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Notations, Conventions, and Fundamentals

(a) Throughout, F denotes a commutative unitary ring. The forgetful functor F-Mod → Z-Mod (along-
side minors variants) is denoted by U.

(b) Given a homomorphism ϕ : A→ B of abelian groups, we let A[ϕ] denote the kernel of ϕ. For an abelian
group A, we let AQ := Q ⊗Z A and Ators :=

⋃
n∈ZA[n] ⊂ A denote the maximal torsion subgroup,

so there is an exact sequence 0 → Ators → A → AQ. Finally, we let A∗ := HomGrp(A,Q/Z); this is
the Pontryagin dual to A when A is finite.

(c) If G is a group and H ≤ G a subgroup, we denote by [G/H] a left transversal to H in G, i.e. a subset
[G/H] ⊂ G such that as sets G =

∐
g∈[G/H] gH. If G is a profinite group, then by H ≤c G (resp.

H ≤o G) we mean that H is a closed (resp. open) subgroup of G.
(d) Let φ : G′ → G be a group homomorphism. We say that the index1 of φ is defined when [G : φ(G′)] <

∞ and | ker(φ)| < ∞; in this case, we define the index of φ to be indφ := [G : φ(G′)] · | kerφ|−1.
We will use the following result, the proof of which is clear.

Lemma 0.0.1.
(1) When G and G′ are finite, for any φ : G′ → G, the index is always defined and equals |G|/|G′|.
(2) If A• is a complex of finite abelian groups, almost all2 zero, then∏

n

|An|(−1)n =
∏
n

|Hn(A•)|(−1)n .

(e) For a scheme X and a point x ∈ X, we denote the residue field of X at x by k(x) := OX,x/mX,x. If X
is a R-scheme for a ring R and R→ S a homomorphism, we use the notation XS := SpecS×SpecRX.
By a variety over a field K, we mean a separated scheme of finite type over K.

(f) If K is a field, we write K → Ks → Ka to denote a fixed choice of separable and algebraic closures
of K, and let GK := Gal(Ks/K), which is canonical up to inner automorphisms.

(g) If K is a local number field (i.e., nonarchimedean local field with charK = 0), we let Knr ⊂ Ka be
the maximal unramified extension, and Gnr

K := Gal(Knr/K). The residue field of K is denoted by k.
(h) If K is a (global) number field, we let OK (resp. MK , resp. M∞

K , resp. M0
K) denote its ring of

integers (resp. set of places, resp. set of infinite places, resp. set of finite places). For v ∈ MK , we
denote the corresponding completion of K by Kv. When v ∈ MK∖M∞

K , we denote the corresponding
prime ideal of OK (resp. valuation ring of Kv, residue field, size of the residue field) by pv (resp. Ov,
kv, qv). When v is archimedean, we will let kv := Ov := Kv. Given a subset S ⊂ MK , we let
OK,S := {x ∈ K : (∀v ∈ M0

K ∖S) v(x) ≤ 1}. The adèle ring (resp. idèle group) of K will be denoted
by A(K) = AK =

∏∐
v∈MK

(Kv,Ov) (resp. A×(K) = A×
K =

∏∐
v∈MK

(K×
v ,O

×
v )). For S ⊂ MK with

S ⊃ M∞
K , we use the notation AK,S :=

∏
v∈SKv ×

∏
v/∈S Ov (resp. A×

K,S :=
∏

v∈SK
×
v ×

∏
v/∈S O

×
v )

to denote the S-adèle ring (resp. S-idèle group) of K, so that AK = colimS AK,S (resp. A×
K =

colimS A×
K,S). Also, we use the notation KS ⊂ Ka for the maximal extension of K unramified

outside of S, and GS for Gal(KS/K).
(i) For a global number field K and v ∈ MK , we always fix an extension of v to Ks = Ka, which gives

an embedding Ka → Ka
v and the choice of inertia and decomposition groups Iv ≤ Dv ≤ GK along

with isomorphisms Dv →∼ GKv =: Gv and Dv/Iv →∼ Gkv .

1The terminology is inspired from the theory of elliptic PDEs, although the convention is the opposite of the usual one
(inspired by private communication with Dan Freed).

2As usual, this means “all but finitely many”.
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Introduction

The Birch and Swinnerton-Dyer (BSD) Conjecture, one of the six still-open Millenium Prize Problems of the
Clay Mathematics Institute, is a tantalizing conjecture relating the local and global arithmetic of an abelian
variety over a number field. Although we don’t (yet) have a proof, there is a huge amount of experimental
and theoretical evidence to support it. One source of theoretical evidence is the theorem due to Cassels in
dimension one and Tate in general that the truth value of the BSD conjecture is invariant under a rather
weak equivalence relation on abelian varieties called isogeny. It is the goal of this article to present Tate’s
proof of this result.

An important tool needed for the proof is cohomology. In various branches of topology and geometry,
cohomology functions as a powerful linearization tool, i.e., a tool to reduce difficult non-linear problems
to (hopefully easier) problems in linear algebra. In differential topology, there is de Rham cohomology; in
algebraic topology, simplicial, CW, and singular cohomology; in complex geometry, Dolbeault cohomology;
in algebraic geometry, sheaf (and eventually étale, fppf, fpqc, etc.) cohomology.3 Arithmetic geometry is no
exception, and the role of such a linearizing cohomology theory in algebraic number theory and arithmetic
geometry is performed by Galois cohomology, which is a special kind of (profinite) group cohomology.4 Galois
cohomology is the modern language of a lot of number theory such as local and global class field theory.
Further, as with the other cohomology theories mentioned above, it satisfies important duality theorems,
which are the key input needed for Tate’s result.

In the first chapter, we introduce group cohomology and describe its key properties (functoriality and
cup products) as well as how to compute it. We finish by discussing Tate cohomology and the proof of the
Tate-Nakayama theorem. In the second chapter, we explain how to extend the results of the first chapter
to the profinite setting and describe classical examples of Galois cohomology (Hilbert 90, Brauer groups,
etc.). Then we discuss applications of the theory to local and global class field theory, and finally, we
sketch the “arithmetic” duality theorems of Tate-Poitou, as well as Tate’s theorem on global Euler-Poincaré
characteristics, that will be required in what follows. In the final chapter, we rapidly review the theory of
abelian varieties over local and global number fields needed to state the strong Birch and Swinnterton-Dyer
conjecture. We end by using all the cohomological tools developed to present Tate’s proof of its isogeny
invariance, tying it all together.

3Of course, these are all related in very intricate and important ways.
4It is also a special case of, and important historical motivation for, étale cohomology; see [40, §6.1.1]
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1 Group Cohomology

We introduce group cohomology as the right derived functor of the functor of invariants and explain its
computation using topological models and inhomogeneous cochains. Next, we discuss the (co)restriction,
inflation, and conjugation morphisms and the cup product. Finally, we introduce Tate cohomology and prove
Tate’s theorem on cohomological triviality and as its consequence the Tate-Nakayama Theorem.

We assume familiarity with (the naive approach to) derived functors as δ-functors ([1, Ch. IX], [56, Ch.
2]) and some algebraic topology (at the level of [20]). The material presented is standard and is taken from
[6], [8], [13], [15], [28],[29], [36], [37], [43], and [44].

1.1 Introduction and Definitions

Given a commutative unitary ring F and a group G, the category F[G]-Mod of left modules over the
group algebra F[G], or equivalently F-linear representations of G, is Grothendieck abelian and has enough
projectives (resp. injectives). Therefore, if A is an abelian category and F : F[G]-Mod → A a right-exact
(resp. left-exact) additive functor, then the left (resp. right) derived functor L•F (resp. R•F) of F, i.e.,
the universal (co)homological exact δ-functor extending F, exists and is unique up to unique isomorphism
of δ-functors extending the identity natural transformation 1F. One case of particular interest is when
A = F-Mod and F = (−)G is the left exact functor obtained by taking G-invariants.5

Definition 1.1.1 (Group Cohomology). The group cohomology of G in F-modules, denoted H•(G,−),6 is
the right derived functor of the functor (−)G : F[G]-Mod → F-Mod of G-invariants, i.e.,

H•(G,−) := R•(−)G : F[G]-Mod → F-Mod.

Remark 1.1.2.
(a) If G = {∗} is trivial, then H0(G,−) : F[G]-Mod → F-Mod is the canonical isomorphism and so

Hn(G,−) = 0 for each n ∈ Z≥1. For an arbitrary G, the F-cohomological dimension cdF(G) of G is
the least d ∈ Z≥0, if it exists, such that Hn(F[G],−) = 0 for all n > d; if no such d exists, we write
cdF(G) = ∞. This is a measure of the nontriviality of G; for instance, cdZ(G) = 0 iff G = {∗}.7

(b) For an A ∈ F[G]-Mod and n ∈ Z≥0, the ring homomorphism Hn : EndF[G](A) → EndF(H
n(G,A)) is

an F-algebra homomorphism, i.e., multiplication by λ ∈ F on an F[G]-module induces the same map,
i.e., multiplication by λ, on cohomology in all degrees; this follows from the δ-functor formalism.

(c) Let us temporarily use H•(F[G],−) to denote the group cohomology of G in F-modules, and let
UG : F[G]-Mod → Z[G]-Mod (resp. U : F-Mod → Z-Mod) denote the forgetful functor. The
exactness of UG and U along with the commutativity (up to the obvious natural isomorphism) of

F[G]-Mod Z[G]-Mod

F-Mod Z-Mod

(−)G

UG

(−)G

U

tells us that

UH•(F[G],−) ∼= R• (U ◦ (−)G
) ∼= R• ((−)G ◦UG

) ∼= H•(Z[G],UG(−))

5That this is left exact is clear, but this is also follows from the fact that it is naturally isomorphic to the right adjoint functor
HomF[G](F,−), where F is equipped with the trivial G-action.

6See Remark 1.1.2(c).
7Indeed, for general homological algebraic reasons, cdZ(G) = 0 is equivalent to saying that every Z[G]-module is projective.

In particular, the augmentation map ε : Z[G] → Z given by g 7→ 1 for all g ∈ G admits a Z[G]-section σ. The element
γ := σ(1) ∈ Z[G]G has ε(σ(1)) = 1; the existence of a nonzero such γ implies that G is finite, and then γ = n ·

∑
g∈G g for

some n ∈ Z. Then 1 = ε(γ) = n · |G| implies G is trivial.
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as δ-functors F[G]-Mod → Z-Mod, i.e., the cohomology groups H•(G,−) “do not depend on F”.8 For
instance, if A ∈ Z[G]-Mod has finite exponent m ∈ Z≥1 as an abelian group, then m ·H•(G,A) = 0.

(d) The natural isomorphism HomF[G](F,−) → (−)G of additive functors (foot)noted above extends to
a isomorphism of the right derived functors Ext•F[G](F,−) → H•(G,−). Therefore, we can compute

group cohomology using F[G]-projective resolutions of the trivial G-module F (Examples 1.1.4-1.1.5).
(e) When A = F-Mod and F = (−)G is the right-exact functor obtained by taking G-coinvariants,

with right-exactness coming from the natural isomorphism F ∼= F⊗F[G] −, we can define the group
homology of G in F-modules as H•(G,−) := L•(−)G. As in (c), we have a δ-isomorphism of left

derived functors Tor
F[G]
• (F,−) → H•(G,−); in particular, group homology can also be computed used

F[G]-projective resolutions of F. See also §1.4.

Example 1.1.3. If G is a finite group such that |G| ∈ F×,9 then (−)G : F[G]-Mod → F-Mod is exact,
and so cdF(G) = 0. Indeed, if B ↠ C is an F[G]-module epimorphism and c ∈ CG, then picking any lift
b ∈ B of c, the element |G|−1

∑
g∈G gb ∈ BG also maps to c. When F is a field, this argument applied to

B = HomF(V,W ) and C = HomF(W,W ) for a subrepresentation W ⊂ V proves Maschke’s Theorem on
complete reducibility.10 The failure of Maschke’s Theorem for a given modular (sub)representation is thus
equivalent to the nonvanishing of a first cohomology group.

