular cohomology with R or C
coefficients and de Rham cohomology via the de Rham theorem then tells us that

ΘE ∈ Hr
c(E;R)

can be thought of as the Poincaré dual to the zero section. In particular, the Euler
class

e(E) = j∗ΘE ∈ Hr
dR(X;R)

is the self intersection class of the zero section of E. This gives us a way to compute
this Euler class in practice: since any two sections of E → X are homotopic, if we

3See, however, Footnote 4 in Conventions and Fundamentals.
4Note, although, that it is possible for the Euler class to be torsion in general. For instance, if we

consider a lens space Lp = S5/(Z/p) for some prime p and if Z/p→ SO2 is any homomorphism, then we
can extend the principal Z/p bundle π : S5 → Lp via π to a principle SO2-bundle S

5×Z/pSO2 → Lp, (the
vector bundle corresponding to) which is easily seen to have nontrivial Euler class in H2(Lp;Z) ∼= Z/p.
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can find a section σ : X → E that is transverse to the zero section E0, written
σ ⋔ E0, then the preimage of E0 under σ,

σ−1(E0) = V(σ),

or equivalently the vanishing locus of σ, is a smooth embedded submanifold of X of
codimension r in X, and hence by Poincaré duality represents a cohomology class
ηV(σ) ∈ Hr

dR(X;R). It follows then that this class is independent of the choice of σ,
and is none other other than the Euler class e(E) ∈ Hr

dR(X;R). In particular, if
the rank r of E coincides with the dimension n of X, then e(E) is a multiple of the
generator ηX of the top cohomology of X by the number of zeroes, counted with
signed multiplicity, of a generic section σ : X → E.

(c) (Differential Geometry) Finally, suppose that we are working with a vector bundle of
even rank r, and we reduce the structure group of E from GL+

r R to SOr ⊂ GL+
r R,

i.e. we equip E with a Riemannian metric. Suppose further that we have a metric
connection ∇ on E. Then given any local oriented orthonormal frame

e = (e1, . . . , er)

of E, the curvature matrix Ω of ∇ with respect to e is a skew-symmetric r × r
matrix of 2-forms on X. In particular, since r is even, we may speak of the Pfaffian

Pf

(
1

2π
Ω

)
,

which is a locally defined r-form on X. In fact, if

e′ = ea

is a different oriented orthonormal frame, so a is a local function on X with values
in SOr, then the curvature matrix Ω′ of ∇ with respect to e′ is given by

Ω′ = a−1Ωa.

In particular, we get from Lemma 3.2.4 that

Pf

(
1

2π
Ω′
)

= Pf

(
1

2π
a−1Ωa

)
= Pf

(
1

2π
atΩa

)
= det a · Pf

(
1

2π
Ω

)
= Pf

(
1

2π
Ω

)
,

where in the second and last equalities we have used that a is SOr-valued. In
particular, this tells us that this r-form is well-defined irrespective of the choice of
oriented orthornormal frame e, and hence glues together to give a global r-form,
also denoted by Pf(1/2πΩ) on X. The general machinery of Chern-Weil Theory then
says that this form is closed, and the corresponding cohomology class[

Pf

(
1

2π
Ω

)]
∈ Hr

dR(X;R)

is well-defined and independent of the choice of metric and connection on E; and
indeed, this class is none other than the Euler class e(E) of E.
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3.3 Multiplicative Sequences

The theory of multiplicative sequences was formalized by Hirzebruch in his seminal book
Neue topologische Methoden in der algebraischen Geometrie published in 1956. It serves
as algebraic preparation for the theory of characteristic classes. We will now do this
preparation, following closely the revised English translation of this classic, [13].

Definition 3.3.1. Given a ring R, let R[c] be the graded R-algebra defined by

R[c] := R[c1, c2, . . . ], where for n ≥ 1,we have deg cn = 2n.a

It is often convenient to let c0 := 1. For each n ≥ 0, the degree 2n component of
R[c] is

R[c]2n = R[c1, . . . , cn]2n,

i.e. consists of polynomials with R-coefficients of total degree 2n in the variables
c1, . . . , cn. Let U1(R) be the subgroup of the group of units of the power series ring
R[[z]] consisting of the 1-units, i.e. let U1(R) be defined by

U1(R) := 1 + zR[[z]] :=

{
∞∑
n=0

qnz
n : qn ∈ R, q0 = 1

}
⊂ R[[z]]×.

(a) A sequence K = (Kn)n≥0 of elements of R[c] is said to be multiplicative if
K0 = 1 and Kn ∈ R[c]2n, and the map

K :
∞∑
n=0

qnz
n 7→

∞∑
n=0

Kn(q1, . . . , qn)z
n

is an endomorphism of the group U1(R).
(b) Given a multiplicative sequence K, we define its characteristic series QK by

QK(z) := K(1 + z) =
∞∑
n=0

Kn(1, 0, . . . , 0)z
n ∈ U1(R).

aThis grading is not the same as the one chosen by Hirzebruch in [13, §1]. The reason for our
choice is that for any complex vector bundle E → X, the evaluation at the Chern classes of E
gives us a ring homomorphism evalE : R[c] → H∗(X;R), which with our convention becomes a
morphism of graded R-algebras. See §3.4.

Example 3.3.2. The sequence K = c defined by Kn = cn is called the identity sequence,
since the corresponding endomorphism K is the identity map on U1(R). Its characteristic
series is Q(z) = 1 + z.

The first important result here is that a multiplicative sequence is completely
characterized by its characteristic series:

Lemma 3.3.3. The map K 7→ QK(z) is a bijection from the set of all multiplicative
sequences to U1(R).
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Proof. We define an inverse map. For each N ≥ 1, let

R[c](N) := R[c][γ1, . . . , γN ]/(cj − ej(γ1, . . . , γN))Nj=1,

where ej(γ1, . . . , γN) is the jth elementary symmetric polynomial in γ1, . . . , γN . Let
Q(z) ∈ U1(R) be given. Consider the product

N∏
i=1

Q(γiz) ∈ U1

(
R[c](N)

)
.

Since the coefficients of the powers of z in the expansion of this product are symmetric in
the γj, by the Fundamental Theorem of Symmetric Polynomials, they can be written as

polynomials in the cj with coefficients in R. Therefore, for n ≥ 0, there are K
(N)
n ∈ R[c]2n

such that
N∏
i=1

Q(γiz) =
∞∑
n=0

K(N)
n (c1, . . . , cn)z

n.

ForN ≥ n, the polynomialK
(N)
n is independent ofN , and we defineKn to be this common

value. It is easy to see that the resulting sequence K = (Kn)n≥0 is multiplicative, and
that these operations give us inverse bijections. For more details, see [13, §1]. ■

The previous proof is constructive and allows us to give an explicit formula for
the sequence Kn in terms of the series Q(z). To state this formula, we introduce some
terminology. First suppose that

Q(z) =
∞∑
i=0

qiz
i = 1 + q1z + q2z

2 + q3z
3 + · · · .

For each partition λ ⊢ n, we define

qλ :=

ℓ(λ)∏
j=1

qλj
, and cλ := eλ(γ) =

ℓ(λ)∏
j=1

cλj
.

Finally, we let bµλ ∈ Z be the entries of the transition matrices that allow us to express
the monomial symmetric functions in terms of the elementary symmetric functions, i.e.
satisfy the universal identity

mλ =
∑
µ⊢n

bµλeµ

in the ring Λ of symmetric polynomials in countably many variables (see Conventions
and Fundamentals). Then the proof of Lemma 3.3.3 also establishes

Proposition 3.3.4. If K is the multiplicative sequence corresponding to the charac-
teristic series Q(z) =

∑∞
i=0 qiz

i, then we have for each n ≥ 0 that

Kn =
∑

λ,µ⊢n

qλbµλcµ.
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The matrix Bn := [bµλ]λ,µ⊢n, where we order partitions reverse lexicographically
from left to right and top to bottom, has the property that entries of its inverse matrix
B−1

n = [aλµ]λ,µ⊢n admit a simple combinatorial description, namely that aλµ is the number
of matrices with entries 0 or 1 such that the successive row (resp. column) sums are given
by the parts of λ (resp. µ). In particular,

(a) the coefficients of B−1
n are nonnegative integers,

(b) the matrix Bn is symmetric, i.e. bµλ = bλµ,
(c) and the matrix Bn has 1’s along its nonprincipal diagonal, and is zero below it, i.e.

bµλ ̸= 0 implies µ ≥ λ∗, with bλ
∗

λ = 1.5

For instance, the matrices Bn for 1 ≤ n ≤ 4 are

B1 =
[
1
]
,

B2 =

[
−2 1
1 0

]
,

B3 =

 3 −3 1
−3 1 0
1 0 0

 , and

B4 =


−4 4 2 −4 1
4 −1 −2 1 0
2 −2 1 0 0
−4 1 0 0 0
1 0 0 0 0

 ,
which correspond to the formulae

K1 = q1c1,

K2 = (−2q2 + q21)c2 + q2c
2
1,

K3 = (3q3 − 3q2q1 + q31)c3 + (−3q3 + q2q1)c2c1 + q3c
3
1, and

K4 = (−4q4 + 4q3q1 + 2q22 − 4q2q
2
1 + q41)c4 + (4q4 − q3q1 − 2q22 + q2q

2
1)c3c1

+ (2q4 − 2q3q1 + q22)c
2
2 + (−4q4 + q3q1)c

2
2c1 + q4c

4
1.

Before moving to a few examples, we develop one more crucial bit of theory.

Definition 3.3.5. An element Q(z) ∈ U1(R) is said to be even if Q(z) only consists
of even powers of z, i.e. for each n ≥ 0, the coefficient [z2n+1]Q(z) of z2n+1 in Q(z)

is zero, or equivalently when there is a (necessarily unique) Q̃(z) ∈ U1(R) such that

Q(z) = Q̃(z2).

