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1 Preface

These are the notes on Representation Theory based on the first few chapters of Fulton and Harris’s
Representation Theory: A First Course. Most of this material is expansion of the material from
Fulton-Harris, with notation borrowed from Serre for clarity. In particular, I include no examples
that Fulton and Harris do in their book.

2 Introduction

Definition 1. Let G be a group and k be a field. A representation of G over k is a pair (V, ρ), where
V is a vector space over k and ρ : G → GL(V) a homomorphism from G to the group of invertible
linear maps (i.e. automorphisms) of V .

Remark 1. As opposed to the more customary ρ(g) used to denote ρ applied to a g ∈ G, we use the
notation ρg to emphasise that ρg is not an element of V , but an invertible linear map ρg : V → V .
The condition of ρ being a homomorphism then reads ρg·h = ρg ◦ ρh, so that e.g. ρe = idV .
Remark 2. Some authors define a k-representation of a group G as a vector space V over k with a
map

G× V → V, (g, v) 7→ gv

satisfying the axioms of
(1) linearity: for each g ∈ G, the map v 7→ gv as a map V → V is a k-linear map, i.e. g(λ1v1+λ2v2) =

λ1gv1 + λ2gv2 for all v1, v2 ∈ V and λ1, λ2 ∈ k,
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2 Introduction

(2) and group action: (gh)v = g(hv) and ev = v for all g, h ∈ G and v ∈ V .
The second axiom ensures that g−1(gv) = ev = v for all g ∈ G, so that each g ∈ G gives rise to an
invertible linear map g : V → V given by v 7→ gv with inverse g−1 : V → V given by v 7→ g−1v. This
tells us that this definition is equivalent to the one above, with the translation being that if (V, ρ)
is as above, then we get G × V → V by (g, v) 7→ ρg(v). Therefore, you should think of applying
ρg : V → V to a vector as ‘‘left-multiplying it by g’’, although this doesn’t make literal sense since you
can’t multiply an element of a group G with a vector in a vector space V .
Remark 3. Mathematicians are lazy, as usual, and often drop either V or ρ from the pair (V, ρ), calling
the remainder a representation. For example, Fulton and Harris call V a representation with the ρ
being implicit (c.f. Remark 2), while Serre calls ρ itself a representation. When learning this material
for the first time, it’s helpful to remember that a representation is actually a pair of things: a k-vector
space V , and an action ρ of G on V by linear maps. This is analogous to keeping in mind, e.g., that
a group more properly is a pair (G, ·), where G is a set and · a law of composition satisfying certain
axioms; as you get ‘‘older’’, you’ll get more comfortable with the language that either text uses.
Remark 4. In this course, we are going to be primarily interested in the case when k = C and G is a
finite group, although other examples were discussed in class (e.g. with G = SL2 Z or a braid group,
and k = R).

Example 1. Observe that if 0 is the 0-vector space, then GL(0) ∼= {e}. If G is any group, then there
is a unique homomorphism ρ : G→ GL(0), so that for any group G we have the representation (0, ρ).
This is called the zero representation, and is usually denoted (0,0). (This is the additive identity of
the representation ring Rk(G), discussed below.)

Example 2. If G = {e} is the trivial group, then there is only one possible homomorphism ρ : G →
GL(V) for any vector space V . Therefore, a representation of the trivial group is the same thing as a
vector space V , with e acting by ev = v for all v ∈ V .

Example 3. If G = Z ∼= F1 = 〈a〉 is the free group on one generator, then a homomorphism ρ : G →
GL(V) is the same thing as picking a single element ρa =: ϕ ∈ GL(V). Therefore, a representation of
Z is the same thing as a vector space V with a choice of a distinguished automorphism ϕ of V .

Example 4. More generally, if G = Fn = 〈a1, . . . , an〉 is the free group on n-generators, then a
representation of G is the same thing as a vector space V with a choice of n distinguished (but not
necessarily distinct) automorphisms ϕ1, . . . , ϕn of V . These are not required to satisfy any constraints
at all.

Example 5. If G = Z/2 = 〈a|a2 = e〉, then a homomorphism ρ : G → GL(V) is the same thing
as the choice of an automorphism ϕ of V such that ϕ2 = idV . (More generally, a homomorphism
ρ : Z/2→ H from Z/2 to any group H is the same thing as a choice of an element h of H such that
h2 = e. The possibility h = e is allowed. Make sure you understand this!) Therefore, a representation
of Z/2 is the same thing as a vector space V with a choice of a distinguished automorphism ϕ of V
satisfying ϕ2 = idV .

Example 6. Generalizing the previous example, if G = Z/n = 〈a|an = e〉 for some n ≥ 1, then a rep-
resentation of G is the same thing as a vector space V with a choice of a distinguished automorphism
ϕ of V satisfying ϕn = idV .

Example 7. If G = Z × Z = 〈a, b|aba−1b−1 = e〉, then a representation of G is the same thing as
a vector space V with a choice of distinguished automorphisms ϕ,ψ of V that commute with each
other, i.e. that satisfy ϕ ◦ψ = ψ ◦ϕ.

Remark 5. The preceding examples show that a representation of a finitely generated group G is the
same thing as a vector space V with a choice of automorphism for each generator of G satisfying the
same relations as the correspond generators of G. The idea of a representation of an arbitrary group
is a vast generalization of this idea.
Remark 6. In the example of G = Z/n above, we could have very well taken ϕ = idV , which works
because idnV = idV . In general, there may be ‘‘collapsing’’. For example, for any group G, we may take
any vector space V and take ρ : G→ GL(V) to be the trivial homomorphism, so that ρg = idV for all
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g ∈ G; this is trivial and not very interesting of a representation. If indeed there is no collapsing, or
equivalently if the homomorphism ρ : G → GL(V) is injective, then we call the representation (V, ρ)
a faithful representation. In general, this is a stringent requirement on a representation.

Having defined representations, let’s now turn to homomorphisms between them, and stan-
dard constructions.

Definition 2. Suppose (V, ρ) and (W,π) are k-representation of a group G. A homomorphism of
representations φ : (V, ρ) → (W,π) between (V, ρ) and (W,π) is a k-linear map φ : V → W on the
underlying vector spaces that respects their representation structure, i.e. such that for every g ∈ G,
the diagram

V W

V W

ρg

φ

πg

φ

of linear maps of k-vector spaces commutes, i.e. for every g ∈ G we have φ ◦ ρg = πg ◦ φ.

Remark 7. When we think of a representation action ρg as ‘‘left-multiplication’’, then the above
statement becomes the more palatable statement that a k-linear map φ of the underlying vector
spaces V and W of representations (V, ρ) and (W,π) of G is a homomorphism of representations iff
for every g ∈ G and v ∈ V we have φ(gv) = gφ(v). This formulation hides the fact that g is acting
differently in general on the two sides of the equation–indeed it is acting on elements of different
vector spaces on the two sides.
Remark 8. A homomorphism of representations of a group G is also called a G-linear map, or a
G-equivariant map, or an intertwiner, or a G-module homomorphism (for good reason!).