Next, if G is a finite group and A ∈ F[G]-Mod such that the underlying abelian group of A admits the
structure of an F′-module for some commutative unitary ring F′ such that |G| ∈ (F′)× (e.g., if F = Q and
A admits a Q-vector space structure), then by the previous paragraph and Remark 1.1.2(c), Hn(G,A) = 0
for all n ≥ 1. Also, if F → F′ is a flat morphism of rings, then for any group G we have a morphism

F′ ⊗F H•(G,−) → H•(G,F′ ⊗F (−))

of δ-functors F[G]-Mod → F′-Mod, which is an isomorphism when G is finite.11 Combining these results
for the flat morphism Z → Q and using Remark 1.1.2(c) once again shows that if G is a finite group,
A ∈ F[G]-Mod, and n ∈ Z≥1, then the underlying abelian group UHn(G,A) is a torsion group; c.f.
Example 1.2.2(a).

Example 1.1.4. (Topological Interpretation) Let G be a (discrete) group and X be (a topological model
for) the Eilenberg-MacLane space K(G, 1), or equivalently the classifying space BG. Concretely, X is a
pointed path-connected CW complex with contractible universal cover X̃, equipped with an isomorphism
G→ π1(X).12 Then G acts freely on X̃ by cellular maps, and by grouping G-translates, the cellular chain
complex of X̃ with F-coefficients is seen to be an F[G]-free resolution of the trivial module F. In particular,
for A ∈ F[G]-Mod, the group (co)homology H•(G,A) (resp. H

•(G,A)) can be identified with the twisted
(co)homology H•(X;A) (resp. H•(X;A)) of X with local coefficients in A as defined in [20, §3.H].13 In
particular, if F = Z and A = Z is the trivial Z[G]-module, then by the Hurewicz Theorem ([20, Thm.

8In the last isomorphism, to conclude that R•((−)G◦UG) ∼= R•(−)G◦UG, we are also using that R•(−)G◦UG is effaceable,
which can be shown, for instance, by noting that UG commutes with the particular effacement A → C1(G,A) constructed in
Example 1.2.2(b) below. Note that the left adjoint F⊗Z (−) ∼= F[G]⊗Z[G] (−) to UG is not, in general, exact. For an advantage
of our (slightly) more general perspective, see Example 1.1.3.

9Here |G| denotes the cardinality of G, considered as an element of F via the natural map Z → F. The condition that |G|
is a unit in F holds, e.g., if F is a field of characteristic 0, or if it is a field of characteristic p > 0 for a prime p such that p ∤ |G|.

10The above proof is, after all, the standard proof of Maschke’s Theorem.
11Similarly to Footnote 8, here we are using the fact that F′ ⊗F (−) : F[G]-Mod → F′[G]-Mod is exact and commutes with

effacement A→ C1(G,A) of Example 1.2.2(b) when G is finite!
12That such spaces exist is a standard result in algebraic topology ([20, Example 1B.7]).
13See the Introduction to [6] for some historical comments about the relationship between topological and group (co)homology,

and the discovery/invention of group (co)ohomology.
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2A.1]), we get a functorial isomorphism H1(G,Z) ∼= Gab. This can also be proven purely algebraically; see
[15, Lemma 10.20].14

Example 1.1.5. (Bar Resolution) For each n ∈ Z≥0, let F[G]
Gn denote the free F[G]-module on the set

Gn, where we denote the basis element corresponding to (g1, g2, . . . , gn) ∈ Gn by [g1|g2| · · · |gn]. For each
n ∈ Z≥0, define the F[G]-module homomorphism ∂n : F[G]G

n+1 → F[G]G
n
given on the basis by

∂n[g1|g2| · · · |gn+1] := g1[g2| · · · |gn+1]+
n∑

i=1

(−1)i[g1|g2| · · · |gi−1|gigi+1|gi+2| · · · |gn+1]+(−1)n+1[g1|g2| · · · |gn]

for g1, . . . , gn ∈ G. Then a direct check shows that

· · · ∂2−→ F[G]G
2 ∂1−→ F[G]G

∂0−→ F[G]
ε−→ F → 0 (1.1)

is a complex of F[G]-modules, where ε denotes the augmentation map given by g 7→ 1 for all g ∈ G. For
each n ∈ Z≥0, define the F-module homomorphism hn : F[G]G

n → F[G]G
n+1

on an F-basis by

hn (g · [g1| . . . |gn]) := [g|g1| · · · |gn]

for g, g1, . . . , gn ∈ G. Then for each n ≥ 0, we have hn∂n + ∂n+1hn+1 = id
F[G]Gn+1 , and so the collection

h = (hn)n∈Z≥0
provides an F-module contracting homotopy15 for the positive-degree part of the complex

(1.1), showing that it is an F[G]-free resolution of the trivial module F. This resolution, called the standard
or bar resolution, gives a particularly concrete way of computing group (co)homology. Explicitly, for each
F[G]-module A and n ∈ Z≥0, the F-module

Cn(G,A) := HomF[G]-Mod(F[G]
Gn , A) ∼= HomSet(G

n, A)

is called the module of inhomogeneous n-cochains on G with values in A. For each n ≥ 0, the pullback by
∂n gives us an F-module homomorphism ∂n := ∂∗n : Cn(G,A) → Cn+1(G,A), and the cohomology of the
complex (C•(G,A), ∂•) is the group cohomology H•(G,A), i.e., if for each n ∈ Z≥0 we let Zn(G,A) :=
ker ∂n (resp. Bn(G,A) := im ∂n−1) denote the F-submodule of inhomogeneous n-cocycles (resp. n-
coboundaries), then

Hn(G,A) ∼=F-Mod Zn(G,A)/Bn(G,A).

Finally, given a short exact sequence 0 → A→ B → C → 0 of F[G]-modules, we get a short exact sequence

0 → C•(G,A) → C•(G,B) → C•(G,C) → 0

of complexes of F-modules, and the connecting homomorphisms can be computed using the Snake Lemma.

Remark 1.1.6.
14I cannot resist mentioning one further geometrical example. A theorem of Cartan and Hadamard asserts that given

n ∈ Z≥0, if X is a connected complete Riemannian n-manifold of non-positive sectional curvature, then its universal cover X̃
is diffeomorphic to Rn. In particular, if G = π1(X) is the fundamental group of X, then X is a K(G, 1), and so cdZ(G) ≤ n.
If X is not closed, then n ≥ 1 and this can be strengthened to cdZ(G) ≤ n − 1. This applies, for instance, when X = Σg
is the oriented surface of genus g ∈ Z≥2, so that cdZ π1(Σg) = 2, or if X is a hyperbolic knot complement, so that, e.g., the
group G = ⟨x, y|y2x−3⟩ has cdZ(G) = 2 because it is the fundamental group of the trefoil knot complement. Other topological
connections and applications can be found in, e.g., [29, Ch. 4].

15Note that the maps hn are, in general, not F[G]-module homomorphisms. Indeed, the complex (1.1) not contractible as a
complex of F[G]-modules, else all of group (co)homology would be trivial!
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(a) If n = 1 and G acts trivially on A ∈ F[G]-Mod, then Z1(G,A) is the submodule of homomorphisms
G → A and B1(G,A) = 0, so that H1(G,A) ∼=F-Mod HomGrp(G,A). As an application, note that
for a finite group G, considering the short exact sequence 0 → Z → Q → Q/Z → 0 of trivial
Z[G]-modules and using Example 1.1.3 gives us isomorphisms of abelian groups

Hom(G,Q/Z) ∼= H1(G,Q/Z) δ−→ H2(G,Z).

(b) Example 1.1.5 gives another way to see the result of Remark 1.1.2(c). It also immediately shows that
if G is a finite group and A ∈ Z[G]-Mod is such that UA is a finitely generated abelian group, then
so is UHn(G,A) for each n ∈ Z≥0 (since each Cn(G,A) is), and hence (along with Example 1.1.3)
that Hn(G,A) is finite for each n ∈ Z≥1.

(c) A slight modification of the bar resolution by using homogeneous cochains ([15, Ch. 10]) can be
seen directly to compute the simplicial cohomology of the standard simplicial model for the Eilenberg-
MacLane space K(G, 1) (i.e., the geometric realization of the Kan complex NBG which is the nerve
of the categorification BG of G), again illustrating Example 1.1.4. See [6, Ex. I.4.3] and [29, Ch. 4].

The bar resolution can be used to give a concrete interpretation of H1. In what follows, we take F = Z.

Definition 1.1.7 (Torsors). Let G be a group and A ∈ Z[G]-Mod. By an A-torsor, we mean a nonempty
G-set X equipped with a simply transitive right action + : X × A → X of A that is compatible with the
action of G, i.e., such that for all x ∈ X, a ∈ A and g ∈ G, we have gx+ ga = g(x+ a).

Torsors are also called principal homogeneous spaces. The definition of an isomorphism of A-torsors is clear.

Theorem 1.1.8. There is a bijection between H1(G,A) and the set of isomorphism classes of A-torsors.

Proof. ([44, §5.2]) Let X be an A-torsor and x ∈ X. For each g ∈ G, there is a unique a(g) ∈ A satisfying
x + a(g) = gx, and then the map a : G → A lies in Z1(G,A). Given any other x′ ∈ X, there is a
b ∈ A ∼= C0(G,A) such that x′ = x + b, and the corresponding map a′ : G → A differs from a by
∂0b ∈ B1(G,A). Hence, we get a well-defined class [a] ∈ H1(G,A), and the previous argument also shows
it depends only on the isomorphism class of X.

Conversely, if a ∈ Z1(G,A) is a 1-cocycle, define a G-set Xa by taking the underlying set to be A
and the a-twisted action of G on the left given by g ·a x := gx + a(g) for g ∈ G and x ∈ Xa; that this is
an action uses precisely the cocycle condition on a. Acting on the right by translations makes Xa into an
A-torsor, and two cohomologous cycles define isomorphic A-torsors. This gives a map in the other direction
which is easily seen to be the inverse to the first one.

Remark 1.1.9.
(a) Theorem 1.1.8 gives the set of isomorphism classes of A-torsors the structure of an abelian group.16

Further, the bijection is functorial in G and A. For instance, if ϕ : A → B a Z[G]-module homo-
morphism and X is an A-torsor, then the quotient XB of X × B modulo the equivalence relation
(x + a, b) ∼ (x, ϕ(a) + b) for x ∈ X, a ∈ A, b ∈ B is a B-torsor, and the map on cohomology
groups H1(G,A) → H1(G,B) induced by ϕ corresponds to the operation [X] 7→ [XB]. Similarly, the
isomorphism is functorial in G with respect to lifting morphisms defined in the next section.

(b) Similarly, the second cohomology group H2(G,A) admits a concrete description: it classifies extensions
1 → A → Γ → G → 0, where G acts on A by conjugation in Γ via the Z[G]-module structure; this
is the theory of “factor sets” ([37, 1.2.4]).17 When G = Gal(L/K) is a finite Galois group of order
n, extensions 1 → L× → Γ → G→ 1 correspond to Azumaya algebras (i.e., central simple algebras)
of dimension n2 over K split by L, and this gives an explicit isomorphism H2(G,L×) with the Brauer
group Br(L/K) ([15, Part II]).

16It is a fun exercise to figure out the corresponding operation on torsors explicitly.
17Higher cohomology groups also yield such descriptions (e.g., [37, §I.2, Ex. 2]), but they get increasingly more unwieldy.
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(c) There is an an analog of the above group cohomology with coefficients in a nonabelian group A.
The above proof applies verbatim in this setting to show that the pointed set H1(G,A) still classifies
A-torsors ([37, 1.2.3]). This is important in the theory of Galois descent ([8, Ch. X], [40, §4.4-4.5],
[43, §X.2]).

1.2 Functoriality: (Co)restriction, Inflation, and Conjugation

In this section, we study the functoriality of group cohomology H•(G,A) in the group G and the coefficient
module A, essentially following [28, Ch. II]. A group homomorphism φ : G′ → G induces an F-algebra
homomorphism φ : F[G′] → F[G], which gives rise to three functors–induction, restriction, and coinduction–

F[G′]-Mod F[G]-Mod

Indφ:=F[G]⊗F[G′]−

Coindφ:=HomF[G′]-Mod(F[G],−)

Resφ

which fit into the tensor-hom adjunctions Indφ ⊣ Resφ ⊣ Coindφ.
18 In particular, Resφ is faithfully

exact, so that the counit ε : Indφ ◦Resφ → idF[G]-Mod (resp. unit η : idF[G]-Mod → Coindφ ◦Resφ) is a
pointwise epimorphism (resp. monomorphism).