If Q(z) is even, then in the corresponding multiplicative sequence (Kn), we also
have for each n ≥ 0 thatK2n+1 = 0. In this case, the series Q̃(z) is called the reduced series

and the sequence of polynomials (K̃n)n≥0 defined by K̃n = K2n is called the corresponding
reduced (multiplicative) sequence.6

5Here λ∗ denotes the conjugate partition of λ, and ≥ refers to the lexicographic order.
6Note that this is not multiplicative in the above sense, and indeed deg K̃n = 4n.
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Example 3.3.6. The reduced sequence corresponding to Q(z) = 1 + z2 is called the
Pontryagin sequence and is denoted by (pn). Explicitly, we have for n ≥ 0 that

pn = c2n − 2
n∑

k=1

(−1)kcn−kcn+k,

or, in other words, the formal identity

∞∑
j=0

(−1)jpjz2j =

(
∞∑
i=0

ciz
i

)(
∞∑
i=0

(−1)icizi
)
. (3.2)

Again by the Fundamental Theorem of Symmetric Polynomials, this time applied to
the γ2j , we conclude that if Q(z) is any even series and (K̃n) the corresponding reduced
sequence, then for each n ≥ 0, we have

K̃n ∈ R[p1, . . . , pn]4n,

i.e. K̃n can be written as a polynomial of total degree 4n in the variables p1, . . . , pn.

Remark 3.3.7. Note that the whole formalism of multiplicative sequences and character-
istic series can also be done on the R-algebra

R[p] := R[p1, p2, . . . , ],

where, this time, for n ≥ 1, we have deg pn = 4n. In this case, one defines a multiplicative
sequence K̃ to be have elements K̃n ∈ R[p]4n instead. This contrast amounts to a choice
of working with Chern or Pontryagin classes, and is largely a matter of personal taste.
When working with characteristic series of complex vector bundles, Example 3.3.6 then
furnishes the required relationship between the two series. This will become clearer when
we discuss the relationship between Chern and Pontryagin classes of complex vector
bundles in Remark 3.4.22 below.

Let’s now work out a few examples.

Example 3.3.8. Let R be any Q-algebra, and consider

QTd(z) :=
z

1− e−z
=

∞∑
n=0

Bn

n!
zn = 1+

1

2
z +

1

12
z2 − 1

720
z4 +

1

30240
z6 − 1

1209600
z8 + · · · ,

the exponential generating function of the Bernoulli numbers Bn.
7 The corresponding

multiplicative sequence is called the sequence of Todd polynomials Tdn, and the first few
of these are given by

Td0 = 1,

Td1 =
1

2
c1,

Td2 =
1

12
(c2 + c21),

Td3 =
1

24
c2c1,

Td4 =
1

720
(−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41).

7Here we are choosing the “positive” convention B1 = 1/2.
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Example 3.3.9. Let R be any Q-algebra, and consider

QL(z) :=
z

tanh z
=

∞∑
n=0

22nB2n

(2n)!
z2n = 1 +

1

3
z2 − 1

45
z4 +

2

945
z6 − 1

4725
z8 + · · · .

The corresponding reduced series is

Q̃L(z) =

√
z

tanh
√
z
:=

∞∑
n=0

22nB2n

(2n)!
zn,

and the corresponding reduced sequence is called the sequence of L-polynomials and is
denoted by (Ln). The first few of these are given by

L0 = 1,

L1 =
1

3
p1,

L2 =
1

45
(7p2 − p21),

L3 =
1

945
(62p3 − 13p2p1 + 2p31),

L4 =
1

14175
(831p4 − 71p3p1 − 19p22 + 22p2p

2
1 − 3p41).

Example 3.3.10. To generalize the previous two examples, let R be any algebra over the
polynomial ring Q[y], and consider the series

Qy(z) :=
z(1 + y)

1− e−z(1+y)
− yz

=
z
(
1 + ye−z(1+y)

)
1− e−z(1+y)

=
∞∑
n=0

Bn

n!
(1 + y)nzn − yz

= 1 +
1− y
2

z +
(1 + y)2

12
z2 − (1 + y)4

120
z4 +

(1 + y)6

30240
z6 − (1 + y)8

1209600
z8 · · · ,

the exponential generating function of the Bernoulli polynomials B−
n (y).

8 Note that we
have for y ∈ {0,±1} the specializations

Q0(z) = QTd(z), Q1(z) = QL(z), and Q−1(z) = 1 + z.

The corresponding multiplicative sequence is called the sequence of generalized Todd

8There is a good argument to choose instead the definition of Qy(z) to be what we would, in our
convention, denote by Q−y(z); see Remark 2.3.2. However, the convention used here, established already
Hirzebruch’s [13], is too firmly rooted to easily change.
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polynomials and is denoted by (Tdn(y)). The first few of these are given by

Td0(y) = 1,

Td1(y) =
1− y
2

c1,

Td2(y) =
1− 10y + y2

12
c2 +

(1 + y)2

12
c21,

Td3(y) = −
y(1− y)

2
c3 +

(1 + y)2(1− y)
24

c2c1,

Td4(y) = −
1 + 124y − 474y2 + 124y3 + y4

720
c4 +

(1− 58y + y2)(1 + y)2

720
c3c1

+
(1 + y)4

240
c22 +

(1 + y)4

180
c2c

2
1 −

(1 + y)4

720
c41.

Example 3.3.11. Again, let R be any Q-algebra and consider

QÂ(z) :=
z/2

sinh(z/2)
= 1− 1

24
z2 +

7

5760
z4 − 31

967680
z6 +

127

154828800
z8 + · · · .

The corresponding reduced series is denoted

Q̃Â(z) =

√
z/2

sinh(
√
z/2)

and the corresponding reduced sequence is called the sequence of Â-polynomials and is
denoted by (Ân). The first few of these are given by

Â0 = 1

Â1 = −
1

24
p1,

Â2 =
1

5760
(−4p2 + 7p21),

Â3 =
1

967680
(−16p3 + 44p2p1 − 31p31),

Â4 =
1

464486400
(−192p4 + 512p3p1 + 208p22 − 904p2p

2
1 + 381p41).

Example 3.3.12. Although we won’t work with this series at all, it is still a fun construc-
tion: let’s take R = Q[[q]] to be the ring of rational power series in the variable q, and
consider the series

QW(z) :=
z/2

sinh(z/2)

∏
n≥1

(1− qn)2

(1− qnez)(1− qne−z)
.

This is called the Witten series or the universal elliptic series, and is a modular
form with respect to q. Note that for q = 0, the Witten series specializes to QÂ. The cor-
responding reduced sequence is called the sequence of Witten polynomials and is denoted
by (Wn). We have, for instance, that W0 = 1 and

W1 =

(
− 1

24
+
∑
n≥1

qn

(1− qn)2

)
p1 =

(
− 1

24
+
ψ1
q (1)

log2 q

)
p1,

where ψn
q (z) denotes the q-polygamma function.
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3.4 Vector Bundles and Characteristic Classes

In this section, we review the fundamentals of vector bundles and characteristic classes.
Since the classical literature on this subject is abundant, too vast and ingrained in the
“general culture” to even cite properly, we will pursue a somewhat eccentric, modern
approach to the subject.

It has become increasingly evident in the past century that the “correct” setting
for the definition of a vector bundle is the context of ringed spaces, with the “correct”9

definition being

Definition 3.4.1.

(a) Let X be a ringed space and n ≥ 0 be an integer. A vector bundle of rank n on
X, written  → X, is a locally free X-module of rank n.a

(b) Given a vector bundle  → X and a morphism f : Y → X of ringed spaces,
we define the pullback bundle to be

f ∗ := f−1 ⊗f−1X
Y .

If  has rank n, then so does f ∗ .
aIt is possible to define a vector bundle  as a locally free X -module of finite rank, without

requiring the rank to be constant. There is something to be said about the resulting locally constant
function called the rank; we will, however, have no occasion to deal with mixed-rank vector bundles
in this article.

The set of isomorphism classes of vector bundles (of arbitrary, but globally constant,
rank) on a ringed space X, denoted Vect(X), naturally forms a commutative graded
semiring under the operations of direct sum and tensor product, with the grading being
by rank, and the pullback construction associates to each morphism f : Y → X of ringed
spaces a graded semiring homomorphism

f ∗ : Vect(X)→ Vect(Y ).

This construction therefore gives rise to a contravariant functor

Vect : RingSpop → GrSemiRing

from the category of ringed spaces to the category of commutative graded semirings,
called the vector bundle functor.

Recall that the forgetful functor F : Ring → SemiRing admits a left-adjoint
functor, called the Grothendieck ring construction. In other words, there is a functor

GR : SemiRing→ Ring,

such that for any ring R and semiring S, we have the natural isomorphisms

HomSemiRing(S, FR)→∼ HomRing(GR(S), R).

9Of course, the notion of “correctness” of a setting or definition is subjective. What we mean here
is that this seems to be the most general (in the sense of widely applicable) and conceptually simple
definition of this concept.
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The exact construction of GR(S) does not matter at all10, what matters is the univer-
sality of this construction, which makes this functor GR unique upto unique natural
isomorphism making the relevant diagrams commute. Of course, there is a version of
this functor that applies to graded semirings as well, which yields graded rings, but we’ll
forget that for a moment and use the faithful embedding GrSemiRing ↪→ SemiRing in
making the following definition.

Definition 3.4.2. The K-theory functor is the contravariant functor

K := GR ◦ Vect : Ring Spop → Ring

from the category of ringed spaces to the category of rings that takes a ringed space
X to the Grothendieck ring of Vect(X).

The definition of this functor is the starting point of a beautiful extraordinary
cohomology theory, which is intimately connected to our discussions, but about which
we will, unfortunately, not say much in this article. To see why Definition 3.4.1 might be
a very general one, consider the following specializations:

Example 3.4.3. Let (X,X) be a topological space equipped with the sheaf X of con-
tinuous real (resp. complex) valued functions on X. Then a vector bundle on (X,X) is
just a continuous real (resp. complex) vector bundle on X.

Example 3.4.4. Let (X,X) be a r-manifold, where r ∈ {0, 1, . . . ,∞, ω, hol}.11 equipped
with the sheaf X of r real (resp. complex) valued functions on X.12 Then a vector
bundle on (X,X) is exactly a r real (resp. complex) vector bundle on X.

Example 3.4.5. Let (X,X) be a scheme (for example, a variety over a field). Then a
vector bundle on  → X is called an algebraic vector bundle.

Definition 3.4.1 therefore simultaneously encompasses all these different notions
of vector bundles. It also makes very evident what is happening when a single topological
space is equipped with different sheaves, i.e. we are “shifting structures”. For instance,
let X be a topological space and 0

R (resp. 0
C) denote the sheaves of continuous real

(resp.complex) valued functions on X. Then the natural injection of sheaves 0
R ↪→ 0

C
induces a morphism of ringed spaces ι : (X,0

R) → (X,0
C) that is the identity map on

the underlying space, such that the corresponding pullback

ι∗ : Vect(X,0
C)→ Vect(X,0

R)

takes a complex vector bundle  → X and forgets its complex structure, i.e. R :=
ι∗ → X remembers only the real vector bundle structure on X. This gives us a system-
atic way to treat complex vector bundles as real vector bundles, smooth vector bundles
as continuous vector bundles, algebraic vector bundles on smooth complex varieties as
holomorphic vector bundles, etc.