Example 8. The identity map idV : (V, ρ) → (V, ρ) from any representation to itself is a homomor-
phism of representations. More generally, any scalar multiple of the identity λ idV for λ ∈ k is a
homomorphism of representations.

Observe that if φ and ψ a homomorphism of representations (V, ρ) → (W,π), then so are
λφ+ µψ for every choice of λ, µ ∈ k (make sure you understand what this means!). This tells us that
the set of all homomorphisms of representations from (V, ρ) to (W,π) is a k-subspace of Hom(V,W).
This subspace is denoted by HomG(V,W). Strictly speaking, this depends on ρ and π, so we should
be writing something like HomG((V, ρ), (W,π)), but see Remark 3.

3 Constructing New Representations

Let’s look at some ways of constructing new representations out of old ones.

Definition 3. Suppose (V, ρ) is a k-representation of a group G. Then a subrepresentation of (V, ρ) is
a k-subspace U ⊆ V that is invariant under the action of G, i.e. a k-subspace U of V such that for
every g ∈ G we have that ρgU ⊆ U.

Remark 9. A subrepresentation is usually denoted by (U, ρ|U) ⊆ (V, ρ), although strictly speaking
ρ|U doesn’t make sense because ρ doesn’t act on U. What we mean by this notation is that ρ|U :
G → GL(U) is the map given by taking an element g ∈ G to the restriction ρg|U of the linear map
ρg : V → V to the subspace U. (Why is this restriction invertible?)
Remark 10. A subrepresentation can also be though of as the image of an injective homomorphism
of representations. (Why?)

Lemma 1. Suppose φ : (V, ρ) → (W,π) is a homomorphism of representations. Then the kernel
(kerφ, ρ|kerφ) ⊆ (V, ρ) is a subrepresentation, and similarly the image (imφ, π|imφ) ⊆ (W,π).
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Proof. The kernel kerφ ⊆ V of the underying linear map is a k-subspace, so we want to check that
it is G-invariant, i.e. for every g ∈ G we have ρg kerφ ⊆ kerφ. Suppose v ∈ kerφ; then we want to
check that ρgv ∈ kerφ, i.e. φ(ρgv) = 0. But that is true because

φ(ρgv) = πg(φ(v)) = πg(0) = 0,

which uses crucially the fact that φ is a homomorphism of representations. Similarly, the image
imφ ⊆ W is a k-subspace, and it is G-invariant (i.e. invariant under the action of πg for every
g ∈ G) because if w = φ(v) ∈ imφ, then πgw = πgφ(v) = φ(ρgv) ∈ imφ. �

Example 9. Let (V, ρ) be any k-representation of a group G. Define the maximal trivial subrepresen-
tation (VG, ρ|VG) of (V, ρ) to be the G-invariant subspace

VG := {v ∈ V : ∀g ∈ G, ρgv = v}.

This is the largest subrepresentation of V on which G acts trivially.
Definition 4. Suppose (V, ρ) is a k-representation of a group G, and suppose (U, ρ|U) ⊆ (V, ρ) is a
subrepresentation. Then we define the quotient representation (V/U, ρ) as follows: take the underlying
vector space to be V/U, and define ρ : G→ GL(V/U) by defining for g ∈ G the map ρg : V/U→ V/U
to be the map [v] 7→ [ρgv]. (Why is this well-defined irrespective of the choice of representative v ∈ V
of the coset [v] ∈ V/U? Why is this map invertible?)

Definition 5. A k-representation (V, ρ) of a group G is said to be irreducible if it is nonzero and the
only subrepresentations of (V, ρ) are the trivial subrepresentation (0, ρ|0) and all of (V, ρ). In other
words, a representation (V, ρ) is irreducible if no nontrivial proper subspace of V is G-invariant, i.e.
if it holds that if 0 ( U ( V is any nontrivial proper subspace of V , then there is some g ∈ G such
that ρgU 6⊆ U.
Remark 11. In a sense, you can think of as a subspace of a representation as analagous to a subgroup
of a group, with subrepresentations corresponding to normal subgroup. This is because if you quotient
out a representation by a mere subspace, you will not in general get another representation, but if
you quotient out a representation by a subrepresentation, then you do indeed get a representation,
as we have seen above. In this sense, irreducible representations are similar to simple groups.
Since the classification of finite groups comes down to classifying finite groups, the classification
of finite-dimensional representations of a given finite group should also come down to classifying
its irreducible representations. That is indeed the case, at least in the special scenario of finite
dimensional C-representations of finite groups.
Lemma 2 (Schur’s Lemma). If (V, ρ) and (W,π) are irreducible representations of G and φ : (V, ρ)→
(W,π) a homomorphism of representations, then

(1) either φ is an isomorphism of representations, or φ = 0. In particular, if (V, ρ) and (W,π) are
nonisomorphic representations, then φ = 0.

(2) If indeed φ is an isomorphism, (V, ρ) ∼= (W,π) is finite dimensional, and k is algebraically closed
(e.g. if k = C), then implicitly identifying (V, ρ) and (W,π) via φ, we have that φ : V → V is just
λ idV for some λ ∈ k.

Proof.

(1) By the previous lemma, the kernel (kerφ, ρ|kerφ) ⊆ (V, ρ) is a subrepresentation. By definition
of irreducibility, either (kerφ, ρ|kerφ) is (0, ρ|0) or all of (V, ρ). If (kerφ, ρ|kerφ) = (V, ρ), then
φ = 0. Otherwise, (kerφ, ρ|kerφ) = (0, ρ|0) and φ is injective. In that case, again by the
previous lemma, the image (imφ, π|imφ) ⊆ (W,π) is a subrepresentation. This is nonzero
(because V is nonzero and φ is injective), so that again by irreducibility of (W,π) we must have
that (imφ, π|imφ) = (W,π), and φ is surjective and hence an isomorphism.

(2) Suppose now that k is algebraically closed, and φ : (V, ρ) → (V, ρ) is a homomorphism of
representations, with V finite dimensional. Then φ has an eigenvector, i.e. a 0 6= v ∈ V with
eigenvalue λ ∈ k satisfying φv = λv. Now, by Example 8 and the following discussion, the
map φ − λ idV : V → V is also a homomorphism of representations, but this time with nonzero
kernel, since v ∈ ker(φ − λ idV). Since (ker(φ − λ idV), ρ|ker(φ−λ idV)) ⊆ (V, ρ) is a nontrivial
subrepresentation, the irreducibility of (V, ρ) tells us that ker(φ−λ idV) = V , i.e. that φ = λ idV .
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3 Constructing New Representations

�

Corollary 0.1. If (V, ρ) and (W,π) are finite-dimensional irreducible k-representations of a group G
over an algebraically closed field k, then

dimHomG(V,W) = δ
(V,ρ)
(W,π) =

{
0, (V, ρ) 6∼= (W,π),

1, (V, ρ) ∼= (W,π).

Definition 6. Suppose (V, ρ) and (W,π) are k-representations of a group G. Then we define the direct
sum representation (V, ρ)⊕ (W,π) := (V ⊕W,ρ⊕π) as follows: take the underlying vector space to be
the direct sum V ⊕W, and take the homomorphism ρ⊕ π : G→ GL(V ⊕W) to be given by the map
that takes g ∈ G to the automorphism ρg⊕πg : V⊕W → V⊕W given by (ρg⊕πg)(v,w) = (ρgv, πgw).
We similarly define the direct sum of any number (not necessarily finite) of representations.