Definition 1.2.1 (Lifting Map). Given a group homomorphism φ : G′ → G, we define the lifting along φ

Lif•φ : H•(G,−) → H•(G′,Resφ(−))

to be the unique morphism of δ-functors extending the obvious natural transformation (−)G → (−)G
′ ◦Resφ.

Following [29, Def. 1.1.13], we let F-GrpMod∗ be the category fibered over Grpop whose objects
are pairs (G,A) consisting of a group G and an F[G]-module A and morphisms (G,A) → (G′, A′) given
by pairs (φ, f) where φ : G′ → G is a group homomorphism and f : Resφ(A) → A′ an F[G′]-module
homomorphism. Then using Definition 1.2.1 and the pushforward along f tells us that for each n ∈ Z≥0,
cohomology defines a covariant functor

Hn(−,−) : F-GrpMod∗ → F-Mod

with Lifnφ = Hn(φ, id). If we compute group cohomology using the bar resolution (Example 1.1.5), then
for a morphism (φ, f) : (G,A) → (G′, A′) in F-GrpMod and n ∈ Z≥0, the map Hn(φ, f) : Hn(G,A) →
Hn(G′, A′) is given at the level of inhomogeneous cochains Cn(G,A) → Cn(G′, A′) by c 7→ f ◦ c ◦ φn.19

Example 1.2.2. ((Co)restriction) If ι : H ↪→ G is the inclusion of a subgroup, then the resulting functor
Resι : F[G]-Mod → F[H]-Mod and morphism Lif•ι : H•(G,−) → H•(H,Resι(−)) of δ-functors are both
called the restriction morphisms and denoted ResGH . In this case, F[G] is a free (left or right) F[H]-module,
and hence the functors IndGH := Indι and CoindGH := Coindι are both faithfully exact. Here are a couple
of applications of this observation.

18If φ : G′ → G has finite kernel K and |K| ∈ F×, there is a natural transformation Φ : Indφ → Coindφ given on an F[G′]-
module A by g ⊗ a 7→ Φg,a, where Φg,a(h) := |K|−1 ∑

g′∈φ−1(hg) g
′a for g, h ∈ G and a ∈ A. Dually, if [G : φ(G′)] < ∞,

there is a natural transformation Ψ : Coindφ → Indφ given on an F[G′]-module A by θ 7→
∑
g∈[G/φ(G′)] g ⊗ θ(g−1) for

θ ∈ Coindφ(A). If both hold (i.e., indφ is defined), and for A ∈ F[G′]-Mod, we let AvgK : A → AK ↪→ A be the averaging
map a 7→ |K|−1 ∑

g′∈K g
′a, then there are natural isomorphisms Ψ◦Φ ∼= idF[G] ⊗AvgK and Φ◦Ψ ∼= AvgK∗ . So, if φ is injective

(and identified with the inclusion of a finite index subgroup), then AvgK = id and Φ and Ψ are inverse isomorphisms between
the induction and coinduction functors. This is the reason that these two are often conflated for finite group representations.

19This is because this operation at the level of inhomogeneous cochains is easily seen to induce a δ-functor morphism, so we
are done by the universality.
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(a) Since ResGH : F[G]-Mod → F[H]-Mod is an exact functor taking injectives to injectives (it admits an
exact left adjoint IndGH), we conclude that H•(H,ResGH(−)) ∼= R•(−)H : F[G]-Mod → F-Mod.20 If
further [G : H] <∞, then the natural transformation NG

H : (−)H → (−)G, called the norm map and
given on A ∈ F[G]-Mod by AH ∋ a 7→

∑
g∈[G/H] ga ∈ AG, lifts to a morphism R•NG

H of δ-functors

called the corestriction or transfer morphism21

CorGH := R•NG
H : H•(H,ResGH(−)) → H•(G,−).

In this case, CorGH ◦ResGH ∼= [G : H], i.e., the composite of restriction and corestriction is given by
multiplication by the [G : H], because both operations are endomorphisms of the derived functor
H•(G,−) which agree on H0. In particular, if n > cdF(H), then [G : H] · Hn(G,−) = 0. Applying
this to the case of G finite and H = {∗} gives a strengthening of the last result of Example 1.1.3: if
G is a finite group, A ∈ F[G]-Mod, and n ∈ Z≥1, then UHn(G,A) has exponent dividing |G|.

(b) (Shapiro’s Lemma) If ε : ResGH ◦CoindGH → id denotes the counit morphism, then the map

H•(ι, ε) : H•(G,CoindGH(−)) →∼ H•(H,−)

is an isomorphism of δ-functors F[H]-Mod → F-Mod. Indeed, since CoindGH is exact and admits
an exact left adjoint ResGH , it suffices to demonstrate an isomorphism in H0; but the counit ε ev-
idently induces an isomorphism (CoindGH(−))G →∼ (−)H . In particular, taking H = {∗} shows
that an F[G]-module coinduced from the trivial subgroup is acyclic. As noted above, the unit
idF[G]-Mod → CoindG{∗} ◦Res

G
{∗} is a pointwise monomorphism,22 and hence it is an effacement of

the group cohomology functor in positive degrees.23

Here’s a sample application of these morphisms to the vanishing of cohomology groups which often
allows us to reduce to the case of p-groups. In the following corollary, we take F = Z.

Corollary 1.2.3.
(a) Let G be a group and H ≤ G a subgroup of finite index [G : H] not divisible by a prime p ∈ Z. Then

the (p)-localized restriction morphism

(ResGH)(p) : H
•(G,−)(p) → H•(H,ResGH(−))(p)

is a pointwise monomorphism in all degrees.
(b) Suppose G is a finite group, A ∈ Z[G]-Mod with UA ∈ Z-Mod finitely generated, and n ∈ Z≥1. If for

each prime p, there is a p-Sylow subgroup Gp ≤ G with Hn(Gp,Res
G
Gp A) = 0, then Hn(G,A) = 0.

Proof.
(a) By the formula CorGH ◦ResGH = [G : H], the (p)-localized corestriction provides a retraction.
(b) By Remark 1.1.6(b), Hn(G,A) is a finite, and so Hn(G,A) ↪→

⊕
pH

n(G,A)(p); now apply (a).

Example 1.2.4. (Inflation) Let G be a group, N ⊴ G a normal subgroup, and π : G↠ G/N the quotient
map. In this case, there is a natural isomorphism

Coindπ ∼= (−)N : F[G]-Mod → F[G/N ]-Mod,

20For this reason, we will often denote H•(H,ResGH(−)) simply by H•(H,−).
21For a formula at the level of cochains, see [28, §II.1] or [37, §1.5].
22This can also be seen from the fact that it is given on an A ∈ F[G]-Mod by the embedding A ↪→

HomF-Mod(F[G],ResG{∗}A)
∼=F-Mod C1(G,A) given by a 7→ (g 7→ ga) for a ∈ A and g ∈ G.

23This gives rise to the technique of dimension shifting, and is hence the starting point of some treatments of group cohomology
as in [8, Ch. IV]; c.f. the proof of Theorem 1.3.1.
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and so (−)N admits an exact left adjoint, namely Resπ. If i : Resπ ◦(−)N → id is the counit of this

adjunction, then the morphism Inf
G/N
G := H•(π, i) : H•(G/N, (−)N ) → H•(G,−) is called the inflation

morphism. Let us only make the (trivial) observation that if (G,A) ∈ F-GrpMod, then the natural map

Inf : colimU⊴GH•(G/U,AU ) → H•(G,A)

is an isomorphism of F-modules, where the colimit is over normal subgroups U ⊴ G with an inclusion

U ⊴ V ⊴ G giving rise to the inflation map Inf
G/V
G/U : H•(G/V,AV ) → H•(G/U,AU ).

Example 1.2.5. (Conjugation) Let G be a group and H ≤ G a subgroup. For each g ∈ G, let gH :=
gHg−1, so for g, g′ ∈ G, we have gg′H = g(g

′
H). For each such H and g ∈ G and A ∈ F[G]-Mod, we have

a morphism g : (−)H → (−)
gH of functors F[G]-Mod → F-Mod given by left multiplication by g, which

gives rise the conjugation morphism24 of δ-functors (see Example 1.2.2(a))

ΨH,g := R•g : H•(H,ResGH(−)) → H•(gH,ResGgH(−)).

Again, for g, g′ ∈ G, we have ΨH,gg′ = Ψg′H,g ◦ΨH,g′ and also ΨH,g = id if g ∈ H. In particular, if N ⊴ G

is normal, the map ΨN,− turns H•(N,ResGN (−)) into an F[G/N ]-module.25

For the transitivity of (co)restriction and inflation and various compatibilities for different subgroups, see
[28, Ch. II] or [37, §1.5]. One final result relating inflation and restriction we will need is

Theorem 1.2.6 (Inflation-Restriction Sequence). Let G be a group, N ⊴ G a normal subgroup, and
A ∈ F[G]-Mod. If n ∈ Z≥1 is such that for all i = 1, . . . , n− 1, we have Hi(N,A) = 0, then the sequence

0 → Hn(G/N,AN )
Inf

G/N
G−−−−→ Hn(G,A)

ResGN−−−→ Hn(N,A)

is exact.

Proof. This follows from an explicit check using formulae for n = 1, and dimension shifting for n > 1 ([37,
1.6.7]). An alternative (and better) proof is afforded by considering the Lyndon-Hochschild-Serre spectral
sequence ([37, §2.4]), which is the Grothendieck spectral sequence associated to the composition

F[G]-Mod
(−)N−−−→ F[G/N ]-Mod

(−)G/N−−−−−→ F-Mod.

1.3 The Cup Product

One final tool in (abstract) group cohomology we will need is the cup product. For this, if A,B ∈ F[G]-Mod,
then the tensor product A ⊗F B can be made into an F[G]-module via the diagonal action, i.e., for a ∈
A, b ∈ B and g ∈ G, we have g ·(a⊗b) = ga⊗gb. Further, there is a natural map AG⊗FB

G → (A⊗FB)G

which for general homological algebra reasons gives rise to a product mapping in group cohomology. We
summarize the basic results in

24Explicitly for A ∈ F[G]-Mod, consider the morphism (c, g) : (H,ResGH A) → (gH,ResGgH A) in F-GrpMod∗ given by the
inverse conjugation c : gH → H and left-multiplication by g : Resc ◦ResGH A→ ResGgH A. Then ΨH,g = H•(c, g).

25In effect, we have described the derived functor R•(−)N : F[G]-Mod → F[G/N ]-Mod of the functor (−)N described in
Example 1.2.4.
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Theorem 1.3.1 (Cup Product). There is a unique family of homomorphisms, called the cup product,

⌣ : Hp(G,A)⊗F Hq(G,B) → Hp+q(G,A⊗F B)

defined for all p, q ∈ Z≥0 and A,B ∈ F[G]-Mod, functorial in F, G,A, and B, such that (a)-(c) hold.
(a) For A,B ∈ F[G]-Mod, the product agrees with the above map AG⊗FB

G → (A⊗FB)G for p = q = 0.
(b) If 0 → A′ → A → A′′ → 0 is an exact sequence of F[G]-modules, and B ∈ F[G]-Mod such that

the sequence 0 → A′ ⊗F B → A ⊗F B → A′′ ⊗F B → 0 is also exact, then for all p, q ∈ Z≥0 and
a′′ ∈ Hp(G,A′′) and b ∈ Hq(G,B), we have

δ(a′′ ⌣ b) = δ(a′′)⌣ b ∈ Hp+q+1(G,A′ ⊗F B).