10One can take as an example the free ring Z[S] generated by the elements of S, written es for s ∈ S in
this ring, subject to relations of the form e1 = 1, es+t = es + et and est = eset for all s, t. Alternatively,
you could put an equivalence relation on the set of pairs (s, t) by saying (s, t) = (s′, t′) iff s+ t′ = s′ + t,
and define a multiplicative structure on the set of equivalence classes.

11Here, as always, C∞ means “smooth”, Cω means “analytic”, and Chol means “holomorphic”.
12Of course, only complex-valued functions are allowed when r = hol.
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In various categories, there is a way to think of the vector bundle  as an object
| | in that category equipped with a map π : | | → X, with the corresponding locally
free sheaf  recovered from | | as the sheaf of local sections of π. In this case, this
“geometric realization” | | of  is referred to as the total space of the vector bundle  .
This is done by writing the gluing data that defines  by comparing transition functions
across different trivializations and using this to glue together local “models” of the vector
bundle (although sometimes this can be done globally in one sweep, for instance for a
vector bundle  → X over a scheme we have | | := SpecX SymX

∨ via the relative
Spec construction). What we have used as a definition of a vector bundle here is often
referred to as the sheaf of sections of this total space. It is sometimes important to keep
this distinction between locally free sheaves and their total spaces in mind; for instance,
when dealing with ranks of morphisms between vector bundles.

Having said this, we will work exclusively in the topological or smooth category
in this article, where working with total spaces is just as easy. Therefore, we will conflate
the vector bundle  with its total space | |, and calling either one the “vector bundle”.
We will further restrict ourselves to working with complex vector bundles on paracom-
pact Hausdorff spaces, although much is there to be said about real vector bundles (the
framework of KO-theory) too .

Let us now develop briefly review theory of characteristic classes. There are many ways
to do this–at least four of them being

(a) via representable functors and classifying spaces (which we do below),
(b) using the Leray-Hirsch Theorem (see [35, Chapter 3]),
(c) as degeneracy loci of generic sections (which is how they were historically conceived;

see [10, Proposition 3.5.9] and [43, §5.2]), and
(d) via Chern-Weil Theory (see, for instance, [56, §23]).

For certain special cases, we may also use other techniques; for instance, we can construct
the Chern classes via the Euler class (see Remark 3.4.23) and the Stiefel-Whitney classes
via the Steenrod square operations (see [42, §4]). Perhaps the cleanest and pedagogically
most effective approach to defining characteristic classes and showing the equivalence of
these definitions is to first characterize them axiomatically, à la Grothendieck (see [35,
Chapter 3]).

We will follow a slightly different route–namely that of (a). Let Top denote
the category of paracompact Hausdorff spaces with continuous maps between them, and
HoTop the corresponding naive homotopy category, i.e. the category whose objects are
the same as in Top but morphisms are homotopy classes of continuous maps, so that
there is a “forgetful” functor F : Top → HoTop remembering only the homotopy type
of a space. Then isomorphisms in HoTop are, by definition, homotopy equivalences of
spaces.

Now consider the functor Top→ RingSp given by equipping a space X with the
sheaf of continuous complex-valued functions on X, and hence a (complex) vector bundle
functor

Vect : Topop → GrSemiRing. (3.3)

The first fundamental result in the theory is
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Proposition 3.4.6 (Homotopy Invariance of Vector Bundles). The functor (3.3) factors
through HoTop, i.e. there is a functor

Vect◦ : HoTopop → GrSemiRing

and a natural isomorphism Vect◦ ◦F ⇒ Vect.

Proof. See [35, Theorem 1.6]. ■

In what follows, we will drop the little ring on Vect◦ and confound the two functors
without a qualm. In English, Proposition 3.4.6 is saying that if f0, f1 : Y → X are
homotopic maps and E → Y a vector bundle, then the pullbacks f ∗

0E and f ∗
1E of E via

f0 and f1 on Y are isomorphic. In particular, every vector bundle over a contractible space
is trivial. This can be shown by reducing to the “universal” case of when X = Y × [0, 1],
and ft denotes the inclusion Y ∼= Y × {t} ↪→ Y × [0, 1], and then using the compactness
of [0, 1] to construct a sequence of isomorphisms, a suitable limit of which provides the
required isomorphism. When Y and E are smooth, this can then also be shown using
parallel transport with respect to a connection on E, and then the result amounts to the
continuous dependence of the solutions to differential equations on initial conditions.

The second fundamental result is

Proposition 3.4.7 (Representability of Vector Bundle Functor). For each integer n ≥ 0,
the functor VectnC : HoTopop → Set taking a space X to the set of isomorphism
classes of rank n complex vector bundles on it is representable, i.e. there is space
BUn, necessarily unique up to homotopy equivalence, and a natural isomorphism of
functors

HoTop(−,BUn)⇒ VectnC

Proof. See [35, Theorem 1.16]. ■

In fact, an explicit model for the homotopy space BUn representing rank n-
vector bundles is the infinite Grassmannian Grn,∞C of n-planes in C∞; see also Appendix
3.7. In this case, the natural isomorphism above is not hard to describe; indeed, if
γn := Grn,∞

C
(−1) → Grn,∞C is the tautological n-plane bundle over Grn,∞C , then for any

space X, the above natural isomorphism is given by

HoTop(X,Grn,∞C )→∼ VectnC(X), [f ] 7→ f ∗(γn),

with the fact that this is well-defined being a consequence of Proposition 3.4.6. Note
that when n = 1, this is saying that complex line bundles are classified by the space
BU1 ≃ Gr1,∞C = CP∞.

Remark 3.4.8. The representability of Vectn falls into the more general framework of rep-
resentability of principal G-bundles, which we now briefly explain. Given any topological
group G, we can consider the functor

BunG : Topop → Set
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which takes a space X to the set of isomorphism classes of principal G-bundles on X, i.e.
fibre bundles G → P → X such that G acts on the fibre via right multiplication as the
structure group. This functor again factors through

BunG : HoTopop → Set,

and the resulting functor is again representable, via the general framework of Brown
representability. This space representing it, which is unique up to homotopy equivalence,
is then called the classifying space for the group G. Often, when working with Lie groups
G, it suffices to restrict to maximal compact subgroupsH ⊂ G, since the inclusionH ↪→ G
is then a homotopy equivalence; applying this to G = GLnC with BunGLn C ∼= Vectn
and Un ⊂ GLn C explains our choice of notation for the space representing Vectn. The
following remarks about characteristic classes of vector bundles can be made very similarly
for principal bundles; for Lie groups G, this can be achieved on smooth manifolds also
via Chern-Weil Theory of principal G-bundles.

With this terminology, we can now define a characteristic class.

Definition 3.4.9. A characteristic class of complex vector bundles of rank n with
coefficients in a ring R is a natural transformation

VectnC ⇒ H∗(−;R),

where H∗(−;R) denotes (say) singular cohomology with coefficients in R.

In light of Proposition 3.4.7 and the Yoneda Lemma, characteristic classes of
complex vector bundles of rank n are in bijection with the cohomology ring

H∗(BUn;R),

reducing the study of characteristic classes to that of cohomology rings of Grassmannians;
see Appendix 3.7. One way to carry out this computation is to consider the central torus
Tn = Un

1 ⊂ Un, and the corresponding morphism (CP∞)n ∼= BUn
1 → BUn. Note that

principal Tn-bundles are simply the split vector bundles, i.e. vector bundles that are sums
of line bundles. Associated to this inclusion BUn

1 → BUn, we have a pullback map

H∗(BUn;R)→ H∗(BUn
1 ;R) = H∗((CP∞)n;R)] ∼= R[γ1, . . . , γn],

where in the last step we have used the computation H∗(CP∞;R) ∼= R[γ] with |γ| = 2
(done using say the Gysin sequence, the Leray-Serre Spectral Sequence, or using cellular
cohomology), alongside the Künneth Formula. It is then a standard result that this
pullback map is injective, with its image correspond to the n-invariant polynomials in
γ1, . . . , γn. Precisely, we get

H∗(BUn;R)→∼ H∗(BUn
1 ;R)

n ∼= R[γ1, . . . , γn]
n ∼= R[c1, . . . , cn],

where the cj are elementary symmetric polynomials in the γj’s. The classes cj so defined
are called the (universal) Chern classes, and γj the (universal) Chern roots. For a specific
vector bundle E → X, we can use Proposition 3.4.7 to find a map classifying it fE :
X → BUn, and define for 0 ≤ j ≤ n its jth Chern class with coefficients in R to be
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cj(E;R) := f ∗
Ecj. The classifying map fE is only well-defined up to homotopy, but by the

homotopy invariance of cohomology, this Chern class is well-defined. Using this definition,
one can then prove various properties about Chern classes as consequences of appropriate
results in the cohomology of Grassmannians. Here we summarize the story in

Theorem 3.4.10 (Chern Classes). To each complex vector bundle E → X over a
paracompact Hausdorff space X and ring R, we can associate for each j ≥ 0 a
characteristic class cj(E;R) ∈ H2j(X;R) for j ≥ 0 called the jth Chern class. The
Chern classes classes are uniquely characterized by the following properties:

(a) The zeroth class c0(E;R) = 1 ∈ H0(X;R) is the cohomology unit, and we have
cj(E;R) = 0 if j > rankE.

(b) (Naturality) If f : Y → X is a continuous map, then under the induced
pullback map f ∗ : H∗(X;R)→ H∗(Y ;R), we get for each j ≥ 0 that

cj(f
∗(E)) = f ∗(cj(E)).

(c) (Whitney Product Formula) If 0 → E ′ → E → E ′′ → 0 is a short exact
sequence of vector bundles on X, then the Chern classes of E,E ′ and E ′′ are
related via the product formula, which says that for each k ≥ 0 that

ck(E) =
∑
i+j=k

ci(E
′)cj(E

′′).

(d) (Normalization) For the tautological bundle CP1(1)→ CP1, we have

c1(CP1(1)) = ζ ∈ H2(CP1;R),

where ζ is the hyperplane class (in this case, the Poincaré dual to a point).