Definition 7. Suppose (V, ρ) and (W,π) are representations of a group G. Then we define the tensor
product representation (V, ρ) ⊗ (W,π) := (V ⊗W,ρ ⊗ π) as follows: take the underlying vector space
to be V ⊗W, and take the homomorphism ρ⊗ π : G→ GL(V ⊗W) to be given by the map that takes
g ∈ G to the automorphism ρg ⊗ πg : V ⊗W → V ⊗W given by (ρg ⊗ πg)(v ⊗ w) = ρgv ⊗ πgw on
pure tensors. We similarly define the tensor product of any finite number of representations. (I like
to stay away from infinite tensor products.)

Exercise 1. Show that the usual isomorphisms (U ⊕ V) ⊕W ∼= U ⊕ (V ⊕W) and (U ⊕ V) ⊗W ∼=
(U⊗W)⊕ (U⊗ V) are isomorphisms of representations. (This exercise shows that you can turn the
set of all finite integer linear combinations of finite dimensional k-representations of a group G into
a commutative ring with sum ⊕ and product ⊗. This is called the representation ring of G, and is
written Rk(G) or simply R(G) if k is implicit.)

Definition 8. Suppose (V, ρ) is a representation of a group G. Define the dual representation (V∗, ρ∗)
as follows: take the underlying vector space to be V∗ := Hom(V, k), and define the homomorphism
ρ∗ : G→ GL(V∗) according to the following discussion. We have a natural pairing map

V∗ × V → k, (λ, v) 7→ λv.

We want to define ρ∗ in such a way that preserves this pairing, i.e. such that 〈ρ∗gλ, ρgv〉 = 〈λ, v〉 for
all g ∈ G, λ ∈ V∗ and v ∈ V . Since ρg is invertible, writing v = ρ−1

g u, we get that

〈ρ∗gλ, u〉 = 〈ρ∗gλ, ρgv〉 = 〈λ, v〉 = 〈λ, ρ−1
g u〉,

so that (ρ∗gλ)(u) = λ(ρ−1
g u) = (tρ−1

g λ)(u). This means that we should define ρ∗g := tρ−1
g .

Definition 9. Suppose (V, ρ) and (W,π) are representations of a group G. Define the representation
(Hom(V,W), σ := π◦−◦ρ−1) as follows: take the underlying vector space to be Hom(V,W), and define
a representation structure on it via the k-vector space isomorphism Hom(V,W) ∼= V∗ ⊗W. In other
words, we have commutative diagrams

V∗ ⊗W Hom(V,W) λ⊗w v 7→ λ(v)w

V∗ ⊗W Hom(V,W) λ ◦ ρ−1
g ⊗ πgw v 7→ πg(λ(ρ

−1
g v)w),

∼

ρ∗
g⊗πg ?

∼

which tells us that we should define the action of g on a map Hom(V,W) 3 φ 7→∑i λi⊗wi ∈ V∗⊗W
by taking it to

∑
i λi ◦ ρ−1

g ⊗ πgwi 7→ πg ◦ φ ◦ ρ−1
g , i.e. in such a way that the following diagram

commutes

V W

V W.

φ

ρg πg

σgφ
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By construction, the isomorphism Hom(V,W) ∼= V∗ ⊗W becomes an isomorphism of representations.

Remark 12. It follows immediately from the definition of the action on Hom(V,W) that the sub-
space HomG(V,W) ⊆ Hom(V,W) is actually the maximal trivial subrepresentation Hom(V,W)G of
Hom(V,W), i.e.

HomG(V,W) = Hom(V,W)G.

Remark 13. If (V, ρ) is a representation, then the subspace of symmetric n-tensors Symn V ⊆ V⊗n is
actually a subrepresentation of (V⊗n, ρ⊗n), and similarly for the alternating n-tensors ΛnV ⊆ V⊗n.
These can both also be realized as quotient representations of V⊗n.

Definition 10. If X is any finite set on which the group G acts, then we can form the associated
permutation representation (V, ρ) by taking V := k〈X〉 to be the k-vector space with basis the elements
of X, with the action of G on X extending to V by linearity to give ρ. For example, if G is a finite
group, then the (left) regular representation of G is the permutation representation corresponding to
the left action of G on itself by left multiplication.

Remark 14. To avoid confusion, the basis of a permutation representation V corresponding to an
action of G on a set X is denoted not by {x : x ∈ X} but {ex : x ∈ X}, as the following example shows.

Example 10. Suppose G = S3 and X = {1, 2, 3}, with G acting on X in the usual way. (This is the
same as the action of D3 on the vertices of a triangle.) Then the permutation representation looks
like V = k〈e1, e2, e3〉, with the induced action ρ. For example,

ρ(123)(3e1 + 4e2 + 5e3) = 3e2 + 4e3 + 5e1.

Definition 11. In general, if G = Sn and X = {1, . . . , n}, with G acting on X in the usual way,
we get the permutation representation (V, ρ) with V = k〈e1, . . . , en〉 ∼= kn. This has a 1-dimensional
trivial subrepresentation (U, ρ|U) given by the span of

∑n
i=1 ei (do you see why?). The quotient

representation (V/U, ρ) is called the standard representation of Sn. It can be thought of explicitly as{∑n
i=1 λiei ∈ kn :

∑n
i=1 λi = 0

}
, and it has dimension n − 1. It is a nontrivial theorem (Fulton and

Harris, Proposition 3.12, p. 31) that if k = C, then the standard representations (and more generally
all of their wedge powers) are irreducible.

If (V, ρ) is a representation of a group G, then we can ask the following question: for
which g ∈ G is ρg ∈ HomG(V,V)? By definition, this happens iff ∀h ∈ G : ρg ◦ ρh = ρg ◦ ρg, i.e.
∀h ∈ G : ghg−1h−1 ∈ ker ρ. For example, if g ∈ Z(G) is in the center, then this holds. In particular,
if G is abelian, then this holds for every g ∈ G. This already allows us to conclude something about
irreducible representations of abelian groups.

Lemma 3. Any finite-dimensional irreducible representation of a finite abelian group over an al-
gebraically closed field must be 1-dimensional. In particular, if (V, ρ) is a finite dimensional k-
representation of a finite abelian group G for an algebraically closed field k (e.g. when k = C), then
there is a basis for V such that every ρg is diagonal in that basis, i.e. the entire group is simultaneously
diagonalizable.

Proof. Suppose (V, ρ) is a finite-dimensional k-representation of a finite abelian group G for some
algebraically closed field k. Then the (finite) family {ρg : g ∈ G} of endomorphisms of V commutes
with each other, so that by a homework problem, all of these are simultaneously diagonalizable. If
V is irreducible and 0 6= v ∈ V a simultaneous eigenvector for all V , then 0 ( 〈v〉 is a nontrivial
invariant subspace of V (why?), so that irreducibility tells us that 〈v〉 = V , and V is 1-dimensional. �

4 Complete Reducibility–Maschke’s Theorem

The fundamental theorem of arithmetic says that any positive integer can be decomposed uniquely
into a product of primes, unique upto the order in which the primes appear. That’s a super convenient
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4 Complete Reducibility–Maschke’s Theorem

statement that reduces much of number theory to the study of primes. Does something similar hold
for representations?