(c) If 0 → B′ → B → B′′ → 0 is a an exact sequence of F[G]-modules and if A ∈ F[G]-Mod such that
the sequence 0 → A ⊗F B

′ → A ⊗F B → A ⊗F B
′′ → 0 is also exact, then for all p, q ∈ Z≥0 and

a ∈ Hp(G,A) and b ∈ Hq(G,B′′), we have

δ(a ⌣ b′′) = (−1)pa ⌣ δ(b′′).

Further, the cup product is associative and graded commutative, compatible with restriction and inflation
maps, and satisfies a projection formula for finite index subgroups H ≤ G.26

Proof. Uniqueness is proven by dimension shifting as follows. For each A ∈ F[G]-Mod, turn the effacement
of Example 1.2.2(b) into a short exact sequence 0 → A → C1(G,A) → A′′ → 0 of F[G]-modules. The
map C1(G,A) → A given by f 7→ f(1) is an F-module retraction of the effacement, so the corresponding
sequence of F-modules splits and for any B ∈ F[G]-Mod, the sequence

0 → A⊗F B → C1(G,A)⊗F B → A′′ ⊗F B → 0

is still exact. Then the acyclicity of C1(G,A) along with (a) and (b) determines all products for p ∈ Z≥0

and q = 0. The same argument with A and B swapped and using (a) and (c) proves the result.
Existence can be proven either using the δ-functor formalism ([28, Ch. IV]), or using projective resolutions

([8, §IV.7] or [13, §3.4]), or very explicitly using inhomogeneous cochains ([15, Ch. 12] or [37, §1.4]). The
last approach is exceedingly simple and amenable to concrete computation: for each p, q ∈ Z≥0, we define
a map ⌣: Cp(G,A)⊗F Cq(G,B) → Cp+q(G,A⊗F B) by the formula

(σ ⌣ τ)(g1, . . . , gp+q) := σ(g1, . . . , gp)⊗ g1g2 · · · gpτ(gp+1, . . . , gp+q) (1.2)

for σ ∈ Cp(G,A), τ ∈ Cq(G,B), and g1, . . . , gp+q ∈ G. In this case, it follows from the equality

∂p+q(σ ⌣ τ) = ∂pσ ⌣ τ + (−1)pσ ⌣ ∂qτ (1.3)

obtained by direct calculation that the product defined by (1.2) descends to give a product on the cohomology.
The remaining properties that need to be checked follow either for formal reasons ([28, Ch. IV]) or using
the explicit formulae.27

26Explicitly, this says that if H ≤ G is a finite index subgroup, then for each A ∈ F[H]-Mod, B ∈ F[G]-Mod, p, q ∈ Z≥0,
and x ∈ Hp(H,A) and y ∈ Hq(G,B), we have

Cor(x ⌣ Res(y)) = Cor(x)⌣ y.

The other claims are similarly clunky to formulate but entirely straightforward (see [8, Prop. IV.9] or [15, Prop. 12.40]).
27C.f. [5, Ch. II, Thm. 7.1]. Using Remark 1.1.6(c) and the formula (1.2) (or rather its homogeneous analog), one can show

that these cup products agree with those in simplicial cohomology for the standard simplicial model of the Eilenberg-MacLane
space K(G, 1), and hence that they agree with topological cup products when group cohomology is computed as in Example
1.1.4.
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1.4 Tate Cohomology

In this section, we follow [8, §IV.6], [36, Part I], and [37, Ch. 1]. When G is a finite group, the group
homology and cohomology groups can be spliced together to make the Tate cohomology groups Ĥ•(G,−),
which are very useful and can be computed from an analog of projective resolutions of F called complete
resolutions. We need the following notation: given a finite group G, we let NG :=

∑
g∈G g ∈ F[G]-Mod (the

“norm of G”), and IG := ker(ε) where ε : F[G] → F is given by g 7→ 1 for all g ∈ G (the “augmentation
ideal”).

Definition 1.4.1 (Tate Cohomology). For a finite group G and A ∈ F[G]-Mod, the Tate cohomology
groups Ĥ•(G,A)of G with coefficients in A are defined to be

Ĥn(G,A) :=


Hn(G,A), if n ≥ 1,

AG/NGA, if n = 0,

A[NG]/IGA if n = −1, and

H−(n+1)(G,A), if n ≤ −2,

where as usual A[NG] := {a ∈ A : NG a = 0}.

Example 1.4.2 (Cyclic Groups). Let n ∈ Z≥1. If G = Cn = ⟨x|xn⟩, then F[G] = F[x]/(xn − 1) and
NG =

∑n−1
j=0 x

j . For any A ∈ F[G]-Mod, we have

Ĥn(G,A) ∼=

{
A[NG]/(1− x)A if n is odd, and

AG/NGA if n is even.

This is proven by considering the complete resolution

· · · ·NG−−→ F[G]
·(1−x)−−−−→ F[G]

·NG−−→ F[G]
·(1−x)−−−−→ F[G]

·NG−−→ · · · .

Alternatively, one could truncate the above resolution as · · · NG−−→ F[G]
·(1−x)−−−−→ F[G]

ε−→ F → 0 to get an
honest projective (even free) resolution of F, and then use Remarks 1.1.2(d),(e) and Definition 1.4.1. See,
e.g., [8, §IV.8]. In particular, the Tate cohomology groups are 2-periodic. Taking A = F to be the trivial
module, we have H2(G,F) ∼= F/nF, so that if n = |G| is not a unit in F, then in particular cdF(G) = ∞;
c.f. Example 1.1.4 and the computation of the (co)homology using the lens space models of K(Cn, 1) with
various coefficient groups, e.g., in [20, Example 2.43 and Exercise 3.1.10].

Remark 1.4.3. Much of the above theory of group cohomology can be extended to Tate cohomology; here
we summarize the key points; for proofs, see [8, Ch. IV] or [37, Ch. 1].
(a) A short exact sequence 0 → A → B → C → 0 of F[G]-Mod-modules naturally gives rise to a

bi-infinite long exact sequence of F-modules in Tate cohomology:

Ĥ•(G,A) → Ĥ•(G,B) → Ĥ•(G,C)
δ−→ Ĥ•+1(G,A).

This follows from splicing together the long exact sequences in homology and cohomology along with
easy explicit checks near degrees n = 0,−1.

(b) For a subgroup H ≤ G, there are restriction and corestriction maps

ResGH : Ĥ•(G,−) ⇄ Ĥ•(H,−) : CorGH

such that CorGH ◦ResGH = [G : H]. In particular, UĤ•(G,−) has exponent dividing |G|.28

28There is, however, no analog of the inflation map in Tate cohomology (in negative degrees).
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(c) ([15, Cor. 12.6]) If A ∈ F-Mod, then for any H ≤ G, we have Ĥ•(H,CoindG{∗}A) = 0.29

(d) The results of Corollary 1.2.3 remain true in this setting for all n ∈ Z (with the same proof).
(e) ([15, Cor. 12.9], “Dimension Shifting”) Given an A ∈ F[G]-Mod and n ∈ Z, there is an A(n) ∈

F[G]-Mod such that Ĥ•(G,A(n)) ∼= Ĥ•+n(G,A).
(f) There is an extension of the cup product to all degrees in Tate cohomology with similar properties.

In closing this chapter, we mention two important results due Tate which are most directly useful for
arithmetic applications. For this we need one definition.

Definition 1.4.4 (Cohomological Triviality). Let G be a finite group, A ∈ F[G]-Mod, and n ∈ Z. We say
that A is
(a) cohomologically trivial in degree n if for all subgroups H ≤ G, we have Ĥn(H,A) = 0, and
(b) cohomologically trivial if it is so in each degree n ∈ Z.

In 1.4.5-1.4.7, we fix the hypothesis that G is a finite group and A ∈ Z[G]-Mod. We follow [36, §1.7].

Theorem 1.4.5 (Tate). If A is cohomologically trivial in two adjacent degrees, then it is so in all degrees.

Proof. By Remark 1.4.3(e), we reduce to the case where A is cohomologically trivial in degrees 1 and 2,
and we need to show that it is so in degrees 0 and 3. By induction on |G|, suppose this is true for all proper
H ≤ G and reduce to the caseH = G. By Remark 1.4.3(d), reduce to the case that G is a nontrivial p-group
for some prime p. Pick a normal subgroup N ⊴ G of index p, and use Theorem 1.2.6 to get isomorphisms

Inf
G/N
G : Hn(G/N,AN ) → Hn(G,A) for n ∈ {1, 2, 3}. Now H1(G,A) = 0 implies H1(G/N,AN ) = 0 so by

Example 1.4.2, H3(G/N,AN ) = 0 and hence H3(G,A) = 0. From H2(G,A) = 0, again by Example 1.4.2
we have Ĥ0(G/N,AN ) = 0, so that AG = (AN )G/N = NG/N AN . But Ĥ0(N,A) = 0 implies AN = NN A,

and so AG = NG/N (NN A) = NGA, i.e., Ĥ
0(G,A) = 0.

We need a small lemma.

Lemma 1.4.6. Suppose n ∈ Z is such that for each subgroup H ≤ G, the cohomology Ĥn(H,A) is cyclic
of order |H|. If a ∈ Ĥn(G,A) is a generator, then ResGH a ∈ Ĥn(H,A) is a generator for all H ≤ G.

Proof. Since CorGH ◦ResGH a = [G : H]a (Remark 1.4.3(b)), |H| divides the order of ResGH a.

The key result we will use in the next chapter is

Theorem 1.4.7 (Tate-Nakayama). Suppose that A is cohomologically trivial in degree 1 and for each
subgroup H ≤ G, the group H2(H,A) is cyclic of order |H|. If a ∈ H2(G,A) is a generator, then for each
subgroup H ≤ G, the cup product induces abelian group isomorphisms

ResGH a ⌣ − : Ĥ•(H,Z) →∼ Ĥ•+2(H,A).

In particular, we get an isomorphism Hab → AH/NH A.

Proof Sketch. ([36, I.7.3], [37, 3.1.4]) By Lemma 1.4.6, we are reduced to the case H = G. By dimension
shifting (Remark 1.4.3(e)) and naturality of the cup product (Remark 1.4.3(f)), switch to showing instead
that when A is cohomologically trivial in degree −1, for each subgroup H ≤ G, the group Ĥ0(H,A) is cyclic
of order |H|, and a ∈ Ĥ0(G,A) is a generator, then a ⌣ − : Ĥ•(G,Z) → Ĥ•(G,A) is an isomorphism.

If we lift a to ã ∈ AG, the corresponding map Z → A given by ã (which induces the cup product a ⌣ −
in cohomology) need not be injective, but we can remedy this by replacing A by A⊕Z[G] and ã by (ã,NG).

29Here we continue the notational abuse of Footnote 20. This statement says that coinduced modules are cohomologically
trivial (see Definition 1.4.4).
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Indeed, the inclusion A→ A⊕Z[G] induces an isomorphism in cohomology by Remark 1.4.3(c), and we are
using the naturality of cup products (Remark 1.4.3(f)). Having done this, fit ã into a short exact sequence

0 → Z ã−→ A → B → 0 of Z[G]-modules, and for each H ≤ G consider the long exact sequence in Tate
cohomology of H (Remark 1.4.3(a)). We have Ĥ−1(H,A) = 0 (hypothesis), Ĥ1(H,Z) ∼= HomGrp(H,Z) =
0 (Remark 1.1.6(a) and |H| < ∞), and Ĥ0(H, ã) is an isomorphism (Lemma 1.4.6), so that by the long
exact sequence, Ĥ−1(H,B) = Ĥ0(H,B) = 0. By Theorem 1.4.5, B is cohomologically trivial and so again
by the long exact sequence, the map a ⌣ − = Ĥ•(G, ã) is an isomorphism.