These properties also give the axiomatic characterization of Chern classes men-
tioned above; in practice, the actual construction of Chern classes does not matter at all,
and only these properties do. We will often suppress the coefficient ring in the notation
and define the total Chern class of E to be

c(E) :=
∞∑
j=0

cj(E).

With this notation, the Whitney product formula says simply that if 0 → E ′ → E →
E ′′ → 0 is a short exact sequence of vector bundles, then we have

c(E) = c(E ′) · c(E ′′) ∈ H∗(X;R).

One another important remark: to work with vector bundles obtained from linear alge-
braic operations on existing vector bundles, we may “pretend” that all our vector bundles
actually split as direct sums of line bundles. This is justified via
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Theorem 3.4.11 (Splitting Principle). An identity among Chern classes of bundles
that is true for bundles that are direct sums of lines bundles is true in general. More
precisely, if X is a paracompact Hausdorff space, and E → X is a (real or complex)
vector bundle on X, then there is a space Y and a morphism f : Y → X such that

(a) for any coefficient ring R, the pullback map f ∗ : H∗(X;R) → H∗(Y ;R) is
injective, and

(b) the pullback bundle f ∗E admits a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = f ∗E,

where r = rankE, by vector subbundles Ej ⊂ f ∗E such that for each j =
1, . . . , r, the successive subquotient bundle Ej/Ej−1 is a line bundle.

Proof. Take Y to be the complete flag bundle Fl1
r

(E) of E, and f : Fl1
r

(E) → X the
projection map. The bundles Ej are then the obvious bundles: for 0 ≤ j ≤ r, the fiber
of Ej over a complete flag (V1, . . . , Vr−1) is simply Vj. The only thing that remains to
be shown is that f ∗ : H∗(X;R) → H∗(Y ;R) is injective, but that is an easy inductive
consequence of the Leray-Hirsch Theorem. ■

The proof above shows us also that if X is a smooth (resp. complex) manifold and
E → X is a smooth (resp. holomorphic) vector bundle, then the splitting space Y , the
morphism f : Y → X, and the splitting on Y of f ∗E can also be taken to be in the same
category.

Having developed the theory of Chern classes, we may now also speak of other
characteristic classes coming from multiplicative sequences as follows. Note that the
machinery of Appendix 3.3 is developed in such a way that for any vector bundle E → X,
evaluation at E yields a graded ring homomorphism

evalE : R[c]→ H∗(X;R),

and by functoriality of 1-units of a ring also a homomorphism

evalE : U1(R[c])→ U1(H
∗(X;R)). (3.4)

Definition 3.4.12.

(a) Given a multiplicative sequence (Kn) and a complex vector bundle E → X,
the total K-series of E, denoted

K(E, z) ∈ U1(H
∗(X;R))

is the image of the series
∑∞

i=0Kiz
i ∈ U1(R[c]) under the evaluation map (3.4).

(b) If further X is of finite type (i.e. rankZH
∗(X;Z) < ∞), then evaluating

the series K(E, z) element z0 ∈ H∗(X;R) gives an element in H∗(X;R). In
particular, taking z0 = 1 yields the total K-sequence of E, denoted

K(E) := K(E, 1) ∈ H∗(X;R).
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Example 3.4.13. When K is the identity sequence (see Example 3.3.2), then the corre-
sponding total K-series is denoted

c(E, z) =
∞∑
i=0

cj(E)z
j

and is called the Chern polynomial of E. Note that, irrespective of the cohomology of the
base X, this is indeed a polynomial because cj(E) = 0 for j > rankE. Of course, the
total K-sequence in this case is simply the total Chern clas as defined above.

Remark 3.4.14. If X is not of finite type, then the total K-sequence of E lives rather in
total product H∗∗(X;R) :=

∏∞
i=0H

i(X;R).

Remark 3.4.15. We will often use sans serif fonts applied to the same letter as in the
series to denote total K-series and classes of vector bundles.

Now, the Whitney Product Formula for Chern classes implies that for any short
exact sequence

0→ E ′ → E → E ′′ → 0

of vector bundles on a space X and multiplicative sequence K, we have the product
formula

K(E, z) = K(E ′, z) · K(E ′′, z) ∈ U1(H
∗(X;R));

indeed, the definition of multiplicative sequences is set-up to make this true. This formula,
along with the Splitting Principle (Theorem 3.4.11), gives us a recipe to compute these
series: if E has rank r ≥ 0, and we formally factor the Chern polynomial as

c(E, z) =
r∏

i=1

(1 + γiz),

so that the γi are the Chern roots of E, then the total K-series of E is given by

K(E, z) =
r∏

i=1

Q(γiz),

where Q is the characteristic series corresponding to K.

Example 3.4.16. If E → X is a complex vector bundle with Chern roots γi, then,
respectively, the total Pontryagin, Todd, L-, generalized Todd, and Â-series of E are

p(E, z) =
∏
i

(1 + γ2i z
2),

Td(E, z) =
∏
i

γiz/(1− e−γiz),

L(E, z) =
∏
i

γiz/ tanh(γiz),

Tdy(E, z) =
∏
i

γiz(1 + ye−γiz(1+y))/(1− e−γiz(1+y)), and

Â(E, z) =
∏
i

(γiz/2)/ sinh(γiz/2).

Evaluating these at z = 1 yields, respectively, the total Pontryagin, Todd, L-, generalized
Todd, and Â-classes of E.
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Suppose now that X is a closed, R-orientable manifold of dimension 2n ≥ 0,
so that the top cohomology H2n(X;R) is cyclic, generated by a specified generator ηX
coming from the orientation. Then, as noted in Conventions and Fundamentals, there is
an evaluation map ˆ

X

: H∗(X;R)→ R

which sends a cohomology class to the coefficient of ηX in its degree 2n component.

Definition 3.4.17. In the above set-up, given a complex vector bundle E → X and
multiplicative sequence K, we define the K-characteristic of E to be

K(E) :=

ˆ
X

K(E) ∈ R.

The K-characteristic of E is sometimes also referred to as the “K-genus” of
E. In particular, in light of the previous examples, we have now defined the Chern
genus, Pontryagin genus, Todd genus, L-genus, generalized Todd genus and Â-genus of
a complex vector bundle on a closed orientable R-manifold, where the R are as in the
definitions of these multiplicative sequences.

Remark 3.4.18. We also adopt the following convention: if X is a closed complex mani-
fold andK a multiplicative sequence, then by the totalK-series, totalK-class, orK-genus
ofX, we mean the corresponding quantity for its holomorphic tangent bundleTX. These
are denoted by K(X, z),K(X), and K(X) respectively.13

So far, we have only spoken about characteristic classes of complex vector bun-
dles; let’s now speak about characteristic classes of real vector bundles. Of these, two of
primary importance are the Stiefel-Whitney classes (wj) and the Pontryagin classes (pj).

The discussion for Stiefel-Whitney classes is very similar to the one for Chern
classes above, where we work instead with real vector bundles and F2-coefficients. Again,
we have a natural isomorphism HoTop(−,BOn) ⇒ VectnR, where BOn

∼= Grn,∞R is the
infinite real Grassmannian. As before, we may define characteristic classes of real vector
bundles of rank n ≥ 0 with coefficients in an F2-algebra R as a natural transformation
VectnR ⇒ H∗(−;R), and these are again in bijection with elements of the cohomology ring
H∗(BOn;R). The key difference, here, now is that this last cohomology ring is given by

H∗(BOn;R) = R[w1, . . . , wn],

where the |wj| = j for 1 ≤ j ≤ n and the wj are called the universal Stiefel-Whitney classes.
A theorem analogous to Theorem 3.4.10 still holds, and the Splitting Principle (Theorem
3.4.11) applies verbatim. We will not develop this theory again, but rather refer the
reader to [42, §4] or [35, Chapter 3] for more on Stiefel-Whitney classes. The one result
that we will need and use will be the relationship between Chern and Stiefel-Whitney
classes, namely

13This notation K(X) has nothing to do with the K-theory of X. Usually, we will work with specific
multiplicative sequences, so no confusion should arise from this overloaded notation.
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Theorem 3.4.19. Let E → X be a complex vector bundle, and ER → X its under-
lying real vector bundle. Then the reduction mod 2 of coefficients takes the total
Chern class of E to the total Stiefel-Whitney class of ER, i.e.

H∗∗(X;Z) ∋ c(E) 7→ w(ER) ∈ H∗∗(X;Z/2).

In other words, we have for each j ≥ 0 that

w2j+1(E) = 0 and w2j(E) ≡ cj(E) (mod 2).

Proof. See [35, Proposition 3.8]. ■

The Pontryagin classes, on the other hand, can be described in terms of the
Chern classes, as in

Definition 3.4.20. Let E → X be a (topological) real vector bundle of rank n ≥ 0.
Then for each i ≥ 0 and coefficient ring R, we define the ith Pontryagin class of E
with coefficients in R via

pi(E;R) := (−1)ic2i(EC;R) ∈ H4i(X;R),

where EC = E ⊗ C is the complexification of E.

In what follows, as before, we will often suppress the coefficient ring R, although
it is not unimportant. Note that we have intentionally left it ambiguous in the above
definition what we mean by i ≥ 0. Certainly, pi(E;R) = 0 for all i > (rankE)/2.
The definition certainly works for integer i, but it can also be somewhat made sense of
(without the factor of (−1)i say) when i is a half-integer. Note that since EC ∼= EC, we
have for each j ≥ 0 that

cj(EC) = cj(EC) = (−1)jcj(EC),

so that if j is odd, then
2cj(EC) = 0.

This tells us that when j is odd, cj(EC;R) is 2-torsion, and hence there is a notion of
half-integer Pontryagin classes, which are 2-torsion classes. This small technicality about
half-integer Pontryagin classes implies also that if

0→ E ′ → E → E ′′ → 0

is a short exact sequence of real vector bundles, then for each k ≥ 0, the product formula

pk(E) =
∑
i+j=k

pi(E
′) · pj(E ′′) (3.5)

does not hold on the nose, but only modulo 2 torsion.

Therefore, when working with Pontryagin classes, it is often convenient to take
the coefficient ring R to be a Z[1/2]-algebra (e.g. a field of characteristic other than 2),
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in which case it is true that cj(EC) = 0 for odd j and the product formula (3.5) does hold
on the nose. In this case, we define the total Pontryagin class of the bundle E to be

p(E) =
∞∑
j=0

pj(E).

Now, if we had worked with the reduced convention (see Remark 3.3.7), then evaluation
at a vector bundle E would yield again a graded ring homomorphism

evalE : R[p]→ H∗(X;R).