Q1. Can every k-representation (V, ρ) of a group G be completely decomposed uniquely into a direct
sum of irreducible representations?

The answer to this naive question is no for general k, V and G.

Example 11. Complete reducibility may fail if the group G is infinite. For example, take the shear,
i.e. take G = (R,+), the vector space V = R2, and the homomorphism ρ : R→ GL2 R given by

a 7→ [
1 a
0 1

]
.

This has the maximal trivial subrepresentation the x-axis, i.e. VG =

{
x

[
1
0

]
, x ∈ R

}
. This is a

nontrivial proper subrepresentation, so that (V, ρ) is not irreducible. Nonetheless, it is goemetrically
clear that there does not exist a complementary subrepresentation, so that V cannot be written as a
direct sum of irreducible representations.

Example 12. Complete reducibility may fail if G is finite, but chark divides |G|. An example of this
was on HW 11 Q7. (I’ll update this with the actual example if needed later.)

We claim that these are the only problems.

Theorem 2. Suppose G is a finite group and k a field such that chark does not divide |G| (e.g. if
chark = 0). If (V, ρ) is a k-representation of G and (U, ρ|U) ⊆ (V, ρ) a subrepresentation, then there is
a complementary subrepresentation (W,ρ|W) to (U, ρ|U), i.e. a representation such that the composite
(U⊕W,ρ|U ⊕ ρ|W)→ (V, ρ) is an isomorphism of representations.

Proof. Pick an arbitrary complementary subspace W0 of U in V , i.e. a subspace such that V ∼= U⊕W0
as k-vector spaces. Let π0 : V → U denote projection onto the first factor w.r.t this decomposition.
Now define the map

π : V → V, π(v) :=
1
|G|

∑
g∈G

ρg(π0(ρ
−1
g v)).

Since imπ0 = U, and ρgU ⊆ U for all g ∈ G, we have that imπ ⊆ U. If u ∈ U, then because for each
g ∈ G we have ρ−1

g u = ρg−1u ∈ U, it follows that π0ρ
−1
g u = ρ−1

g u, and hence π(u) = u. Therefore,
π2 = π with imπ = U (why?), and so π is also projection onto U. From this, we get a direct sum
decomposition V ∼= U⊕ kerπ. It suffices to check that kerπ is a subrepresentation of V , and for that,
it suffices to prove that π : (V, ρ)→ (V, ρ) is a homomorphism of representations. This follows because
for any h ∈ G and v ∈ V we have that

(π ◦ ρh)(v) =
1
|G|

∑
g∈G

ρg(π0(ρ
−1
g ρhv))

=
1
|G|

∑
g∈G

ρhρh−1g(π0(ρ
−1
h−1g

v))

= ρh

 1
|G|

∑
g∈G

ρg(π0(ρg−1v))

 = (ρh ◦ π)(v),

where the second equality follows from the fact that ρ is a homomorphism, and the second to last
equality follows from the linearity of ρh and the fact that as g varies over all elements of G, so does
h−1g. �

Remark 15. Make sure you completely understand where in the proof we used both the hypotheses
we made.
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4 Complete Reducibility–Maschke’s Theorem

Remark 16. There is another proof which works only for the case when k = C that can be found in
Fulton and Harris (p. 6). This involves averaging over G as before to get a Hermitian inner product
on V invariant under the action of G, and then taking the orthogonal complement of U.

Corollary 2.1 (Complete Reducibility). If G is a finite group and k a field such that chark does not
divide |G|, then every finite-dimensional k-representation (V, ρ) of G can be written as a finite direct sum
of irreducible representations.

Proof. We use strong induction on dimension: if dimV = 1, then V is necessary irreducible (why?).
Suppose now that dimV = n > 1, and we have proven the result for all representations of dimension
at most n − 1. If (V, ρ) is irreducible, we are done. Else, (V, ρ) admits a nontrivial proper subrep-
resentation (U, ρ|U). By the previous theorem, the hypotheses ensure that there is a complementary
subrepresentation (W,ρ|W) such that (V, ρ) ∼= (U ⊕W,ρ|U ⊕ ρ|W). Since V = U ⊕W, we get that
dimV = dimU+dimW. Since U is both nontrivial and proper, we get that 1 ≤ dimU, dimW < dimV ,
so that by the induction hypothesis, these can be written as a direct sum of irreducible representations;
then, so can (V, ρ). �

Now we turn to uniqueness. In this scenario, we want to restrict ourselves to the case of
finite dimensional representations of a finite group over an algebraically closed field of characteristic
not dividing |G|. It is convenient to take k = C.

Theorem 3 (Maschke’s Theorem on Complete Reducibility). If G is a finite group and (V, ρ) a finite-
dimensional C-representation of G, then there is a decomposition

(V, ρ) ∼=

(
n⊕
i=1

V⊕aii ,

n⊕
i=1

ρ⊕aii

)
,

where the (Vi, ρi) are distinct irreducible representations. This decomposition is unique upto the order
in which the factors appear, i.e. the integer n ≥ 1, the irreducibles (Vi, ρi), and their multiplicities
ai ≥ 1 are uniquely determined by (V, ρ).

Proof. The existence of such a decomposition was the content of the previous corollary–of course,
we can collect all the isomorphic Vi and put them together by adding to the multiplicity ai. Next we
show uniqueness. Suppose we have two different decompositions (V, ρ) ∼=

(⊕n
i=1 V

⊕ai
i ,

⊕n
i=1 ρ

⊕ai
i

)
∼=(⊕m

j=1W
⊕bj
j ,

⊕m
j=1 π

⊕bj
j

)
. Let φ :

(⊕n
i=1 V

⊕ai
i ,

⊕n
i=1 ρ

⊕ai
i

) → (⊕m
j=1W

⊕bj
j ,

⊕m
j=1 π

⊕bj
j

)
denote the

isomorphism of representations: we have to show that n = m, that each (Vi, ρi) ∼= (Wj, πj) for a
unique j, and that for these i and j we have ai = bj. It is easily seen that for each i and j, the
restriction of φ to Vi followed by projection onto Wj, i.e. prWj ◦ resVi φ : Vi →Wj is a homomorphism
of representations between the irreducible (Vi, ρi) to (Wj, πj) (why?). Schur’s Lemma tells us that
this is 0 unless (Vi, ρi) ∼= (Wj, πj).

(1) First we show that n = m. If n > m, then because all the (Vi, ρi) are pairwise nonisomorphic,
and similarly for the (Wj, πj), there is at least one i such that (Vi, ρi) is not isomorphic to
any (Wj, ρj) for any j. (Why? Use the pigeonhole principle!) Then from the above observation,
we must have for this i that prWj ◦ resVi φ = 0 for every j, so that resVi φ = 0 (why does
this follow?). This is a contradiction because (Vi, ρi) 6∼= (0,0) (why?), and because φ is an
isomorphism. (Make sure you understand this point.) Therefore, we have shown that n > m is
not possible, and hence n ≤ m. By symmetry, this means that m ≤ n, and hence n = m.