The last result follows from considering degree • = −2; then Ĥ−2(H,Z) := H1(H,Z) ∼= Hab (Example
1.1.4) and Ĥ1(H,A) ∼= AH/NH A (Definition 1.4.1).
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2 Galois Cohomology

In arithmetic applications, we are often interested in studying the continuous action of a profinite group
on a discrete module, the prototypical example being that of Galois cohomology, i.e., when the absolute
Galois group of a perfect field acts on the (set of algebraic-closure-valued) points of a (commutative)
algebraic group. To apply group cohomology to this setting, we need to modify the definition of the
“abstract” cohomology groups from the previous chapter to account for the topology, just as is needed for
the fundamental theorem of infinite Galois theory. In the first section below, we explain how to do this and
define profinite group cohomology; having done this, much of the theory from the previous chapter is seen
to extend immediately to the profinite setting. Following this, we define Galois cohomology as a special case
of profinite cohomology and study some classical examples. In the third section, we define the notion of
a class formation and show how the Tate-Nakayama theorem implies the fundamental theorem of abstract
class field theory, illustrating with examples from local and global class field theory. Finally, we outline the
local duality theorem of Tate, the Tate-Poitou exact sequence, and Tate’s theorem on global Euler-Poincaré
characteristics, which will be key ingredients in Tate’s proof of the isogeny invariance of the BSD conjecture.

We will assume familiarity with profinite groups ([8, §V.1], [42, Ch. 2]), the basic theory of algebraic
groups over a field ([34, Ch. 1-11]), and the basic structure theory for local and global number fields ([7],
[8, Ch. I-II], [36, §II.3, III.1-2]). The following is taken from [8], [9], [15], [17], [37], [42], [43], and [44].

2.1 Profinite Cohomology

There are (at least) three ways to extend group cohomology to the profinite setting, namely
(a) using the δ-functor formalism by showing that the category of discrete modules has enough injectives,
(b) using an analog of the bar resolution involving continuous cochains, and
(c) by defining profinite cohomology as a colimit of finite group cohomology.

One must then show that these agree with each other. We now explain how to do this, following [9].
Let F be a fixed (commutative unitary) ring and G be a profinite group.30

Lemma 2.1.1. (Discrete G-Sets) Let X be a G-set. The following are equivalent.
(a) The G-action on X is continuous when X is given the discrete topology.
(b) For any x ∈ X, the stabilizer Gx ⊂ G is an open subgroup.
(c) We have X =

⋃
U X

U , where the union is over open subgroups U ⊂ G.

Proof. When X is discrete, the action G × X → X is continuous iff for each x, y ∈ G, the subset
{g ∈ G : gx = y} is open, but this subset is either empty or a coset and translate of the stabilizer Gx.

Definition 2.1.2 (Discrete G-Modules). The category F[G]-Moddisc of discrete F[G]-modules is the full
additive subcategory of F[G]-Mod comprising modules on which the G-action satisfies the equivalent con-
ditions of Lemma 2.1.1.

Since F[G]-Moddisc is evidently closed under taking kernels and cokernels, it is an abelian category and
the inclusion functor F[G]-Moddisc → F[G]-Mod is exact.

Theorem 2.1.3. The subcategory F[G]-Moddisc ↪→ F[G]-Mod is coreflective and so has enough injectives.

Proof. The discretization functor disc : F[G]-Mod → F[G]-Moddisc given on objects by

A 7→ Adisc := {x ∈ A : Gx ⊂ G is open}

is right adjoint to the exact inclusion functor. Therefore, if A ∈ F[G]-Moddisc and A ↪→ J is an injective
envelope in F[G]-Mod, then A→∼ Adisc ↪→ Jdisc is an injective envelope in F[G]-Moddisc.

30Note that some of the initial results only use that G is a topological group.
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This theorem allows us to repeat the theory of the previous chapter with minimal modifications; here
we briefly mention the salient points.

Definition 2.1.4 (Profinite Cohomology). The profinite group cohomology of G in discrete F-modules,
denoted H•(G,−),31 is the right derived functor of the left exact functor (−)G : F[G]-Moddisc → F-Mod
of G-invariants, i.e.,

H•(G,−) := R•(−)G : F[G]-Moddisc → F-Mod.

Remark 2.1.5. As in §1.2, profinite cohomology groups are functorial for continuous homomorphisms of
profinite groups: if φ : G′ → G is a continuous morphism of profinite groups, then we get a functor
Resφ : F[G]-Moddisc → F[G′]-Moddisc, and as in Definition 1.2.1 we can define Lif•φ. Similarly, we have
analogs of (co)induced modules,32 (co)restriction maps for closed subgroups H ≤c G,

33 Shapiro’s Lemma,
inflation maps for closed normal N ⊴c G, the conjugation morphism, the Lyndon-Hochschild-Serre spectral
sequence, the inflation-restriction sequence, cup products, and even Tate cohomology.34 These can either
be developed as in the previous section (see, e.g., [42, Ch. 6]), or as the colimits of the corresponding
operations (or results) for the finite case, as we explain below.

For a profinite group G, a discrete F[G]-module A, and n ∈ Z≥0, we let Cn
cts(G,A) := HomTop(G

n, A)
denote the set of continuous maps Gn → A. This is naturally an F-module, called the module of continuous
inhomogeneous n-cochains on G with values in A. The same formula from Example 1.1.5 (using Lemma
2.1.1) defines a differential ∂• making (C•

cts(G,A), ∂
•) a complex of F-modules, and we define Z•

cts, B
•
cts,

and H•
cts analogously. As previously, each open normal subgroup U ⊴o G gives rise to an inflation map

Inf : C•(G/U,AU ) → C•
cts(G,A), where, importantly, on the left G/U is finite and so we may drop the

subscript “cts,” and that the image lies in C•
cts(G,A) uses that U is open. Gluing these as in Example 1.2.4

yields a map Inf : colimU⊴oGC•(G/U,AU ) → C•
cts(G,A).

Lemma 2.1.6. For a profinite G and A ∈ F[G]-Moddisc, the inflation map above is an isomorphism of
F-chain complexes. In particular, it induces an isomorphism Inf : colimU⊴oGH•(G/U,AU ) →∼ H•

cts(G,A).

Proof. The first statement is clear from Lemma 2.1.1, and (co)homology commutes with direct limits.

Theorem 2.1.7. For a profinite G, there is a natural isomorphism of δ-functors H•(G,−) ∼= H•
cts(G,−).

In other words, derived functor profinite cohomology can be computed via continuous cochains. The
δ-functor structure on H•

cts(G,−) will be produced in the course of the proof.

Proof. It suffices to show that H•
cts(G,−) defines an exact δ-functor extending (−)G on F[G]-Moddisc,

and that it is effaceable in positive degrees. It is definitionally clear that H0
cts(G,−) ∼= (−)G. Further, if

0 → A→ B → C → 0 is an exact sequence of discrete F[G]-modules, then the corresponding sequence of
chain complexes 0 → C•

cts(G,A) → C•
cts(G,B) → C•

cts(G,C) → 0 is also exact, where we are using Lemma
2.1.6 for C and that the quotients G/U for U ⊴o G are all finite. Taking long exact sequence in cohomology
shows how to give H•

cts(G,−) the structure on an exact δ-functor. It remains to show that Hn
cts(G,−) is

31When considering a profinite group G, there is an apparent clash in notation between Definitions 1.1.1 and 2.1.4, and
these are in general different ([9, Ex. 2.5]). We define H•(G,−) to mean the latter, since there is no reason to consider the
“abstract” group cohomology of Definition 1.1.1 for profinite groups G. When G is finite, there is no notational clash since
every F[G]-module is discrete.

32For instance, in the above setting, define for A ∈ F[G′]-Mod the coinduced module Coindφ(A) to be the module of all
continuous G′-equivariant set maps G→ A. Most other constructions work after inserting the word “continuous” in a suitable
place.

33For the corestriction map, we also need, as before, H to be of finite index; in this case, that is equivalent to saying H is
open. Again, the relation CorGH ◦ResGH = [G : H] holds.

34For this last, see [37, §1.9].
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effaceable for n ∈ Z≥1. This follows from Lemma 2.1.6 and the observation that if J ∈ F[G]-Moddisc is
injective, then for all U ⊴o G, the module JU ∈ F[G/U ]-Mod is injective. This last result, in turn, follows
from the fact that (−)U : F[G]-Moddisc → F[G/U ]-Mod admits an exact left adjoint, namely restriction
along the projection πU : G↠ G/U .35

Remark 2.1.8. That profinite group cohomology can be computed using continuous cochains has conse-
quences similar to those of the computation of (abstract) group cohomology using cochains.
(a) Similarly to Remark 1.1.6(a), if a profinite group G acts trivially on an F-module A, then we have

H1(G,A) ∼=F-Mod Homcts
Grp(G,A). If A = Q, then Example 1.1.3 and Lemma 2.1.6 tell us still that

Hn(G,Q) = 0 for n ∈ Z≥1, and again we get an isomorphism H2(G,Z) ∼= Homcts
Grp(G,Q/Z).

(b) Similarly to Remarks 1.1.2(c) and 1.1.6(b), the groups H•(G,−) are “independent of F”; consequently,
in what follows, we will stick to F = Z. Further, if A ∈ Z[G]-Moddisc, then it follows from Example
1.2.2(b) and Lemma 2.1.6 that Hn(G,A) is a torsion group for each n ∈ Z≥1.

(c) It is easy to see that for an A ∈ F[G]-Moddisc, the natural map H1
cts(G,A) → H1

abs(G,A) is
injective, where we use the temporary notation on the right to denote the “abstract” cohomol-
ogy group (forgetting the topology). Under the identification on Theorem 1.1.8, the subgroup
H1(G,A) = H1

cts(G,A) ⊂ H1
abs(G,A) classifies isomorphism classes of discrete A-torsors, i.e., A-

torsors X such that X is a discrete G-set in the sense of Lemma 2.1.1 (c.f. Example 2.2.9). Similarly
to Remark 1.1.9(b), the second cohomology group H2(G,A) classifies profinite extensions of G by A
([42, §6.8]), and there is an analog of the first nonabelian cohomology group to the setting of profinite
cohomology (at least in the case of Galois cohomology–see [44, §5.1 and Ch. III]).

(d) In the above approach, we have apparently defined two distinct “inflation” morphisms
Inf : colimU⊴oGH•(G/U, (−)U ) → H•(G,−): one coming from the inflation maps of the δ-functor
formalism (Remark 2.1.5), and one coming from combining Lemma 2.1.6 and Theorem 2.1.7. In fact,
these two maps agree. For this delicate point, see [9, §4].

2.2 Classical Examples of Galois Cohomology

In this section, we review some basic facts from the theory of algebraic groups (from [12], [34], and [40]),
define Galois cohomology, and see some classical examples ([8, §V.2]).

Let K be a field. A variety over K (or K-variety) is a separated scheme of finite type over K; a
morphism of K-varieties is a K-scheme morphism. By an algebraic group over K, we mean a group object
in the category of K-varieties. We denote by GrpK the category of commutative algebraic groups over K;
key examples are the additive group Ga, the multiplicative group Gm, for each n ∈ Z≥1 the group µn of
nth roots of unity, and abelian varieties and kernels of their isogenies (§3.1). We will need

Theorem 2.2.1 (Algebraic Groups). Let K be a field.
(a) The category GrpK is abelian.
(b) If L/K is a field extension, the basechange functor GrpK → GrpL is exact.
(c) If Ka/K is an algebraic closure of K, the functor GrpK→ Ab given by A 7→ A(Ka) is exact.

Proof.
(a) See [12, 4.41], [34, 5.62], or [40, 5.2.12]. We only remark that a quotient map (i.e., epimorphism)

in this category is a faithfully flat36 homomorphism, and that a sequence 1 → A → B → C → 1 is
exact iff B → C is a quotient map and A maps isomorphically to its kernel.37

35That this restriction map maps to discrete G/U modules is where we use that U is open!
36When the codomain is reduced, surjectivity of the underlying map of topological spaces implies flatness; see [34, 1.70].
37The existence of quotients is subtle and the key technical result needed for the proof of this theorem. The construction

of quotients in the affine case is classical [34, §5c]. Perhaps the best way to construct quotients in general is to embed GrpK
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(b) Faithful flatness is stable under base change, and so is the formation of kernels (both are limits).
(c) By (b), assume K = Ka. The functor is given by taking closed points, and the assertion is clear.38

Recall that when X is a scheme locally of finite type over a field K (resp. a commutative algebraic group
over K), and L/K a Galois extension with Galois group G := Gal(L/K), then X(L) is a discrete G-set
(resp. discrete Z[G]-module) and X(K) →∼ X(L)Gal(L/K) ([14, §5.2]). In particular, when K is perfect,
this applies to L = Ks = Ka with Gal(Ka/K) =: GK and we have X(K) →∼ X(Ka)GK .