Working with reduced sequences K̃ then allows us to define, as before, then total K̃-series,
class, and genus of a vector bundle E.

Remark 3.4.21. Similarly to the complex case (see Remark 3.4.18), whenever we speak
of the Stiefel-Whitney classes or K̃-series, classes, or genera of real smooth manifolds
X, we always mean the corresponding quantity for its smooth tangent bundle TX. In
particular, we have now defined the Pontryagin, L- and Â-genera of a manifold X. Note
that these all vanish unless dimX ≡ 0 (mod 4).

Remark 3.4.22. Note that if E → X is a complex vector bundle, then we now have two
apparently distinct definitions of its total Pontryagin series (resp. class, resp. genus):
namely as its total K-class corresponding to the series Q(z) = 1 + z2, and as the total
Pontryagin class p(ER) of its underyling real vector bundle defined above. We end this
section by noting that these two definitions coincide. Indeed, if E is a complex vector
bundle, then we have

(ER)C ∼= E ⊕ E
as complex vector bundles, so that

∞∑
j=0

(−1)jpj(ER) =

(
∞∑
i=0

ci(E)

)(
∞∑
i=0

(−1)ici(E)

)
,

where on the left side we have used the definition of the Pontryagin classes, and on the
right side we have used the Whitney product formula along with the result that ci(E) =
(−1)ici(E) for all i ≥ 0, which is an immediate consequence of the splitting principle
and the fact that for any complex line bundle L we have c1(L) = c1(L

∨) = −c1(L). The
equivalence of the two definitions p(ER) and p(E) then follows from the formula (3.2).

Remark 3.4.23. As a final remark, we note that if E → X is a complex vector bundle of
rank n, then the underlying real vector bundle ER is canonically oriented, and we then
have

cn(E) = e(ER).

This result is clear when E is a line bundle (from U1 = SO2, or from considering the
“universal case” of CP1(−1) → CP1), and follows from the line bundle case by the
splitting principle: if E ∼=

⊕
i Li, with Li line bundles, then

cn(E) =
∏
i

c1(Li) =
∏
i

e((Li)R) = e(ER).

This equality can also be taken as an alternative definition of the top Chern class, with the
lower Chern classes defined inductively to satisfy Theorem 3.4.10. This is, for instance,
the approach adopted in [42, §14].
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3.5 Multiplicativity of Genera

It is often the case that, given a fibre bundle F → X → B of spaces, numerical invariants
(such as genera) of F,X, and B are related via a multiplicative formula of the form

I(X) = I(B) · I(F ),

where I stands for a generic numerical invariant. We will now state precise formulations
of several instances of this general principle, proving some of them, and delegating proofs
of others to references. The core of these proofs usually relies on some version of the
Leray-Serre spectral sequence associated to this fibre bundle. Firstly, we have

Theorem 3.5.1. Let F → X
π−→ B be a fibre bundle of closed manifolds. Then

χ(X) = χ(F ) · χ(B).

Proof 1 of Theorem 3.5.1. If X = B × F is the product bundle, then the result follows
from the Künneth Formula or equivalently Leray-Hirsch Theorem in (say) rational coho-
mology. In general, the result follows from the product case (or even simply the homotopy
invariance of the Euler characterstic) by using the Mayer-Vietoris sequence to induct on
the cardinality of a finite good cover (in the sense of [9, §5]) of B that trivializes the
bundle F → X → B.14 ■

To give the second proof, we quickly review the theory of relative tangent bundles
and integration along fibers, following say [9, §6]. If π : X → B is any submersion of
smooth manifolds, then the total differential dπ : TX → π∗TB of π is a surjective
morphism of vector bundles on X, the kernel of which, denoted Tπ, is called the relative
tangent bundle of π. In other words, we have by definition a short exact sequence of vector
bundles on X given by

0→ Tπ → TX
dπ−→ π∗TB → 0. (3.6)

Further, for any b ∈ B, the fiber Xb := π−1(b) ⊂ X is an embedded submanifold of
codimension equal to dimB, and the restriction of Tπ to the fiber recovers the tangent
bundle of Xb, i.e. for all b ∈ B we have

Tπ|Xb
∼= TXb.

Finally, if X and B are closed, oriented manifolds, then integration along fibers gives rise
to the Gysin homomorphismˆ

X/B

: H∗
dR(X;R)→ H∗−r

dR (B;R),

where r := dimX − dimB, which satisfies the push-pull formulaˆ
X

α ∧ π∗β =

ˆ
B

(ˆ
X/B

α

)
∧ β (3.7)

for any α ∈ Hs
dR(X;R) and β ∈ Ht

dR(B;R) with s, t ≥ 0 such that s + t = dimX. Now
we can give

14This last statement is, of course, a statement about Čech cohomology of finite good covers of B and
X, and the equivalence of singular and Čech cohomology for manifolds.
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Proof 2 of Theorem 3.5.1, when X,B and F are oriented and F → X → B is an oriented
fibre bundle. By Poincaré duality, the formula is only saying something nontrivial if
dimB ≡ dimF ≡ 0 (mod 2), which we assume hence. In this case, the sequence (3.6)
along with the multiplicativity of the Euler class implies the formula

e(TX) = e(Tπ) · π∗e(TB),

where the wedge product in this case is symmetric because of the dimension hypothesis,
so we need not worry about the order of multiplication. Integrating over X and using
the push-pull formula (3.7) then yieldsˆ

X

e(TX) =

ˆ
B

(ˆ
X/B

e(Tπ)

)
e(TB).

Note that
´
X/B

e(Tπ) ∈ H0(B;R) ∼= R is just a number15, and indeed by definition

of integration along the fiber and the Chern-Gauss-Bonnet Theorem (Theorem 1.2.1)
applied to each fiber F = Xb, this number is nothing but χ(F ). Applying Chern-Gauss-
Bonnet two more times–to X and B–then yields

χ(X) =

ˆ
X

e(TX) =

ˆ
B

χ(F ) · e(TB) = χ(F )

ˆ
B

e(TB) = χ(F ) · χ(B).

■

Proof 3 of Theorem 3.5.1. This third proof works more generally for topological fiber
bundles, but under the assumption that local system ∗(F ) of coefficients on the base B
coming from this fibration is trivial, i.e. that the fundamental group π1(B) acts trivially
on the cohomology H∗(F ). Then we may form the Leray-Serre Spectral Sequence coming
from this fibration, say with rational coefficients, which has E2 page given by

Ep,q
2 = Hp(B;∗(F ;Q)) ∼= Hp(B; Hq(F ;Q)) ∼= Hp(B;Q)⊗Q Hq(F ;Q),

and which abuts to H∗(X;Q). It follows from this that the Ep,q
2 page is finitely supported.

In general for a bigraded spectral sequence E = (Ep,q
r ) of rational vector spaces which is

eventually finitely supported (i.e. there is an r ≥ 1, such that Ep,q
r = 0 for all but finitely

many p, q), then we define its Euler characteristic to be

χr(E) =
∑
p,q

(−1)p+q dimQE
p,q
r .

By standard linear algebra (the rank-nullity theorem!), we have then that

χr(E) = χr+1(E) = · · · = χ∞(E).

In our case, the Leray-Serre spectral sequence E is finitely supported for r ≥ 2 and that

χ(F ) · χ(B) =
∑
p,q

(−1)p+q dimQ (Hp(B;Q)⊗Q Hq(F ;Q))

= χ2(E)

= χ∞(E)

=
∑
n

(−1)n dimQ H∗(X;Q) = χ(X),

as needed. ■
15Here we are imlicitly assuming that B is connected. If it is not, we may work over each component

separately to get the same result.
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Remark 3.5.2. There are certainly other ways to prove Theorem 3.5.1 as well that apply
to various other contexts (e.g. finite CW complexes, or more generally spaces of finite
type). For instance, for fiber bundles over finite CW complexes, one could proceed by
induction on the dimension of the base and analyze what happens when attaching exactly
one cell at a time, noting that the fibration over an open cell (or more generally any
contractible base) must necessarily be homotopically trivial. We can also use a variation
of the argument in Proof 3 to get rid of the assumption that the local system ∗()
be trivial; namely, using Z/2 coefficients, since the image of π1(B) → Aut(H∗(F ;Z/2))
is finite (note that F is a space of finite type), we may pull the fibration back along
the corresponding finite cover of B, on which the required triviality of the local system
holds by construction. We may then finish by using Corollary 3.5.3, which can also be
proven more easily by direct means (e.g. by lifting a CW structure on the base to one on
the cover). Note also the proofs obtained by specializing Theorem 3.5.4 (resp. Corollary
3.5.7) to t = −1 (resp. y = −1) in the special cases of the specified additional hypotheses
on the bundle.

Corollary 3.5.3. If X → B is a covering map of closed manifolds of degree d, then

χ(X) = d · χ(B).

Proof. Apply the previous theorem to the fibre bundle Z/d→ E → B. ■

Next, we have

Theorem 3.5.4. Let F → X
π−→ B be a fibre bundle of spaces of finite type and

k a field such that the conditions of the Leray-Hirsch Theorem are satisfied, i.e.
the cohomology H∗(F ; k) is free, and there are global classes α1, . . . , αN ∈ H∗(X; k)
such that for each b ∈ B, the restriction of αj to the fiber Fb = π−1(b) freely
generate H∗(Fb; k). Then we have the multiplicativity of k-Poincaré polynomials in
this bundle, i.e.

pt(X; k) = pt(F ; k) · pt(B; k) ∈ Z[t].

Proof. This follows immediately from the conclusion of the Leray-Hirsch Theorem, which
says that H∗(X; k), thought of as a H∗(B; k)-module via the pullback π∗, is freely gener-
ated as a module by the classes α1, . . . , αN , along with the fact that

pt(F ; k) =
N∑
i=1

t|αi|.

■

One important special case when the hypotheses of the Leray-Hirsch Theorem
are satisfied is when X = FlmE → B is the flag bundle of some type m for some vector
bundle E → B. Note how plugging in t = −1 in Theorem 3.5.4 recovers the result of
Theorem 3.5.1 in this special case, but says more in general.
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Remark 3.5.5. We cannot expect the multiplicativity of the Poincaré polynomial for
arbitrary smooth fibre bundles of closed manifolds. For instance, for the Hopf fibration
S1 → S3 → S2, we have

pt(S
3) = 1 + t3 ̸= (1 + t2)(1 + t) = pt(S

2) · pt(S1).