(2) If for some i, there were no j such that (Vi, ρi) ∼= (Wj, πj), then φ would have a nonzero
kernel as before, so that there is at least one j. Since n = m and the (Vi, ρi) are pairwise
nonisomorphic and similarly for (Wj, πj), it follows that for each i, there is a unique j such
that (Vi, ρi) ∼= (Wj, πj).

(3) For the pair (i, j) in part 2, the restriction res
V

⊕ai
i

φ can only map into W⊕bjj , so that this tells

us that the map res
V

⊕ai
i

φ : V⊕aii → W
⊕bj
j is an isomorphism. By comparing dimensions, we

get that ai dimVi = bj dimWj. Since dimVi = dimWj 6= 0 by part (2), it follows that ai = bj.
�
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5 Character Theory

We now turn to another powerful tool for analyzing finite-dimensional C-representations of groups.

Definition 12. If (V, ρ) is a finite-dimensional C-representation of a group G, we define the character
function χV : G→ C of (V, ρ) to be given by

χV(g) := tr(ρg).

Remark 17. The character χV is not a homomorphism to (C,+). (Although if V is one-dimensional,
then imχV ⊆ C∗, and in that case, χV is indeed a homomorphism to (C∗,×).)
Remark 18. The character χV is a class function, i.e. it takes the same value at all elements of a
conjugacy class. This is because if g, h ∈ G are any elements, then

χV(hgh
−1) = tr

(
ρhgh−1

)
= tr

(
ρhρgρ

−1
h

)
= tr(ρg) = χV(g),

where the second to last equality follows because tr
(
PAP−1) = tr(A) for any linear map A and

automorphism P.
Remark 19. For the remainder of the section, we will restrict our attention to finite-dimensional
C-representations of finite groups. These hypotheses will not be repeated, and will be implicit.

Theorem 4 (Multilinear Algebra of Characters). Let (V, ρ) and (W,π) be representations of G. Then
we have

(1) χV(e) = dimV ,
(2) χV⊕W = χV + χW ,
(3) χV⊗W = χV · χW ,
(4) χV∗ = χV , and
(5) χHom(V,W) = χVχW .

Proof. Observe that χV(e) = tr(ρe) = tr(idV) = dimV . For a fixed g, suppose {v1, . . . , vn} ⊆ V form a
basis of eigenvectors for ρg with eigenvalues λi, and {w1, . . . , wm} form a basis of eigenvectors for
πg with eigenvalues µj, then {(v1,0), · · · , (vn,0), (0, w1), · · · , (0, wm)} forms a basis of eigenvectors of
V ⊕W for ρg ⊕ πg with eigenvalues {λi} ∪ {µj}, so that

χV⊕W(g) = tr(ρg ⊕ πg) =
n∑
i=1

λi +

m∑
j=1

µj = tr(ρg) + tr(πg) = χV(g) + χW(g).

Similarly, {vi⊗wj}i∈[n],j∈[m] form a basis of eigenvectors of V⊗W for ρg⊗πg with eigenvalues λiµj,
so that

χV⊗W(g) = tr(ρg ⊗ πg) =
∑∑
1≤i≤n
1≤j≤m

λiµj =

(
n∑
i=1

λi

) m∑
j=1

µj

 = tr(ρg) tr(πg) = χV(g)χW(g).

If the eigenvalues of ρg are λi, then the eigenvalues of ρ−1
g are λ−1

i ; but now, each λi is a root of
unity (why?), so that λ−1

i = λi. This means that (since the trace of a map is the the same as the trace
of its dual)

χV∗(g) = tr
(
ρ∗g
)
= tr

(
tρ−1
g

)
= tr

(
ρ−1
g

)
=
∑
i

λ−1
i =

∑
i

λi = tr(ρg) = χV(g).

Finally, (5) follows because (Hom(V,W), σ) ∼= (V∗ ⊗W,ρ∗ ⊗ π) as representations, and isomorphic
representations have the same characters (why?). �

Corollary 4.1. The map χ : RC(G)→ CGcl is a ring homomorphism.

Proof. This follows from (2) and (3). �

Corollary 4.2. If (V, ρ) is a representation s.t. χV(g) is nonreal for some g ∈ G, then (V, ρ) 6∼= (V∗, ρ∗).

9
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Proof. This follows from (4), since isomorphic representations have the same character. �

Remark 20. Using similar arguments as in the above proof, formulae for the characters of Symk V
and ΛkV can be derived in terms of those of V .

Theorem 5 (First Projection Formula). Let (V, ρ) be a representation of G. Define the averaging map

φ :=
1
|G|

∑
g∈G

ρg ∈ End(V).

This is a homomorphism of representations, and a projection onto VG. In particular, therefore,

dimVG = trφ =
1
|G|

∑
g∈G

χV(g).

Proof. The first statement follows from the straightforward check that φ ◦ ρh = φ = ρh ◦ φ for all
h ∈ G (make sure you perform said check!). From this, it follows also that

φ2 = φ ◦

 1
|G|

∑
g∈G

ρg)

 =
1
|G|

∑
g∈G

φ ◦ ρg =
1
|G|

∑
g∈G

φ = φ.

It is also immediate to check that φ|VG = idVG ; this along with φ2 = φ and imφ ⊆ VG is enough to
conclude that φ is a projection onto VG (make sure you recall the definition of a projection). It is
easy to see (using a matrix, e.g.) that the trace of a projection is the dimension of its image, that the
claim follows from the linear of the trace operator:

dimVG = trφ = tr

 1
|G|

∑
g∈G

ρg

 =
1
|G|

∑
g∈G

tr(ρg) =
1
|G|

∑
g∈G

χV(g).

�

Corollary 5.1 (Burnside’s Lemma/Cauchy-Frobenius Formula). Let a finite group G act on a finite set
X, and let V denote the corresponding permutation representation. Then for every g ∈ G, we have that
χV(g) = |Xg| is the number of fixed points of g. Further, dimVG = |X/G| is the number of orbits, so

|X/G| =
1
|G|

∑
g∈G

|Xg|.

Proof. This is a permutation representation, so ρg is a permutation matrix (i.e. a matrix whose
columns form some permutation of the columns of the identity matrix); in particular, the matrix of
ρg consists only of 0’s and 1’s, and the number of 1’s on the diagonal is exactly the number |Xg| of
elements fixed by g (make sure you understand this point!). Therefore, χV(g) = tr(ρg) = |Xg|. With
the previous theorem at hand, it remains only to show that dimVG is |X/G|, the number of orbits of
the action. For any orbit O∈ X/G, define ηO :=

∑
x∈O ex ∈ V . We claim that {ηO}O∈X/G forms a basis

of VG. Firstly, since O is an orbit, the action of g on O induces a bĳection O
g·
−→ O, so that we have

ρgηO =
∑
x∈O

ρgex =
∑
x∈O

eg·x =
∑
x∈O

ex = ηO;

this shows that each ηO ∈ VG. Since orbits of an action are disjoint, it is clear that the different
{ηO} are linearly independent. Finally, we have to show that every element of VG can be written as
a linear combination of the ηO: for that, it suffices to show that if η ∈ VG, then the coefficient of ex
in η depends only on the orbit O of x. For that, suppose x and y belong to the same orbit, so that
∃g ∈ G : gx = y. Then the coefficient of ex in η is the same as the coefficient of ey in ρgη = η, as
needed. �
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Remark 21. The direction of the above corollary can be pursued further to derive the unweighted and
weighted Polyá Enumeration Theorems, which are powerful theorems in combinatorics.