Definition 2.2.2 (Galois Cohomology). Let K be a field and A a commutative algebraic group over K.
(a) Given a Galois extension L/K, the (relative) Galois cohomology groups of A relative to L/K are the

profinite cohomology groups H•(L/K,A) := H•(Gal(L/K), A(L)).
(b) The (absolute) Galois cohomology groups of A are H•(K,A) := H•(Ks/K,A) for a fixed choice of

separable closure K → Ks.

Remark 2.2.3.
(a) For L/K finite Galois, we have analogously the Tate-Galois cohomology groups Ĥ•(L/K,A).
(b) By Theorem 2.2.1(c), whenK is perfect, a short exact sequence 0 → A→ B → C → 0 inGrpK yields

a long exact sequence in Galois cohomology H•(K,A) → H•(K,B) → H•(K,C)
δ−→ H•+1(K,A).

From now on, we (tacitly) assume that our base field K is perfect, so that Ks = Ka.39

(c) In Definition 2.2.2(b), we have made a choice of separable closure K → Ks of K and hence of
GK = Gal(Ks/K). However, a different choice would change GK by an inner automorphism, and
so, by Example 1.2.5, the Galois cohomology group is well-defined up to an canonical isomorphism.40

(d) Suppose K is a number field and v ∈ MK a place, and fix an extension of v to Ks = Ka, obtaining
an embedding Ka ↪→ Ka

v and decomposition and inertia groups Dv and Iv respectively. For each A ∈
GrpK , the map GKv

∼= Dv ↪→ GK along with the pushforward A(Ka) → A(Ka
v ) = Av(K

a
v ), where

Av := AKv is the basechange of A to Kv, gives rise to a homomorphism of the Galois cohomology
groups called the local restriction map Resv : H•(K,A) → H•(Kv, Av). The resulting morphism
Resv : H•(K,−) → H•(Kv, (−)v) is a morphism of δ-functors GrpK → Ab by Theorem 2.2.1(b).
In this setting, given an A ∈ GrpK and ξ ∈ H•(K,A), we say that the class ξ is unramified at v if

ξ maps to zero under the composite restriction H•(K,A)
Resv−−−→ H•(Kv, Av)

ResDvIv−−−−→ H•(Iv, Av(K
a
v )).

More generally, given any S ⊂ MK , we define the subgroup H•(K,A;S) to consist of cohomology
classes which are unramified at all v /∈ S. Even though the subgroups Dv and Iv depend on the
choice of extensions of v to Ka, they are well-defined up to conjugation, and hence by considerations
analogous to those in (c), restriction morphism Resv, the notion of “unramified class,” and the group
H•(K,A;S) are well-defined, independent of any choices.

into the category Shv(Spec(K)fl,Ab) =: AbK of abelian sheaves on the big flat (i.e., fppf) site Spec(K)fl, which is evidently
abelian, and then to show that the quotient in this category is also representable by an algebraic group ([40, 5.2.12], [12, 4.41]).
For a more accesible and low-tech approach, see [34, Appendix B].

38This uses standard facts such as surjective (resp. locally finite type morphisms) are stable under base change, a nonempty
locally finite type scheme over the field Ka has a Ka-point, etc.

39This suffices for all our applications; in what follows we will only be interested in fields of characteristic zero or finite fields.
This assumption is not necessary for all that follows, but it does simplify the exposition somewhat.

40Here’s one way to phrase this. Suppose K → Ks′ is another choice of separable closure (or equivalently algebraic

closure–recall that K is perfect), and let G′
K = Gal(Ks′/K) be the corresponding absolute Galois group. Then there is

a K-isomorphism ϕ : Ks →∼ Ks′ which induces an isomorphism cϕ : G′
K →∼ GK by σ 7→ ϕ−1σϕ. This gives rise to an

isomorphism of the cohomology groups H•(cϕ, A(ϕ)) : H•(GK , A(K
s)) →∼ H•(G′

K , A(K
s′)), and the point being made is

that the isomorphism H•(cϕ, A(ϕ)) is independent of the choice of ϕ, i.e., if ψ : Ks →∼ Ks′ is another K-isomorphism, then
H•(cϕ, A(ϕ)) = H•(cψ, A(ψ)). Indeed, both of these define morphisms of δ-functors (in A) which evidently agree in degree
zero.
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Example 2.2.4. If L/K is a finite Galois extension, then Ĥ•(L/K,Ga) = 0. Indeed, the Normal Basis
Theorem of field theory is equivalent to saying that Ga(L) is a free Z[Gal(L/K)] module of rank 1, and so
(co)induced from the trivial group; now apply Remark 1.4.3(c). In particular, Hn(K,Ga) = 0 for n ∈ Z≥1.

Example 2.2.5 (Artin-Schreier Theory). Let K be a field of charK = p > 0 and consider the homomor-

phism ℘ : Ga → Ga given by x 7→ xp − x. There is an exact sequence41 0 → Z/p → Ga
℘−→ Ga → 0

in GrpK which along with Remark 2.2.3(c), Example 2.2.4, and Remark 2.1.8(a) gives us isomorphisms

K/℘(K)
δ−→ H1(K,Z/p) ∼= Homcts

Grp(GK ,Z/p), recovering classical Artin-Schreier Theory.

Example 2.2.6. (Hilbert 90) If L/K is a finite Galois extension, then H1(L/K,Gm) = 0; this follows from
Dedekind’s Theorem on the independence of characters ([15, Thm. 11.1]). In particular, H1(K,Gm) = 0.

Example 2.2.7. (Brauer Groups) When L/K is a finite Galois extension, we observed in Remark 1.1.9(b)
that H2(L/K,Gm) ∼= Br(L/K).42 This result, along with some naturality considerations ([15, Ch. 7]),
gives us a functorial isomorphism H2(K,Gm) ∼= Br(K).

Example 2.2.8 (Kummer Theory). For each n ∈ Z≥1, the sequence 1 → µn → Gm
[n]−→ Gm → 1 is exact in

GrpK , so from Remark 2.2.3(c) and Example 2.2.6 we get the isomorphism δ : K×/(K×)n →∼ H1(K,µn).
WhenK contains all nth roots of unity, i.e. µn(K) →∼ µn(K

a), then we have the Z[GK ]-module isomorphism
µn ∼= Z/n, and hence, using Remark 2.1.8(a), H1(K,µn) ∼= H1(K,Z/n) ∼= Homcts

Grp(GK ,Z/n). Combining
these results (and considering finite subgroups on both sides) recovers classical Kummer Theory ([15, 11.7]).
The same sequence, combined with Example 2.2.7, also gives us the isomorphism H2(K,µn) →∼ Br(K)[n].

Even if the above definitions and results cannot be applied verbatim to a few other important settings,
the ideas can. Here are a couple of examples of this phenomenon.

Example 2.2.9 (Weil-Châtelet Group). ([40, §5.12]) Let A ∈ GrpK . Analogously to Definition 1.1.7, we
define an A-torsor, or principal homogeneous space for A over K, to be a nonempty K-variety X with
a simply transitive right algebraic group action of A on X defined over K, i.e., a K-scheme morphism
+ : X × A → X satisfying the axioms of a group action on R-points for each K-algebra R, such that
A(Ka) acts transitively on X(Ka) and that for some x ∈ X(Ka), the orbit map AKa → XKa given by
a 7→ x+ a is an isomorphism. Two A-torsors X and X ′ are isomorphic if there is a K-scheme isomorphism
X → X ′ compatible with the action of A, and an A-torsor X is isomorphic to the “trivial” A-torsor A iff
X(K) ̸= ∅. Let WC(A) denote the set of isomorphism classes of A-torsors; this is called the Weil-Châtelet
group of A.

Analogously to Theorem 1.1.8, there is a bijection43 H1(K,A) →∼ WC(A), and essentially the same proof
works: for an A-torsor X, pick an x ∈ X(Ka) and consider for each g ∈ GK the unique a(g) ∈ A(Ka)
such that x + a(g) = gx. Then a : GK → A(Ka) is a continuous 1-cocycle, and we get a well-defined
cohomology class [a] ∈ H1(K,A). Conversely, given a continuous 1-cocycle a ∈ Z1

cts(GK , A(K
a)), one

41Here, for n ∈ Z≥1, Z/n denotes the constant group scheme, the Ka points of which form the trivial Z[GK ]-module Z/n.
42 As an application of the theory developed so far, one can prove Wedderburn’s Theorem that every finite division algebra

is a field. Indeed, let ∆ be a finite division algebra, and let K := Z(∆) be its center, so that K is a finite field; we
need to show that [∆] = 0 in Br(K). From the general theory of Azumaya algebras ([15, 6.36]; this also follows from this
example combined with Remark 2.2.3), there is a finite extension L/K such that [∆] ∈ Br(L/K) ⊂ Br(K). Since L/K is
Galois, this examples tells us Br(L/K) ∼= H2(Gal(L/K), L×). Since L/K is further cyclic, we get from Example 1.4.2 that
H2(Gal(L/K), L×) ∼= K×/NLK(K×). One can now show directly by a counting argument that this is trivial (i.e., that the
norm map on finite fields is surjective, see [15, 7.24]), or use the consequence of Example 1.4.2 that if A is a finite Z[G]-module
for a finite cyclic group G, then |H1(G,A)| = |H2(G,A)|, which combined with Example 2.2.6 gives the result.

43This justifies the terminology. For a geometric description of the group law, see [40, Ex. 5.12.16] or [57, Prop. 5].
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can construct an A-torsor Xa inverting this operation.44 Therefore, elements of the first cohomology group
H1(K,A) can be thought of as K-isomorphism classes of principal homogeneous spaces for A over K, and
this bijection is functorial in K and A as in Remark 1.1.9.

Example 2.2.10. Let K be a local number field, and let Knr ⊂ Ka and GK ↠ Gnr
K be as in Notation

and Conventions. Fix an extension of the discrete valuation v on K to Ka, and for each subextension
K ⊂ L ⊂ Ka, let OL denote the valuation ring of L. For each Galois subextension L/K of Ka, we
define H•(L/K,O×) := H•(Gal(L/K),O×

L ). When L ⊂ Knr (i.e., L/K is unramified), one can show that

Hn(L/K,O×) = 0 for n ∈ Z≥1.
45 It then follows from the exact sequence 1 → O×

Knr → Gm(Knr)
v−→ Z → 1

of discrete Z[Gnr
K ]-modules, combined with Example 2.2.7 and Remark 2.1.8(a) that we have isomorphisms

Br(Knr/K) ∼= H2(Knr/K,Gm) →∼ H2(Gnr
K ,Z) ∼= Homcts

Grp(G
nr
K ,Q/Z).

Reduction gives us an isomorphism Gnr
K → Gk

∼= Ẑ, where k is the residue field of K and the last group is
topologically generated by the Frobenius autmorphism; this tells us that the last group above is isomorphic to
Homcts

Grp(Ẑ,Q/Z) ∼= Q/Z with the isomorphism given by evaluation at the Frobenius automorphism. This,
combined with the fact that Br(Knr/K) = Br(K) (or equivalently that every Azumaya K algebra is split
by an unramified extension; see [15, 8.2] or [43, Ch. XII]) gives us an isomorphism InvK : Br(K) →∼ Q/Z
called the Hasse invariant.46 This computation is the prototypical example of the cohomological approach
to class field theory, as we will explain in the next section.

2.3 Class Formations and Class Field Theory

In this section, we define class formations and discuss the fundamental theorem of abstract class field theory
and its consequences. We then give plenty of examples coming from local and global number fields. We
follow the exposition in [36, Parts II-III] and [43, Ch. XI]; references for examples will be mentioned there.

Given any profinite group G, one can set up a formal analogy between G and an absolute Galois group
by indexing the set of all open subgroups GL of G by “fields” L. The “field” K with GK = G is the
“basefield”. When GL ⊂ GK , we formally write K ⊂ L, and define the “degree” of the “extension”
L/K to be [GK : GL]. We say that the “extension” L/K is Galois iff GL ⊴ GK , and in this case define
the relative Galois group to be G(L/K) := GK/GL. See [36, §II.1] for more details, which are entirely
straightforward; we will henceforth drop all quotation marks.