The problem here is that the Leray-Serre spectral sequence has nontrivial differentials.

A similar spectral sequence argument in ∂-cohomology also works for relating the
χy-characteristics of vector bundles holomorphic on spaces in holomorphic fibre bundles
(see §1.4 for the relevant definitions). Here we state without proof

Theorem 3.5.6. Let F → X
π−→ B be a holomorphic fibre bundle of connected closed

complex manifolds with connected structure group and F Kählerian. Then for any
vector bundle E → B, we have

χy(X, π
∗E) = χy(F ) · χy(B,E).

Proof. See [13, Appendix Two]. ■

Corollary 3.5.7. Let F → X
π−→ B be a holomorphic fibre bundle of connected closed

complex manifolds with connected structure group and F Kählerian. Then we have

χy(X) = χy(F ) · χy(B).

Proof. Take E = C→ B to be the trivial bundle in Theorem 3.5.6. ■

Plugging in y = −1 in Corollary 3.5.7 recovers Theorem 3.5.1 in the special case
of the hypothesis. We end by stating, again without proof, a couple of other multiplica-
tivity results along these lines. We will not use these results in this text.

Theorem 3.5.8 (Chern-Hirzebruch-Serre). Let F → X → B be an oriented fibre
bundle of connected closed oriented manifolds. Suppose that the fundamental group
π1(B) of the base acts trivially on the cohomology H∗(F ) of F . Then the signatures
of F,X, and B are related as

Sign(X) = Sign(F ) · Sign(B).

Proof. Again a spectral sequence argument, although more involved; see [59]. ■

Theorem 3.5.9 (Bott-Taubes). Let F → X → B be a fibre bundle of closed mani-
folds with compact, connected Lie structure group and F spin. Then

Â(X) = Â(F ) · Â(B).

Proof. Indeed, this is true more generally of the Witten genus (i.e. the universal elliptic
genus), and is a manifestation of the rigidity of the elliptic genus; see [60]. ■
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3.6 Almost Complex Structures on Manifolds

Note that a complex manifold of dimension n ≥ 0 is, in particular, an orientable real
smooth manifold of dimension 2n. A fundamental question we can ask in the theory
of manifolds is–given an orientable real smooth manifold of even dimension, when is
it the underlying real manifold of a complex manifold, i.e. when can it be given a
complex structure? One necessary condition is easy to give. If X is a complex manifold
of dimension n, then the real tangent bundle TX of X is the underlying real vector
bundle of a complex vector bundle, namely the holomorphic tangent bundle TX on X.
Therefore, we may ask more generally: given a smooth real 2k-plane bundle E → X,
when is E the underlying real vector bundle of a complex vector bundle, i.e. when is
there a complex vector bundle F → X such that E ∼= FR? Suppose that this is the case.
Then multiplication by i =

√
−1 defines a real-linear endomorphism of F that squares to

− idF . Therefore, under the isomorphism E ∼= FR, the real vector bundle E also admits a
real linear endomorphism J : E → E such that J2 = − idE. This motivates the following
definition.

Definition 3.6.1. Given a real vector bundle E → X on a space X, a complex
structure on E is a vector bundle endomorphism J : E → E such that J2 = − idE.

Therefore, a necessary condition for a real vector bundle E to be the underlying vector
bundle of a complex vector bundle is that it must admit an almost complex structure.
This condition is also sufficient, and indeed we can define multiplication by i on the fiber
Ex of E at x ∈ X by Jx, and check that this turns E into a complex vector bundle.
In this language, a necessary condition for a real manifold X to be the underlying real
manifold of a complex manifold is that its tangent bundle TX must admit a complex
structure. This condition has a name.

Definition 3.6.2. An almost complex structure on a real smooth manifold X is a
complex structure on its tangent bundle TX, i.e. a real vector bundle endomorphism
J : TX → TX such that J2 = − idTX .

A smooth manifoldX is said to be almost complex if it admits an almost complex
structure. We sometimes say that this almost complex structure J is compatible with the
smooth structure of X. Note that the existence of almost complex structures already
has many consequences. We list them briefly; for a more detailed discussion, see [21,
Part V]. An almost complex structure implies a decomposition of the complexification
TXC of the tangent bundle into the J-holomorphic and J-antiholomorphic parts T1,0X
and T0,1X respectively, and then a similarly decomposition on the cotangent bundle
and the corresponding exterior powers as well. From this, we get for each pair (p, q) a
bundle Ωp,q(X) of (p, q)-forms with respect to J , nonzero only for p, q ≤ n, and we have
corresponding ∂J and ∂J operators, with ∂J : Ωp,q(X) → Ωp+1,q(X) and ∂J : Ωp,q(X) →
Ωp,q+1(X). Already, this is a nontrivial necessary condition, and there are manifolds that
do not admit almost complex structures: examples include CP2#CP2 (Corollary 3.6.9)
or more generally #2mCP2n for any m,n ≥ 1 (Example 3.6.7), the spheres S2n for n = 2
and n ≥ 4 (Theorem 2.1.4), and quaternionic projective spaces HPn for n ≥ 1 (Theorem
2.2.23).
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However, this is still not quite a sufficient condition, because it still does not give
us a way to construct holomorphic coordinates, or equivalently holomorphic functions,
on X–indeed, in general, there are many holomorphic maps into X (this is the key
principle underlying the theory of pseudoholomorphic or J-holomorphic curves), but no
holomorphic functions out of X. When an almost complex structure J on a manifold X
comes from an actual complex structure, so we can give holomorphic coordinates on X
compatible with J , we say that J is integrable. Not all almost complex structures are
integrable; for instance, we show in Proposition 2.1.7 that the almost complex structure
constructed on S6 using the octonions is a nonintegrable due to the failure of associativity
of the octonions. There also exist manifolds which admit almost complex structures, but
no complex structures, the simplest example being perhaps #3CP2, i.e. the connect sum
of three complex projective planes with their usual orientation, as first shown by Van de
Ven in [61].

The definitive theorem on the integrability of almost complex structures is the
Newlander-Nirenberg Theorem. To state this theorem, we first introduce the Nijenhuis
tensor  on an almost complex manifold (X, J), which is a tensor of type (1, 2) on X
and is defined by

 (ξ, η) := [Jξ, Jη]− J [ξ, Jη]− J [Jξ, η]− [ξ, η] (3.8)

for local vector fields ξ, η on X. It is easy to see that this is a well-defined tensor, i.e. for
any x ∈ X, the value  (ξ, η)x ∈ TxX of it at x depends only on ξx and ηx. Now we are
ready to state

Theorem 3.6.3 (Newlander-Nirenberg). Let (X, J) be an almost complex manifold.
Then the following are equivalent:

(a) (X, J) is a complex manifold, i.e. J is integrable.
(b) We have [T1,0X,T1,0X] ⊂ T1,0X, i.e. the Lie bracket of two J-holomorphic

vector fields is J-holomorphic.
(c) The Nijenhuis tensor  of (X, J) vanishes identically.
(d) The de Rham differential d is the sum d = ∂J + ∂J .

(e) We have ∂
2

J = 0.

Proof. This is a hard theorem and its proof uses deep analytic techniques. For a discussion
of this result and references to several proofs, see [21, Theorem 15.4]. ■

In the rest of this appendix, we present two ways to study the existence of
almost complex structures on manifolds: using obstruction theory, and using a criterion
of Hirzebruch. Firstly, we have

Theorem 3.6.4. Let X be a smooth orientable manifold of real dimension 2n. Then
the obstructions to the existence of an almost complex structure on X lie in the
groups

H∗(X; π∗−1(SO2n /Un)).

In particular, if for 1 ≤ j ≤ 2n, we have Hj(X; πj−1(SO2n /Un)) = 0,
then X admits an almost complex structure. In this case, the obstruction to the
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uniqueness (up to homotopy) of this almost complex structure lies in

H2n(X; π2n(SO2n /Un)) ∼= π2n(SO2n /Un),

so that, if this group is trivial well, then there is a unique almost complex structure
on X up to homotopy, i.e. the space of almost complex structures on X is (path)
connected.

Proof. Given a real vector space V of dimension 2n, the set

Comp(V ) := {J ∈ GLR(V ) : J2 = − idV } ⊂ GLR(V )

of complex structures on V is a closed submanifold of dimension 2n2; indeed, it is dif-
feomorphic to the homogenous space GLR(V )/GLC(V, J) for any given J ∈ Comp(V ).
This manifold has two connected components Comp±(V ) corresponding to the two ori-
entations on V , since a complex structure naturally determines an orientation.16 If V is
further equipped with an inner product, then we may also consider the manifold

SOComp(V ) := {J ∈ SO(V ) : J2 = − idV } ⊂ Comp+(V )

of orthogonal complex structures on V , which is diffeomorphic to the homogenous space
SO(V )/U(V, J) for any J ∈ SOComp(V ), i.e. diffeomorphic to the homogenous space
SO2n /Un, and has in particular dimension 2

(
n
2

)
. The addition of this metric amounts to

restricting to maximal compact subgroups.

Given a smooth manifold X of dimension 2n, the manifolds Comp+(TxX) for
x ∈ X glue together to form a fibre bundle Comp+(X)→ X over X, where by definition
a smooth section of this fibre bundle is an almost complex structure on X. Similarly, if
we equip X with a Riemannian metric, then we get a fibre bundle SOComp(X) → X
with fibres diffeomorphic to SO2n /Un, sections of which correspond to almost complex
structures on X orthogonal with respect to this Riemannian metric. Indeed, Comp+(X)
deformation retracts onto SOComp(X). The result then follows from obstruction theory17

applied to this bundle SOComp(X)→ X.