Corollary 5.2. Given representations (V, ρ) and (W,π), we have that

dimHomG(V,W) = dimHom(V,W)G =
1
|G|

∑
g∈G

χV(g)χW(g).

Definition 13. Give the space CG the space of a Hermitian inner product space by defining the
positive definite Hermitian inner product 〈·, ·〉 : CG × CG → C by

〈α,β〉 = 1
|G|

∑
g∈G

α(g)β(g).

In this new language, we get that dimHomG(V,W) = 〈χV , χW〉. From Corollary 0.1, the
following result follows.

Corollary 5.3. In terms of this inner product on CG, the characters of distinct irreducible representa-
tions of G are orthonormal.

Let CGcl ⊆ CG denote the subspace of class functions, i.e. functions constant on conjugacy
classes. Then dimCGcl = |C(G)| is the number of conjugacy classes of G.

Corollary 5.4. If G is a finite group, then it has at most |C(G)| distinct irreducible representations.

Proof. If (V, ρ) is any representation of G, then χV ∈ CGcl. Since orthonormal vectors are linearly
independent (why?), the number of distinct irreducible representations of G is at most dimCGcl =
|C(G)|. �

Corollary 5.5. A representation of a group G is completely determined by its character.

Proof. If (V, ρ) is any representation, then the number ai of copies of an irreducible representation
Vi in V is given by 〈χV , χVi〉, and hence completely determined by χV . �

Corollary 5.6. If (V, ρ) is a representation of a group G, with decomposition
(⊕n

i=1 V
⊕ai
i ,

⊕n
i=1 ρ

⊕ai
i

)
into irreducible representations, then χV =

∑n
i=1 aiχVi , and therefore,

〈χVi , χVi〉 =
n∑
i=1

a2
i .

In particular, V is irreducible iff 〈χV , χV〉 = 1.

Proof. This follows from Theorem 4 (2) and orthonormality. The second claim follows because 1 can
only be written as a sum of squares as 1 = 12. �

Corollary 5.7. If (V, ρ) is any representation of G, then TFAE:

(1) (V, ρ) is irreducible.
(2) (V∗, ρ∗) is irreducible.
(3) For every one-dimensional representation (W,π) of G, the tensor product (V ⊗ W,ρ ⊗ π) is

irreducible.
(4) For some one-dimensional representation (W,π) of G, the tensor product (V ⊗ W,ρ ⊗ π) is

irreducible.

Proof. The equivalence (1)⇔ (2) is true because of the previous corollary and

〈χV , χV〉 =
1
|G|

∑
g∈G

|χV(g)|
2
=

1
|G|

∑
g∈G

χV(g)χV∗(g) = 〈χV∗ , χV∗〉.

If W is one-dimensional, then for every g ∈ G, the character χW(g) ∈ S1 is a root of unity, so that
|χV⊗W(g)|2 = |χV(g)χW(g)|2 = |χV(g)|

2, and so 〈χV , χV〉 = 〈χV⊗W , χV⊗W〉, proving (1)⇒ (3)⇒ (4)⇒
(1). �
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Theorem 6 (Decomposition of the Regular Representation). If (R, ρ) denotes the left regular repre-
sentation of G, then

χR(g) =

{
|G|, g = e,

0, else.

In particular, 〈χR, χVi〉 = χVi(e) = dimVi, so that every irreducible representation (Vi, ρi) of G occurs
in R with multiplicity dimVi.

Proof. This follows from the discussion in Corollary 5.1, because the left regular representation of
G is the permutation representation corresponding to the action of G on itself by left multiplcation:
specifically, χR(g) = |Gg| = #{h ∈ G : gh = h}, from which the claim follows. Now

〈χR, χVi〉 =
1
|G|

∑
g∈G

χR(g)χVi(g) =
1
|G|
χR(e)χVi(e) = dimVi,

and we observed above that for any representation (V, ρ), the number 〈χV , χVi〉 is the multiplicitiy of
(Vi, ρi) appearing in (V, ρ). �

Corollary 6.1. If G is a finite group, then |G| =
∑
i(dimVi)2, where the sum is over irreducible

representations of G.

Proof. If (R, ρ) denotes the regular representation, then from Corollary 5.6 and the previous theorem,
we ge that

|G| =
1
|G|
χR(e)χR(e) = 〈χR, χR〉 =

∑
i

(dimVi)2.

�

Corollary 6.2. If G is an abelian group, then it has exactly |G| distinct irreducible representations.

Proof. We know that all irreducible representations of an abelian group are 1-dimensional, so that
|G| =

∑
i(dimVi)2 tells us that there are |G| of them. �

Given a group G, a representation (V, ρ) of G, and a function α ∈ CG, we get the map

φα,V :=
1
|G|

∑
g∈G

α(g)ρg ∈ End(V).

We have seen that
(1) if α = |G|1g for some g ∈ G, then φα,V is G-linear iff [g, h] = ghg−1h−1 ∈ ker ρ for all h ∈ G.
(2) if α ≡ 1, then φα,V is always G-linear.

We now generalize these, and ask the question about G-linearity of φα,V in general.

Theorem 7. The map φα,V is G-linear for all (V, ρ) iff α ∈ CGcl.

Proof. If α ∈ CGcl, then for all h ∈ G and v ∈ V , we have

(φα,V ◦ ρh)(v) =
1
|G|

∑
g∈G

α(g)ρgρhv

=
1
|G|

∑
g∈G

α(hgh−1)ρhgh−1ρhv

= ρh

 1
|G|

∑
g∈G

α(g)ρgv

 = (ρh ◦ φα,V)(v).
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Conversely, suppose that φα,V is G-linear for all (V, ρ). Then in particular, it is for the regular
representation (R, ρ). This means that for the basis element ee ∈ R and a fixed h ∈ G, we have

1
|G|

∑
g∈G

α(g)ehg = ρ

 1
|G|

∑
g∈G

α(g)ρgee


= (ρh ◦ φα,R)(ee)
= (φα,R ◦ ρh)(ee)

=
1
|G|

∑
g∈G

α(hgh−1)ρhgh−1ρhee =
1
|G|

∑
g∈G

α(hgh−1)ehg.

Since in R the elements {eg : g ∈ G} form a basis by definition, so that this means that α(g) =
α(hgh−1) for all g ∈ G. Since this is true of all h ∈ G, we have α ∈ CGcl. �

Corollary 7.1. The characters {χVi } of distinct irreducible representations of G form a basis for CGcl.
In particular, the group G has exactly |C(G)| distinct irreducible representations.