Suppose further that A ∈ Z[G]-Moddisc. Then we define for each field K of G the invariant submodule
A(K) := AGK ; the discreteness of A is equivalent to A =

⋃
K A(K). For each field K, we define the

cohomology group H•(K,A) := H•(GK ,Res
G
GK

A) so that H0(GK , A) = A(K). Similarly, if K ⊂ L

is a Galois extension of fields of G, then A(L) is a G(L/K)-module with A(L)G(L/K) = A(K) and
we let Ĥ•(L/K,A) := Ĥ•(G(L/K), A(L)). As in the previous sections, we have inflation, restriction,
and corestriction maps (and the latter two also for Tate cohomology in negative degrees). The profinite
inflation-restriction sequence (Theorem 1.2.6 and Remark 2.1.5) tells us that if L/K is a Galois extension
and n ∈ Z≥1 such that Hi(L,A) = 0 for i = 1, . . . , n− 1, then there is an exact sequence

44This is somewhat nontrivial. The idea is to embed A(Ka) into AutKa(A) via translations and then to consider the resulting
map H1(GK , A(K

a)) → H1(GK ,AutKa(A)) ∼= Twist(A/K) to the set of twists of A (where we use Galois descent to make
the last identification). The resulting twist is essentially the corresponding A-torsor. See [49, §X.3] for the case of elliptic curves
and [40, §4.4-4.5] for an explanation of how to generalize the first proof; see also [40, §5.12].

45One reduces to the case of finite Galois L/K by Lemma 2.1.6. There, it is a consequence of the fact that O×
L admits a

filtration (UnL)n∈Z≥1
by unit groups with successive subquotients O×

L /U
1
L
∼= Gm(kL) and U

n
L/U

n+1
L

∼= Ga(kL) for n ≥ 1. One

then uses the corresponding cohomology exact sequences, Example 2.2.4, Footnote 42, and either the completeness of O×
L (in

abitrary characteristic) or that UnL ∼= Ga(OL) (in characteristic zero, using the exponential) for n ≫ 0 along with divisibility
and finiteness considerations (Remark 1.1.6(b)) to deduce the result; see [8, Lemma VI.1.2.3] or [36, II.4.3].

46For a direct construction of this map using Azumaya algebras, see [15, Ch. 8].
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0 → Hn(L/K,A) → Hn(K,A) → Hn(L,A). (2.1)

In particular, H1(K,A) =
⋃

L/K H1(L/K,A) and the same holds for H2 if A is cohomologically trivial
in degree 1. Motivated by Example 2.2.10, this leads us naturally to

Definition 2.3.1 (Class Formations). A class formation is a pair (G,A), where G is a profinite group and
A is a discrete Z[G]-module satisfying conditions (a)-(c).
(a) A is cohomologically trivial in degree 1, i.e., for each field K of G, we have H1(K,A) = 0.47

(b) For each field K of G, there is an injection InvK : H2(K,A) ↪→ Q/Z that is natural with respect to
extensions: if L/K is any extension of fields of G, then the following diagram commutes:

H2(K,A) Q/Z

H2(L,A) Q/Z.

Res

InvK

[L:K]

InvK

(c) For each Galois L/K, the relative invariant map InvLK : H2(L/K,A) → 1
[L:K]Z/Z obtained from (2.1)

and (b) is an isomorphism of groups.

Remark 2.3.2. If each InvK : H2(K,A) ↪→ Q/Z is an isomorphism, then condition (c) is automatic.

Given a class formation (G,A), for each Galois extension L/K of fields of G, we let φL
K ∈ H2(L/K,A)

denote the generator such that InvLK φL
K = [L : K]−1; this is called the Frobenius or the fundamental class.

The importance of this class lies in

Theorem 2.3.3 (Fundamental Theorem of Abstract Class Field Theory). Let (G,A) be a class formation.
For each Galois extension L/K of fields of G, the cup product induces abelian group isomorphisms

φL
K ⌣ − : Ĥ•(L/K,Z) →∼ Ĥ•+2(L/K,A).

In particular, we get an isomorphism G(L/K)ab → A(K)/NL
K A(L).

Proof. This is just Theorem 1.4.7, which also explains the notation.

We say that a subgroup of A(K) is a norm subgroup if it is of the form NL
K A(L) for some finite

Galois L/K. Importantly, this definition would be unchanged if L is further required to be abelian, since

NL
K A(L) = NLab

K A(Lab).48 The whole point of setting up the machinery in this way is that the fundamental
classes φL

K , and hence the isomorphisms of Theorem 2.3.3, are compatible over varying L/K ([36, II.1.6-
11]). This compatibility has, along with Theorem 2.3.3, the following consequences, the proofs of which are
entirely straightforward.

Corollary 2.3.4. The map L 7→ N(L) := NL
K A(L) gives an antitone Galois connection between the lattice

of abelian extensions L of K and the lattice of norm subgroups of A(K). In particular, we have for any
abelian extensions L,L′ of K that N(LL′) = N(L) ∩ N(L′) and N(L ∩ L′) = N(L) · N(L′). Finally, any
subgroup of A(K) containing a norm subgroup is a norm subgroup.

47By virtue of (2.1), this is equivalent to H1(L/K,A) = 0 for each Galois L/K.
48Here Lab is the maximal abelian subextension of K in L; equivalently, GLab is the closed subgroup of GK generated by

GL and [GK , GK ]. By Theorem 2.3.3, A(K)/NLK A(L) ∼= G(L/K)ab ∼= G(Lab/K) ∼= G(Lab/K)ab ∼= A(K)/NL
ab

K A(Lab),

which along with the inclusion NLK A(L) ⊂ NL
ab

K A(Lab) implies the equality.
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In the above setting, the induced map A(K) → G(L/K)ab fitting into the exact sequence

0 → N(L) → A(K)
(−,L/K)−−−−−→ G(L/K)ab → 0

of abelian groups is called the norm residue symbol and is denoted (−, L/K). By the compatibility assertion,
these glue to give rise to a universal symbol (−,K) : A(K) → Gab

K = limLG(L/K)ab. The image of this
map is denoted by W ab

K and is called the (abelianized) Weil group.

Corollary 2.3.5. There is an exact sequence

0 →
⋂
L

N(L) → A(K)
(−,K)−−−−→W ab

K → 0,

and W ab
K ≤ Gab

K is dense.

See [36, §II.1], which also contains an explicit formula for the norm residue symbol in terms of cup
products. In particular, Corollary 2.3.4 says that the lattice of abelian extensions of K in G can be described
explicitly via the group A(K) which is is in some sense “internal” to K; this is the content of local and
global class field theory (LCFT/GCFT).

Remark 2.3.6. To make Corollary 2.3.4 useful, one needs to give an intrinsic characterization of the norm
subgroups of A(K). This is often done in the arithmetic setting by giving a natural topology to A(K) under
which the norm subgroups are exactly the closed subgroups of finite index; this is the content of the relevant
Existence Theorem. In this case, it is also often true that

⋂
LNL = 0, and hence that the universal symbol

(−,K) gives an isomorphism between A(K) and the dense subgroup W ab
K ≤ Gab

K .

Example 2.3.7. (Archimedean LCFT) Take G = GR ∼= C2 and A = Gm(C); that this is a class formation
follows from either of Examples 1.4.2 or 2.2.6. The only fields are R ⊂ C, the only norm subgroup of
Gm(R) = R× is NC

RGm(C) = R>0, and Corollary 2.3.5 is the sequence 0 → R>0 → R× sgn−−→ {±1} → 0.

Example 2.3.8. (Abstract Unramified Nonarchimedean LCFT) Take G = Ẑ and A = Z the trivial G-
module. Here there is a unique field Kn for each integer n ∈ Z≥1. That this pair is a class formation
follows from considering the long exact cohomology sequence associated to 0 → Z → Q → Q/Z → 0 and
its naturality; see Remark 2.1.8(a). The Fundamental Theorem (Theorem 2.3.3) is just the 2-periodicity
of Example 1.4.2. Corollary 2.3.4 is saying that the lattices of finite index subgroups of Z and Ẑ are
isomorphic, namely both to (Z≥1, |). In Corollary 2.3.5,

⋂
LN(L) = 0, and for each n ∈ Z≥1, the the Artin

map (−,Kn) : A(Kn) → Gab
Kn

is the inclusion nZ ↪→ nẐ, which is an isomorphism onto a dense subgroup.

Example 2.3.9. (Unramified Nonarchimedean LCFT; [36, §II.4]) If K is a local number field, then Example
2.2.10 tells us that (Gnr

K ,Gm(Knr)) is a class formation relative to the invariant map constructed there.
Indeed, axiom (a) of Definition 2.3.1 is Example 2.2.6, axiom (b) is Examples 2.2.7 and 2.2.10 along with
the naturality of the Hasse invariant ([15, 8.10], [36, II.4.6], [43, XIII.3.7]), and (c) is Remark 2.3.2. Every
unramified extension L/K ofK is already abelian (and, indeed, cyclic), and the norm subgroup corresponding
to the unique (up to isomorphism) unramified extension of degree n ∈ Z≥1 is exactly πnZO×

K = v−1
K (nZ) ⊂

K×, where π is any uniformizer and vK the valuation ([36, II.4.9]). The lattice of Corollary 2.3.4 is (Z≥1, |).
The exact sequence of Corollary 2.3.5 is 0 → O×

K → K× vK−−→ Z → 0, and W ab
K ≤ Gab

K is Z ≤ Ẑ. This
example is ultimately the same as the previous one.

The power of this abstract set-up is that is can be extended to the ramified setting with very little work.
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Example 2.3.10. (Nonarchimedean LCFT; [8, Ch. VI], [17, Ch. 9], [36, Ch. II], [37, Ch. VII]) If K
is a local number field, then (GK ,Gm(Ka)) is a class formation. Again, axiom (a) is Example 2.2.6, (b)
comes from the observation made in Example 2.2.10 that Br(K) = Br(Knr/K) along with naturality as
in Example 2.3.9, and (c) is Remark 2.3.2. It follows easily from Kummer Theory (Example 2.2.8) that for
each m ∈ Z≥1, if K contains a primitive mth root of unity and L := K[(K×)1/m], then L/K is an abelian
extension with norm subgroup N(L) = (K×)m, and hence in general that the norm subgroups are exactly
the closed subgroups of finite index ([36, II.6.2]). In particular,

⋂
LN(L) = 0 ([36, II.3.6]), and hence

the universal symbol–the Artin map–(−,K) : K× → W ab
K is an isomorphism, and induces an isomorphism

K̂× → Gab
K . If pr : Gab

K → Gk
∼= Ẑ is the reduction map, where k is the residue field and in the latter

isomorphism the topological generator is the Frobenius Fr, then W ab
K = pr−1(Z). Under this isomorphism,

the filtration (Un
K)n∈Z≥0

of K× by unit groups corresponds to the filtration by the higher ramification
groups in the upper numbering, and the Artin map (−,K) can be constructed incredibly explicitly using the
Lubin-Tate theory of formal O-modules ([8, Ch. VII], [36, §II.7]).