Said another way, an almost complex structure amounts to a lift of the principal
SOn-bundle SOn(X) of orthonormal tangent frames on X (with respect to any specified
Riemannian metric) to a principal Un bundle, which amounts to a lift

BUn SO2n /Un

X BSO2n,

of the classifying map X → BSO2n of the tangent bundle TX to a map X → BUn. Since
the homotopy fiber of the map BH → BG induced by a inclusion H ↪→ G of a compact
Lie subgroup is again the quotient G/H; applying this to H = Un ↪→ G = SO2nR gives
us again that the obstructions lie in H∗(X; π∗−1(SO2n /Un)). ■

16Note that Comp(V ) ⊂ GL+
R (V ), so the existence of these two components is not, in fact, due to

GLR(V ) being disconnected. For instance, when n = 1 and V = R2, we have the explicit description

Comp(R2) =

{[
a b
c −a

]
: a2 + bc = −1

}
⊂ GL+

2 R, and the two components of Comp(R2) come from

the two sheets of the hyperboloid a2 + bc = −1.
17See, for instance, [62, Lecture 18] for the fundamentals of obstruction theory.
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The manifolds SO2n /Un are examples of Hermitian symmetric spaces and are in
particular complex projective varieties. They also admit a few alternate descriptions. For
instance, SO2n /Un can be thought of as the isotropic Grassmannian IsoGr2nC consisting
of maximal oriented isotropic subspaces of C2n, which can itself be described as one
component of the Fano variety of projective (n− 1)-planes on a smooth quadric X2n−2

2 ⊂
CP2n−1. Alternatively, if π : Spin2n → SO2n denotes the universal cover of SO2n, then
if Ũn := π−1Un ⊂ Spin2n is the preimage of Un under π, then Ũn → Un is a nontrivial
degree two cover of Un. This cover can be described as follows: we have the determinant
homomorphism det : Un → U1

∼= S1, and Ũn is the pullback via det of the degree two
cover z 7→ z2 of S1. Elements of Ũn then can be written as pairs (U, s) ∈ Un×S1, where
U ∈ Un and s2 = detU . In particular, Ũn is still diffeomorphic to Un. For small values of
n, the exceptional isomorphisms of spin groups then allow us to give concrete descriptions
of SO2n /Un

∼= Spin2n /Ũn. For instance, we have

Proposition 3.6.5. For n ∈ {1, 2, 3}, we have diffeomorphisms SO2n /Un
∼= CPn(n−1)/2.

Proof. The case n = 1 is trivial. For n = 2, note that a smooth quadric X2
2 ⊂ CP3 is

the Segre product CP1 × CP1, and hence the Fano variety of projective lines on it has
two components, each isomorphic to CP1. We could also argue as follows: if R4 with
is usual inner product and standard orientation is the defining representation of SO4R,
then the action of SO4R on Λ2(R4)∨ preserves the ±1-eigenspaces Λ2

±(R4)∨ of the Hodge
star involution on Λ2(R4)∨, as well as the induced norm on them. The (+1)-eigenspace
is called the space of self dual alternating forms, whereas the (−1)-eigenspace is called
the space of anti self dual (ASD) alternating forms. In particular, this SO4R action
preserves the unit sphere S(Λ2

−(R4)∨) ∼= S2 in the space Λ2
−(R4)∨ of ASD alternating

bilinear forms on R4. It is then a standard fact that this action is transitive, and the
stabilizer of any unit-norm ASD alternating form is U2; indeed, if e1, . . . , e4 denotes an
oriented orthonormal basis of R4, then the stabilizer of the unit-norm ASD alternating
form

1√
2
(e1 ∧ e3 + e2 ∧ e4) ,

is exactly
SO4R ∩ Sp4R = U2 .

18

Finally, for n = 3, we use that SO6 /U3
∼= Spin6 /Ũ3. Note that we have an exceptional

isomorphism Spin6
∼= SU4 which comes from observing that the complex Clifford algebra

ClC5
∼= Mat4×4(C) is the algebra of 4× 4 matrices over C, giving us an injection Spin6 ↪→

U4, along with the fact that the Lie algebra so6 is simple. Now SU4 acts transitively on
CP3, with the stabilizer of a point being diffeomorphic to U3. It is not hard to see then
that under these identifications, we have SO6 /U3

∼= Spin6 /Ũ3
∼= SU4 /U3

∼= CP3. ■

In the next case of n = 4, the space SO8 /U4
∼= X6

2 ⊂ CP7 is a smooth quadric
hypersurface in CP7. A different exposition of these results can also be found in [40].

18In the last step we have used that for any n ≥ 1, we have Sp2n R ⊂ SL2n R, as well as the“Kähler
trichotomy” which says that

GLn C ∩O2n R = GLn C ∩ Sp2n R = Sp2n R ∩O2n R = Un,

where the intersection is carried out in GL2n R.
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We end by mentioning the promised criterion by Hirzebruch.

Theorem 3.6.6 (Hirzebruch). Let X be a smooth manifold of real dimension 4k for
some k ≥ 0. If X admits an almost complex structure, then the Euler characteristic
χ(X) and the signature Sign(X) of X are related by

χ(X) ≡ (−1)kSign(X) (mod 4).

We will not give a complete proof of this result, although is it not too hard,
once we assume the Atiyah-Singer Index Theorem.19

Proof Sketch. The key idea here to use the Hirzebruch χy-genus χy(X) and the gen-
eralization of the Hirzebruch-Riemann-Roch Theorem (or more specifically Corollaries
1.4.6 and 1.4.7) to the setting of almost complex manifolds via the machinery of the
Atiyah-Singer Index Theorem (see Remark 1.4.12). For full details, see [19]. ■

Example 3.6.7. As an application, also taken from [19], we can look at m,n ≥ 1, let
#mCPn denote the m-fold connect sum of complex projective spaces CPn. When n is
odd, complex conjugation gives us an orientation-reversing diffeomorphism of CPn, so
that CPn and CPn are diffeomorphic as oriented manifolds. (This is not true when n is
even, because Sign(CP2k) = 1 whereas Sign(CP2k) = −1.) In particular, we have

#mCPn ∼= CPn#
(
#m−1CPn

) ∼= Blp1,...,pm−1 CPn

is diffeomorphic to the blow-up of CPn at m− 1 general points p1, . . . , pm−1, and hence,
in fact, admits an integrable almost complex structure.

When n is even, we can argue as follows. Note that for any k ≥ 2 and k-
manifolds X, Y , the connect sum X#Y has Euler characteristic given by

χ(X#Y ) = χ(X) + χ(Y )− χ(Sk).

In particular, we have χ(#mX) = mχ(X) − (m − 1)χ(Sk). By contrast, the signature
Sign is simply additive: we have

Sign(X#Y ) = Sign(X) + Sign(Y )

so that Sign(#mX) = m · Sign(X). It follows that for any n,m ≥ 1 we have

χ(#mCPn) = mn−m+ 2,

whereas for even n only we have Sign(#mCPn) = m. Therefore, if m and n are both
even, then the criterion of Theorem 3.6.6 cannot be satisfied, and #mCPn is not almost
complex. When n is even but m is odd, in fact the manifolds #mCPn do all admit almost
complex structures, but not all of these are integrable. For instance, #2k+1CP2 for k ≥ 0
admits a complex structure iff k = 0, as is shown in [61]. I am not aware of a complete
answer to the question of when the manifolds #2k+1CP2ℓ for ℓ, k ≥ 0 admit complex
structures.

19To be honest, this is because I ran out of time.
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Since we do not prove Theorem 3.6.6, let us at least work out the case of 4-
manifolds “by hand”. Here one criterion is

Theorem 3.6.8. Let X be a closed oriented manifold of dimension 4. If X admits an
almost complex structure, i.e. if E is a complex vector budle such that TX ∼= ER,
then we have must haveˆ

X

c1(E)
2 = 2 · χ(X) + 3 · Sign(X).

Proof. Since by Example 3.3.9 we have

L1 =
1

3
p1,

it follows from the Hirzebruch Signature Theorem (Theorem 1.3.1) that

p1(TX) = 3 · Sign(X) · ηX ,

where ηX ∈ H4(X;Z) is the chosen generator of the top cohomology. If TX ∼= ER, then
Remark 3.4.22 tells us that

p1(TX) = c1(E)
2 − 2c2(E).

Next, Remark 3.4.23 tells us that

c2(E) = e(TX),

so using the Chern-Gauss-Bonnet Theorem (Theorem 1.2) we get

3 · Sign(X) =

ˆ
X

p1(TX) =

ˆ
X

c1(E)
2 − 2

ˆ
X

e(TX) =

ˆ
X

c1(E)
2 − 2 · χ(X)

as needed. ■

As an application of this criterion, we show a special case of the computation
in Example 3.6.7, namely that CP2#CP2 does not admit an almost complex structure.

Corollary 3.6.9. The 4-fold CP2#CP2 does not admit an almost complex structure.

Proof. If X := CP2#CP2, then the cohomology ring of X is easily seen to be

H∗(X;Z) = Z[α, β]/(α3, β3, αβ, α2 − β2) = Z⊕ Zα⊕ Zβ ⊕ ZηX ,

where the generator ηX of the top cohomology is ηX = α2 = β2; in particular,we have
χ(X) = 4 and Sign(X) = 2. If X admitted an almost complex structure and E were as
in Theorem 3.6.8, then writing c1(E) = rα + sβ for some r, s ∈ Z, Theorem 3.6.8 would
give us that

r2 + s2 =

ˆ
X

c1(E)
2 = 2 · 4 + 3 · 2 = 14.

This is a contradiction, since 14 is not the sum of two squares. ■
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3.7 Cohomology of Complex Grassmannians

In this section, we will review the Schubert cell decomposition of Grassmannians, and the
description of their cohomology rings using the algebra of symmetric polynomials. The
basic references for this material are [4], [10] and [43].In what follows, we will stick to the
case of complex Grassmannians, although similar remarks can be made over any field.

The Grassmannian Grm,n
C can be given a CW structure, called the Schubert cell

decomposition of Grm,n
C , with cells in bijection with partitions λ ⊂ m× n, i.e. partitions

of at most m parts with each part at most n. Let’s now motivate this cell decomposition.
To start, we fix a complete flag in Fm+n, i.e. a sequence of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm+n−1 ⊂ Vm+n = Cm+n

satisfying dimC Vj/Vj−1 = 1 for j = 1, . . . ,m+n. Then for any V ∈ Grm,n
C , as i goes from

0 to m+n, the dimension dim(V ∩Vi) increases from 0 to m in steps of size 0 or 1. Let’s
say these jumps happen at i1, i2, . . . , im, so that the ik for 1 ≤ k ≤ m are integers such
that 1 ≤ i1 < · · · < im ≤ m+ n and such that for all k = 1, . . . ,m, we have

dim(V ∩ Vik) = dim(V ∩ Vik−1) + 1 = k.

In this way, every element V ∈ Grm,n
C gives rise to a sequence I(V ) = {i1, . . . , im} of m

integers between 1 and m+n.20 Conversely, given any such sequence I, we may consider
the set ΩI = {V ∈ Grm,n

C : I(V ) = V } of elements of Grm,n
C that give rise to this sequence.