Proof. Since the characters {χVi } of irreducible representations are orthonormal, by Gram-Schmidt
orthonormalization, we can extend this to an orthonormal basis of CGcl (which, remember, has finite
dimension |C(G)|). To prove the result, it suffices to show that if α ∈ CGcl is orthogonal to all the
{χVi }, then it is zero (why?). For that, let α ∈ CGcl be orthogonal to all the {χVi }. Let (Vi, ρi) be
an irreducible representation, and consider the G-linear map φα,Vi : Vi → Vi as above. By Schur’s
Lemma, this is λ idVi for some λ ∈ C. Then

λ dimVi = tr(φα,Vi) =
1
|G|

∑
g∈G

α(g)χV(g) = 〈α, χV∗
i
〉 = 0,

since V∗i is irreducible too. This tells us that λ = 0, so that in fact φα,Vi = 0 : Vi → Vi is the zero
map. Since this is true of every irreducible representation Vi, complete reducibility tells us that this
is true of every finite dimensional representation of G (how?). In particular, it is true for the regular
representation (R, ρ) of G. But then

0 = φα,R(ee) =
1
|G|

∑
g∈G

α(g)ρgee =
1
|G|

∑
g∈G

α(g)eg.

But the elements eg ∈ R are linearly independent, so this means that α(g) = 0 for all g ∈ G, i.e.
α = 0. �

Corollary 7.2. The complexification χC : RC(G)⊗ C→ CGcl is a ring isomorphism.

Proof. This is an injective C-linear map between C-vector spaces of the same dimension. (Explore
why each statement made in this claim is true.) �

Theorem 8 (General Projection Formula). Consider the special case of the above where α = χV∗
i

and
V = Vj for Vi, Vj irreducible representations. By Schur’s Lemma, φχV∗

i
,Vj : Vj → Vj is λ idVj for some

λ ∈ C. This λ can be found by

λ =
1

(dimVj) · |G|
∑
g∈G

χViχVj(g) =
1

(dimVj) · |G|
〈χVi , χVj〉.

This is nonzero iff i = j; and if i = j, then this is a nonzero multiple of the identity. Therefore, for an
arbitrary representation the map

(dimVi) · |G|φχV∗
i
,V : V → V

is the projection onto the V⊕aii component.

Proof. This follows immediately from the previous discussion. See Fulton and Harris p. 23. �
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6 Induced Representations

This section is going to be short, since it was covered most recently in class. If H ⊆ G is a subgroup,
then get a functor ResGH from the representations of G to the representations of H by restriction. In
the other direction, we have the induction functor IndGH.

Definition 14. Suppose we have a representation (V, ρ) of G, and we have a subrepresentation
(W,ρ|W) ⊆ ResGH(V, ρ). Then (V, ρ) is said to be induced by (W,ρ|W) if as a vector space we have
V =

⊕
σ∈G/H σW. In this case, we write (V, ρ) = IndGH(W,ρ|W).

Theorem 9. Given a representation (W,π) of H, the induced representation (V, ρ) := IndGH(W,π) exists
and is unique upto isomorphism of G-representations. Further, dimV = |G/H| dimW.

Proof Sketch. For existence, take a copy (W,π)σ for each σ ∈ G/H. For each σ, pick a representative
gσ ∈ G of it, and let gσw ∈ Wσ denote the element corresponding to w ∈ W. The action by G is by
permuting the left cosets. The claim about dimension follows immediately. �

Theorem 10 (Frobenius Reciprocity). f (U, τ) is any other representation of G, then an H-linear map
(W,π)→ ResGH(U, τ) extends uniquely to G-linear map IndGH(W,π)→ (U, τ), so that

HomG(IndGHW,U) ∼= HomH(W,ResGHU).

In particular,
〈χIndG

H
W , χU〉G = 〈χW , χResG

H
U〉H.

If W and U are irreducible, then the number of times U appears in IndGHW is the same as the number
of times W appears in ResGHU.

Proof Sketch. Every map IndGHW → U restricts to a map eW = W → ResGHU. Conversely, every
H-linear map φ : (W,π)→ ResGH(U, τ extends uniquely to a G-linear map IndGH(W,π)→ (U, τ) via the
commutative diagram

W U

Wσ U.

gσ

φ

τgσ

∃! φ̃

Comparing dimensions gives the relation between characters. If W and U are irreducible, then the
LHS in the character formula is the number of times U appears in IndGHW, and the RHS is the
number of times W appears in ResGHU. �

Theorem 11. If (W,π) is any representation of H ≤ G, then for any γ ∈ G, we have that

χIndG
H
W(γ) =

∑
σ∈G/H
γσ=σ

χW(g−1
σ γgσ),

where gσ ∈ G is some representative of σ.

Proof Sketch. If (V, ρ) denotes IndGH(w,π), then for any γ ∈ G, ργ maps σW → γσW. If the cosets
σ and γσ are different, then there is no term corresponding to this on the diagonal; if they are the
same, then ργ : σW → σW is given the following composition

σW
g−1
σ−−→W

g−1
σ γgσ−−−−−→W

g−1
σ−−→ σW,

which has the same trace as the central map. Therefore, the contribution of this block is exactly
χW(g−1

σ γgσ). �

Remark 22. Recall, as Professor Auroux mentioned in class, that it is not true that χW(g−1
σ γgσ) =

χW(γ), because the latter doesn’t even make sense in general–χW is only defined on H. The conjuga-
tion is needed to get the element g−1

σ γgσ ∈ H to which we can apply χW .
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7 Example: Z/7 o Z/3

Let’s now turn to a concrete example: let’s figure out the character table for the group G := Z/7oZ/3,
the unique nonabelian group of order 21. Recall from class that this has presentation

G = 〈a, b |a7 = b3 = e, bab−1 = a2〉.

In this group, the subgroup 〈a〉 ≤ G is a normal subgroup of order 7, with quotient G/〈a〉 ∼= 〈b〉 ∼= Z/3.
The last relation bab−1 = a2 tells us that bka` = a2k`bk for any k ∈ Z/3, ` ∈ Z/7, so that every
element of G can be written uniquely in the form aibj for 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2. Let’s first figure
out the conjugacy structure of G.

(1) Let’s figure out the center Z(G). Suppose g = aibj ∈ Z(G) for some 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2.
Then

aibj = g = aga−1 = ai+1bja−1 = ai+1−2jbj,

so that i ≡ i + 1 − 2j (mod 7), so 2j ≡ 1 (mod 7). Since 0 ≤ j ≤ 2, this tells us that j = 0, and
g = ai for some 0 ≤ i ≤ 6. Then

ai = g = bgb−1 = baib−1 = a2i,

so that i ≡ 2i (mod 7) and hence i = 0. This means that Z(G) = {e}, i.e. the center of G consists
of the identity alone.