This clearly gives us a set-theoretic decomposition

Grm,n
C = ∏

I⊂{1,...,m+n}
|I|=m

ΩI ,

of the Grassmannian Grm,n
C as a disjoint union of the ΩI , where the decomposition is over

all m-elements subsets I of {1, 2, . . . ,m + n}. This, as it turns out, is the sought-after
Schubert cell decomposition of Grm,n

C . To state this result more precisely, and to relate
the notation to that of partitions, we use the following simple observation, the proof of
which is clear.

Lemma 3.7.1. Given a sequence I = {i1, . . . , im} of integers with the property
1 ≤ i1 < · · · < im ≤ m+ n, we can associate to it a partition λ ⊂ m× n by defining
λk := n− ik + k for k = 1, . . . ,m. This map is a one-to-one correspondence between
the set of m-element subsets of 1, . . . ,m+ n, and the set of partitions λ ⊂ m× n.

It is fun exercise to think about how to recover the set I from the Ferrers
diagram of λ geometrically. In our case, given a partition λ ⊂ m × n, we can form the
corresponding sequence I = I(λ), and then look at the subset

Ωλ := ΩI(λ) = {V ∈ Grm,n
C : dim(V ∩Vj) = i for n+i−λi ≤ j < n+(i+1)−λi+1} ⊂ Grm,n

C .

This is called the Schubert cell corresponding to the partition λ, and its closure Xλ = Ωλ

(in the classical or Zariski topology–it does not matter) is then called the corresponding
Schubert variety. The first fundamental result in the theory is

20If we take Vj = ⟨e1, . . . , ej⟩ for 0 ≤ j ≤ m+n, then I can also be obtained by putting the (m+n)×m
matrix representing a V ∈ Grm,n

C in “column echelon” form, but we will not pursue this argument further.
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Theorem 3.7.2. For all λ ⊂ m× n, we have:

(a) The closed subset Xλ ⊂ Grm,n
C is an algebraic subvariety, i.e. is defined by

vanishing of homogenous polynomials in Plücker coordinates.
(b) There is a diffeomorphism Ωλ

∼= Cmn−|λ|, so that Ωλ is an open cell of (complex)
codimension |λ|.

(c) We have Xλ = ∏µ⊃λ Ωµ, where µ ⊃ λ means that the Ferrers diagram of λ is
contained in that of µ.

(d) The decomposition Grm,n
C = ∏λ Ωλ is a CW decomposition of Grm,n

C . In par-
ticular, the Grassmannian Grm,n

C can be given a CW decomposition with cells
in bijection with partitions λ ⊂ m× n, such that a partition λ corresponds to
a cell of complex codimension |λ|.

Proof. See [4, Ch. 1, §5] or [10, §3.2] ■

In particular, this CW decomposition determines the (co)homology groups of
Grm,n

C . Namely, the fundamental classes [Xλ] ∈ H2(mn−|λ|)(Grm,n
C ;Z) for λ ⊂ m× n form

an additive basis for H∗(Grm,n
C ;Z). Similarly, if we denote the Poincaré dual to [Xλ]

by σλ, then the σλ ∈ H2|λ|(Grm,n
C ;Z) form an additive basis for the cohomology groups

H∗(Grm,n
C ;Z), i.e. we have

H∗(Grm,n
C ;Z) =

⊕
λ⊂m×n

Zσλ.

As a matter of convention, we also denote σλ by σλ1,...,λℓ(λ)
. Note in particular that the

generator of top cohomology is simply

ηGrm,n
C

= σnm .

The multiplicative structure in cohomology is trickier to describe as explicitly, although
certain ad hoc techniques can be applied in special cases. For instance, we have formulae
due Pieri and Giambelli for special Schubert cycles– see [43, Chapter 4] or [10, Chapter 3]–
and the intersection for Grassmannians of lines Gr2,nC can also be made similarly explicit.
Here we record two special cases which we will need. To state the first one, we will need
the notion of the complementary partition.

Definition 3.7.3. Given integers m,n ≥ 0 and a partition λ ⊂ m× n, we define the
complementary partition λ̂ ⊂ m× n to λ by

λ̂k := n− λm+1−k for 1 ≤ k ≤ m.

By definition, the Ferrers diagram of λ̂ is the (inverted) complement of the
Ferrers diagram of λ in the box m×n; in particular, |λ|+ |λ̂| = mn. This terminology is
helpful in stating many results about the geometry of finite Grassmannians; for instance,
the degree of the Schubert variety Xλ under the Plücker embeddings is the number of
standard Young tableu of shape λ̂, and hence can be obtained via the Hook-Length
Formula (see [10, Corollary 3.2.14])–this is essentially a consequence of Pieri’s rule for
multiplication and the observation that this degree is nothing butˆ

Grm,n
C

σλ · σ|λ̂|
1 .
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The first result about the multiplicative structure says that for any λ, the Schu-
bert cycles σλ and σλ̂ in the Grassmannian are algebraic duals to each other under the
cup-product pairing. Precisely stated, we have

Proposition 3.7.4 (Intersection in Complementary Dimension). For integers m,n ≥ 0
and for any partitions λ, µ ⊂ m×n such that |λ|+|µ| = mn, we have in H∗(Grm,n

C ;Z)
that

σλσµ = δλ̂,µσnm ,

where δλ̂,µ is the Kronecker delta. In other words, we have

ˆ
Grm,n

C

σλσµ =

{
1, µ = λ̂,

0 else.

Proof. See [43, Prop. 4.6]. ■

Next, note that for Grassmannians of lines Gr2,nC a partition λ ⊂ 2×n is simply
a pair of integers (a1, a2) such that n ≥ a1 ≥ a2 ≥ 0. We can then completely describe
the product structure on H∗(Gr2,nC ;Z) as follows.

Proposition 3.7.5 (Grassmannian of Lines). Given an integer n ≥ 0, and partitions
(a1, a2), (b1, b2) ⊂ 2× n such that a1 − a2 ≥ b1 − b2, we have

σa1,a2σb1,b2 =

b2−b1∑
j=0

σa1+b1−j,a2+b2+j =
∑

|c|=|a|+|b|
a1+b1≥c1≥a1+b2

σc1,c2 .

Proof. See [43, Prop. 4.11]. ■

Note how Propositions 3.7.4 and 3.7.5 agree in the case of complementary di-
mension on the Grassmannian of lines.

These ad-hoc techniques are often useful for direct computations in low di-
mensions. However, a better, and more general, way to understand the multiplicative
structure of H∗(Grm,n

C ;Z), is to relate it to the algebra of symmetric polynomials as fol-
lows. The inclusion Fm+n ⊂ Fm+n+1 as the hyperplane defined by the vanishing of the
last coordinate induces an injection Grm,n

C ↪→ Grm,n+1
C , and we may consider the infinite

Grassmannian of m-planes in C∞ defined to be the inductive limit Grm,∞
C := lim−→n

Grm,n
C .

Then we have

H∗(Grm,∞
C ;Z) =

⊕
λ⊂m×∞

Zσλ,

where λ ⊂ m ×∞ simply denotes the set of partitions with at most m parts, and the
pullback map on cohomology induced by the inclusion Grm,n

C ↪→ Grm,∞
C is then defined

simply by the projection map ⊕
λ⊂m×∞

Zσλ →
⊕

λ⊂m×n

Zσλ
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that sends the class σλ of a partition with some part greater than n to 0, i.e. “forgets” all
such classes. Since this map is also a ring homomorphism, to describe the ring structure
on H∗(Grm,n

C ;Z), it suffices to do that on H∗(Grm,∞
C ;Z). Now the key point is that, as

observed in the remarks after Proposition 3.4.7, Grm,∞
C is a model for the classifying space

BUm for the unitary group Um, and hence by the general theory of classifying spaces and
characteristic classes (see Appendix 3.4), we can describe this ring as

H∗(Grm,∞
C ;Z) = H∗(BUm;Z) = Z[γ1, . . . , γm]m = Z[c1, . . . , cm],

where the cj are the universal Chern classes. In these terms, for any λ ⊂ m ×∞, the
Schubert class σλ corresponds to the symmetric polynomial in γ1, . . . , γm known as the
Schur polynomial of type λ, written sλ(γ), which can be defined in many (non-obviously)
equivalent ways (see [10, Chapter 1]). This gives us a way, in theory to, carry out any
computation in the cohomology ring of the Grassmannian. This argument can then be
taken a little further to give explicit generators and relations for the H∗(Grm,n

C ;Z) as a
ring; see, for instance, [10, Exercise 3.2.13] or [43, §5.8].

Even more fascinatingly, for any m ≥ 0 there is an inclusion Grm,∞
C ↪→ Grm+1,∞

C
(given simply by “including a new basis vector”), such that the resulting pullback map

H∗(Grm+1,∞
C ;Z)→ H∗(Grm,∞

C ;Z)

in the above terms is given by setting γm+1 to 0, i.e. takes cj 7→ cj for 1 ≤ j ≤ m and
cm 7→ 0. Then inductive limit Gr∞,∞

C = lim−→m
Grm,∞

C , the doubly infinite Grassmannian has

the property that the its cohomology ring H∗(Gr∞,∞
C ;Z) has as an additive basis the σλ

over all λ, and is isomorphic to the ring Λ of symmetric polynomials in countably many
variables.

It is in this universal ring that we will do our computations. For instance, the
multiplication of Schur polynomials sλ in Λ is expressed as

sλsµ =
∑
ν

cνλµsν ,

where the cνλµ ∈ Z are called the Littlewood-Richardson coefficients. Note that cνλµ = 0
unless |ν| = |λ| + |µ|. The above discussion then tells us that for any λ, µ ⊂ m × n, we
have

σλσµ =
∑

ν⊂m×n

cνλµσν ∈ H∗(Grm,n
C ;Z).

See Subsection 2.3.1 for another example.

Remark 3.7.6. Similarly to Grassmannians, the flag manifold FlmF admits a decomposi-
tion into Schubert cells, this time indexed by W (G,P ), where G = GL|m| F and P ⊂ G is
the parabolic subgroup preserving any given flag of type m, andW (G,P ) is the set of left
cosets of the Weyl group W (P ) of P in the Weyl group W (G) of G. This is one starting
point of Geometric Representation Theory, and a great ending point for this thesis.
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American Journal of Mathematics, vol. 75, no. 3, pp. 409–448, July 1953.

[37] B. Sen (https://mathoverflow.net/users/44458/balarka-sen), “Complex
Structure on S4.” MathOverflow. https://mathoverflow.net/q/413484 (version:
2022-01-09).
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