(2) This tells us that the class equation of G looks like

21 = 1 +
r∑
i=1

|Ki|

for some r ≥ 1 such that 2 ≤ |Ki| | 21 for all i. This means that all the |Ki| ∈ {3, 7}. The only
way to write 20 as a sum of 3’s and 7’s is 20 = 3 + 3 + 7 + 7, so that we must have r = 4. The
class equation looks like

21 = 1 + 3 + 3 + 7 + 7.
From this, we know that there are exactly 5 irreducible representations of G.

(3) Let’s try to figure out the elements in the conjugacy classes. The relations bab−1 = a2 tells us
that the conjugacy class of a is {a, a2, a4}. By symmetry, the other conjugacy class of size 3
must be {a−1 = a6, a5, a3}. Finally, the relation bka` = a2k`bk tells us that conjugating by either
a or b doesn’t change the exponent of b in the element, so that it is not hard to see that the
remaining 2 conjugacy classes must be {aib}6i=0 and {aib2}6i=0.

Now let’s try to figure out the 5 irreducible representations of G. Of course, we know the
first one–it’s the 1-dimensional trivial representation. Let’s start writing the character table:

Z/7 o Z/3 1 3 3 7 7
〈a, b|a7, b3, bab−1a−2〉 e a a−1 b b−1

U 1 1 1 1 1

Now observe that we have a normal subgroup Z/7 ∼= 〈a〉 E G with quotient G/〈a〉 ∼= 〈b〉 ∼=
Z/3. Now Z/3 has exactly three 1-dimensional irreducible representations: those in which b acts by
1,ω, and ω2 respectively, where ω = exp(2πi/3) is a complex cube root of unity. Pulling these back
to G gives us two more 1-dimensional, and hence irreducible, representations of G with characters
(1, 1, 1,ω,ω2) and (1, 1, 1,ω2,ω) respectively. Therefore, in total we now know 3 of 5 irreducible
representations of G:

Z/7 o Z/3 1 3 3 7 7
〈a, b|a7, b3, bab−1a−2〉 e a a−1 b b−1

U 1 1 1 1 1
U ′ 1 1 1 ω ω2

U ′′ 1 1 1 ω2 ω
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We know we’re missing two more representations, say V and V ′ of dimensions d and d ′
respectively. Then

21 = 12 + 12 + 12 + d2 + d ′2

tells us that d = d ′ = 3. Suppose that χV = (3, p, q, r, s). Then

〈χU, χV〉 =
1
21

(3 + 3p+ 3q+ 7r+ 7s) = 0.

Similarly, we also get that 3 + 3p + 3q + 7ω2r + 7ωs = 3 + 3p + 3q + 7ωr + 7ω2s = 0. Adding these
three equations together, we get that 1+p+q = 0 and r+s = r+ωs = r+ω2s = 0, so that q = −1−p
and r = s = 0. Since the same is true of V ′, the table now looks like the following for some α,β ∈ C.

Z/7 o Z/3 1 3 3 7 7
〈a, b|a7, b3, bab−1a−2〉 e a a−1 b b−1

U 1 1 1 1 1
U ′ 1 1 1 ω ω2

U ′′ 1 1 1 ω2 ω

V 3 α −1 − α 0 0
V ′ 3 β −1 − β 0 0

Now since V is an irreducible representation, so is V∗. We are reduced to two possibilities:
(1) If V ∼= V∗, then V ′ ∼= V ′∗ (why?), and α ∈ R. Using the orthonormality relations, we get the

quadratic equation α2 + α − 3/2 = 0, so that α ∈
{

−1±
√

7
2

}
. WLOG, suppose α = −1+

√
7

2 ; then

we must have β = −1−
√

7
2 , and all symmetry relations are satisfied.

(2) If V 6∼= V∗, then we must have V∗ ∼= V ′ and V ′∗ ∼= V . This tells us that β = α, and using
the orthonormality relations we get to α2 + α + 2 = 0, so that α ∈

{
−1±
√

7i
2

}
. WLOG, suppose

α = −1+
√

7i
2 ; then we must have β = −1−

√
7i

2 , and again all symmetry relations are satisfied.
How do we decide between these two possibilities?

The key to answering this question is Frobenius Reciprocity. Recall that we have a normal
subgroup H := 〈a〉 of G of order 7. This has exactly seven 1-dimensional irreducible representations:
Ui for 0 ≤ i ≤ 6, with a acting on Ui as ζi7, where ζ7 = exp(2πi/7) is a primitive 7th root of unity.

(1) Now ResGH V has character (3, α, α,−1 − α,α,−1 − α,−1 − α) in the usual order. In particular,
since α 6= 3, this must contain some Ui for i 6= 0. Since Ui appears in ResGH V , Frobenius
reciprocity tells us that V appears in IndGHUi. But now

dimV = 3 = |G/H| dimUi = dim IndGHUi,

so that V must equal one of the IndGHUi for some i 6= 0. Therefore, it suffices to analyze the
IndGHUi.

(2) From class, we know that

χIndG
H
Ui

(a) =
∑

σ∈G/H
aσ=σ

χUi(g
−1
σ agσ) = χUi(a) + χUi(b

−1ab) + χUi(bab
−1) = ζi7 + ζ

4i
7 + ζ2i7 .

As i varies over 0 ≤ i ≤ 6, the expression ζi7 + ζ2i7 + ζ4i7 takes only two distinct values, namely
ζ7 + ζ

2
7 + ζ

4
7 and ζ67 + ζ57 + ζ37 . These two, then, must be α and β in some order. Therefore, we

conclude WLOG that α = ζ7 + ζ
2
7 + ζ

4
7 and β = ζ67 + ζ

5
7 + ζ

3
7 .

(3) Wait–how do we reconcile this with our previous answer? Well, α and β are complex conjugates,
so that we must be in case (2) above. It is easy to see (by drawing a picture, e.g.) that ζ7+ζ27 +ζ47
has positive imaginary part, so that we must have

α = ζ7 + ζ
2
7 + ζ

4
7 =

−1 +
√

7i
2

, and β = ζ67 + ζ
5
7 + ζ

3
7 =

−1 −
√

7i
2

.
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Remark 23. These identities involving ζ7 can also be proved by adding together and multiplying α
and β, and then simplifying using the fact that

∑6
i=0 ζ

i
7 = 0. These are in fact quadratic Gauss

sums–3 is a primitive root modulo 7–and the algebra closely mimics the geometry of the situation
with Z/7oZ/3 being the group of affine transformations of A1(F7) that dilate by a cube root of unity
in F7.

This allows us to complete the character table:

Z/7 o Z/3 1 3 3 7 7
〈a, b|a7, b3, bab−1a−2〉 e a a−1 b b−1

U 1 1 1 1 1
U ′ 1 1 1 ω ω2

U ′′ 1 1 1 ω2 ω

V 3 ζ7 + ζ
2
7 + ζ

4
7 ζ67 + ζ

5
7 + ζ

3
7 0 0

V ′ 3 ζ67 + ζ
5
7 + ζ

3
7 ζ7 + ζ

2
7 + ζ

4
7 0 0

We have therefore characterized the five irreducible representations of Z/7 o Z/3–these are
the three irreducible representations of Z/3 pulled back via the quotient G → G/H, and the two
irreducible representations induced by the nontrivial representations of H.
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