For a concrete example, let p be a prime and K = Qp. For each n ∈ Z≥1, let ζn ∈ Qa
p be a

primitive nth root of unity; then the cyclotomic extension Ln := Qp[ζn]/Qp is abelian. It is easy to
check that for any n ∈ Z≥0, we have N(Lpn) = pZ(Z×

p )
n. Further, the unique unramified extension of

degree m ∈ Z≥1 in Qa
p is exactly Lpm−1, and so by Example 2.3.9, N(Lpm−1) = pmZZ×

p . By Corollary

2.3.4, N(Lpn(pm−1)) = pmZ(Z×
p )

n, and hence N(Lpm(pm−1)) = (Q×
p )

m. It follows from Corollary 2.3.4
and the discussion above that every finite abelian extension of Qp is contained in a cyclotomic extension,
which is the local Kronecker-Weber Theorem (c.f. [7, §8.4]).49 In particular, Qab

p = L∞ can be written
as the compositum of Qp[ζp∞ ] = Lp∞ := colimn Lpn and Qnr

p = colimm Lpm−1. Of these, the first is
totally ramified and the second unramified, so that the two are linearly disjoint in Qa

p. One can show very
directly that for each n ∈ Z≥0, we have Gal(Lpn) ∼= (Z/pn)×; further, these isomorphisms glue to give an

isomorphism Gal(Qp[ζp∞ ]/Qp) ∼= Z×
p . Further, Gnr

Qp
∼= GFp

∼= Ẑ, topologically generated by the Frobenius
automorphism Frp. Under these isomorphisms, the composite

Z× Z×
p →∼ pZZ×

p = Q×
p

(−,Qp)−−−−→ Gab
Qp →

∼ Gal(Qnr
p /Q)×Gal(Qp[ζp∞ ]/Qp) ∼= Ẑ× Z×

p

is the usual embedding,50 which is of course an isomorphism onto its dense image.

To extend CFT to the global setting is much more work; we only outline the key ideas involved.

Example 2.3.11. (GCFT; [2], [8, Ch. VII], [17, Ch. 13], [36, Part III], [37, Ch. VIII]) Let K be a (global)
number field and A×(K) =

∏∐
v∈MK

(Kv,Ov) (resp. C(K)) be its idèle group (resp. idèle class group), so

there is a short exact sequence 1 → Gm(K)
∆−→ A×(K) → C(K) → 1. For each finite extension L/K, there

is an L-algebra isomorphism L ⊗K A(K) → A(L) extending the map K → L which induces an injective
homomorphism A×(K) → A×(L); if L/K is also Galois, then Gal(L/K) evidently acts on A×(K) (resp.
C(L)) with (A×(L))Gal(L/K) = A×(K) (resp. C(L)Gal(L/K) = C(K)51). We define the total idèle group
to be A× := A×(Ka) := colimL/K A×(L) and the total class group C to fit into the short exact sequence
of discrete Z[GK ]-modules

0 → Gm → A× → C → 0, (2.2)

where Gm here means Gm(Ka). The key result then is that (GK , C) is a class formation; this is nontrivial
to prove, but the idea is to break A× into its local components by showing that restriction gives and

49This is only a stone’s throw away from the global Kronecker-Weber Theorem. The ingredients needed are the theorem on
“arithmetic monodromy” along with the input from the Minkowski geometry of numbers that the only everywhere unramified
extension of Q is Q itself, or equivalently that Q is its own Hilbert class field. See [7, §10.12] or [15, Ch. 14].

50Depending on your choice of isomorphism Gal(Qp[ζp∞ ]/Qp) ∼= Z×
p (and in particular if you make the obvious one), you

may have to postcompose with the automorphism u 7→ u−1 of Z×
p .

51This follows from the previous result and Example 2.2.6.
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isomorphism H•(K,A×) ∼=
⊕

v∈MK
H•(Kv,Gm), and then to use Example 2.3.10 and the long exact

cohomology sequence associated with (2.2). The corresponding Existence Theorem says that the norm
subgroups of C(K) are exactly the closed subgroups of finite index.52 One can show further that universal
symbol (−,K) : C(K) → Gab

K is surjective (so that W ab
K = Gab

K ), and the kernel
⋂

LN(L) is the connected
component C(K)◦ = D(K) of the identity in C(K), which is rather complicated.53 Corollary 2.3.5 therefore
gives an isomorphism π0C(K) := C(K)/D(K) →∼ Gab

K .

The relationship between the local and global CFT is that the global symbol (−,K) is essentially a
product of the local symbols (−,Kv) ([8, §VII.6]).

Example 2.3.12. (GCFT with Restricted Ramification; [37, §VIII.3]) Let K be a (global) number field and
S ⊂ MK a finite set containing M∞

K . Let UK,S ⊂ C(K) be the image of
∏

v/∈S{1} ×
∏

v∈S U
1
v , where

U1
v ⊂ O×

v is the 1-unit group; this is a compact subgroup of C(K). We define the S-idèle group of K to be
CS(K) := C(K)/UK,S . As in Example 2.3.11, for each field extension L/K ofK with L ⊂ KS–the maximal
unramified-outside-S extension of K–, we have an injective comparison map CS(K) → CS(L); further, if
L/K is Galois, then CS(L) is a Z[Gal(L/K)]-module with CS(L)

Gal(L/K) = CS(K). We then define the
total S-class group CS to be CS = colimLCS(L) = C(KS)/US , where US = colimL UL,S ⊂ C(KS).
Then (GS , CS) is a class formation. The corresponding Existence Theorem says that the norm subgroups
of CS(K) are exactly the open subgroups (which automatically have finite index). The universal symbol
CS(K) → Gab

S is surjective, and the kernel
⋂

LN(L) is the image DS(K) of D(K) in the quotient CS(K).

For many more examples, see [32, §I.1] and the references mentioned there.

2.4 Arithmetic Duality Theorems and Theorems of Tate-Poitou and Tate

The analogs of the famous and powerful duality theorems of algebraic topology (e.g., Poincaré-Verdier,
Alexander) and algebraic geometry (Grothendieck-Serre) in the arithmetic world are due to Tate and Poitou
from the 1960s ([39], [53]). Since the proofs are highly technical and would lead us too far,54 in this final
section of this chapter, we content ourselves with providing the statements of the key results which we will
need in the final chapter. The exposition is taken from [32, Ch. I].

For this, we will need one notion: Cartier duality. For a fieldK of characteristic zero and a Z[GK ]-module
Φ, we define its Cartier dual to be ΦD := HomGrp(Φ,Gm(Ka)) with the GK-action given by intertwining:
for α ∈ Φ, ψ ∈ ΦD, and σ ∈ GK , we define σψ by

(σψ)(α) = σ
(
ψ(σ−1α)

)
. (2.3)

Then ΦD is a finite discrete Z[GK ]-module if Φ is, and in this case the natural evaluation map Φ → ΦDD

is an isomorphism of such objects. Because of (2.3), the natural bilinear map given by evaluation

Φ⊗Z ΦD → Gm(Ka)

is a morphism of Z[GK ]-modules, where the left side is given the diagonal action (§1.3). Consequently, by
Theorem 1.3.1 and the pushforward map, for each p, q ∈ Z≥0, we get a bilinear map

Hp(K,Φ)×Hq(K,ΦD) → Hp+q(K,Gm). (2.4)

First suppose that K is a local number field. Then by Examples 2.2.7 and 2.2.10, we have the isomorphism
InvK : H2(K,Gm) →∼ Q/Z. Combining with (2.4), we have defined the pairing in

52In passing, we remark this proves immediately, as in Example 2.3.10, the Kronecker-Weber Theorem for K.
53It is isomorphic as a topological group to (S1)r2 × ((R× Ẑ)/Z)r × R for some integers r2, r ∈ Z≥0.
54Haberland and Milne wrote entire books ([16] and [32] respectively) on them!
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Theorem 2.4.1. (Local Tate Duality) In the above setting, for p = 0, 1, 2, there is a bilinear pairing

⟨−,−⟩ : Hp(K,Φ)×H2−p(K,ΦD) → Q/Z

with the following properties.
(a) The pairing is nondegenerate, i.e., the induced map Hp(K,ΦD) → H2−p(K,Φ)∗ is an isomorphism.
(b) The pairing is natural, i.e., if ϕ : Φ → Ψ is a Z[GK ]-module homomorphism, then

⟨ϕ∗(−),−⟩ = ⟨−, ϕD∗ (−)⟩,

where ϕ∗ = Hp(id, ϕ) : Hp(K,Φ) → Hp(K,Ψ) is the induced map in cohomology (similarly for ϕD∗ ).
Further, the groups H1(K,Φ) and H1(K,ΦD) are finite.

Proof. See [16, Prop. 1.2.1], [17, Thm. 10.9], [32, Cor. I.2.3], or [37, Thm. 7.2.6].

Remark 2.4.2. In the case of an archimedean local field K (i.e., K = R,C), there is a similar, but even
simpler result which uses only Example 1.4.2–provided that H0 is interpreted as the Tate cohomology group.
Given the paucity of proofs in this section, we explain this at least. The case K = C is trivial. Now,
let us consider the case K = R with Galois group GR ∼= C2 = ⟨x|x2⟩ so Z[C2] = Z[x]/(x2 − 1). For
each Z[C2]-module Φ, we denote the action of x on Φ by a bar. In this notation, the induced action on
ΦD = HomGrp(Φ,C×) = Φ∗ is given by λ̄(α) = λ(ᾱ) for α ∈ Φ and λ ∈ ΦD. Then, by considering Example
1.4.2 and unpacking the definitions (using, e.g., formula (1.2)), Theorem 2.4.1 in this setting says exactly
that the bilinear maps

ΦC2/NC2 Φ× (ΦD)C2/NC2 Φ
D → {±1} and Φ[1 + x]/(1− x)Φ× ΦD[1 + x]/(1− x)ΦD → {±1}

induced by evaluation are nondegenerate. We’ll do the first one; the second can be handled either analogously
or by dimension shifting (Remark 1.4.3(e)). For the first one, observe that by naturality (the immediate
analog of Theorem 2.4.1(b)), if we have a short exact sequence 0 → Φ′ → Φ → Φ′′ → 0 of finite Z[C2]-
modules and the result is true for Φ′ and Φ′′, then it is true for Φ. Therefore, by induction on the size of
Φ and considering Φ′ := ΦC2 , we are reduced to checking two cases: when the action is trivial, and when
ΦC2 = 0. In the first case, the induced action on ΦD is given by complex conjugation on the codomain, and
the claim being made is the natural pairing

Φ/2Φ×HomGrp(Φ, {±1}) → {±1}

is nondegenerate. This claim is clear, for instance by considering the structure theorem for finite abelian
groups. In the second case, the action is necessarily given by negation; furthermore, the 2-primary component
Φ(2) of Φ is zero. But then Φ is a Z[1/2][C2]-module and so all groups in question are zero (by say Examples
1.1.3 and 1.4.2), and the result holds trivially. See also [32, Thm. I.2.13(a)] for a different argument, and
note that the theorem is not true when we take ordinary group cohomology in place of the Tate cohomology.

Next suppose that K be a number field, S ⊂ MK be a finite set containing M∞
K , and KS the maximal

unramified-outside-S extension of K in Ka with GS := Gal(KS/K). Let Φ be a finite discrete Z[GS ]-
module with order |Φ| a unit in OK,S . In this case, the Cartier dual ΦD := HomGrp(Φ,Gm(Ka)) has the
property that ΦD = HomGrp(Φ,Gm(KS)), and consequently a formula analogous to (2.3) makes it a finite
discrete Z[GS ]-module. As before, we have the isomorphism of Z[GS ]-modules Φ → ΦDD, and a natural
bilinear map Φ⊗Z ΦD → Gm(KS).

Analogously to Remark 2.2.3(d)–but even more simply–we have for each v ∈ S the restriction maps
Resv : H•(GS ,Φ) → H•(Kv,Φ). In what follows, we use Ĥ0(Kv,Φ) to denote the usual cohomology group
H0(Kv,Φ) for v ∈ M0

K and the Tate cohomology group Ĥ0(Kv,Φ) for v ∈ M∞
K ; in the latter case case, we

postcompose the above restriction map with the surjection H0(Kv,Φ) ↠ Ĥ0(Kv,Φ) (Definition 1.4.1) to
get restriction maps Resv : H0(GS ,Φ) → Ĥ0(Kv,Φ) for all v ∈ S. The key result of this section is then
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Theorem 2.4.3 (Poitou-Tate Duality). In the above setting, there is an exact sequence

0 → H0(GS ,Φ) →
⊕
v∈S

Ĥ0(Kv,Φ) → H2(GS ,Φ
D)∗ → H1(GS ,Φ) →

⊕
v∈S

H1(Kv,Φ) → H1(GS ,Φ
D)∗.

Proof. See [16, Thm. 1], [17, Thm. 17.13], [32, Thm. I.4.10], or [37, Thm. 8.6.10]. We only describe
(most of the) maps. The first (nontrivial) map is the sum of the local restriction map Resv. The second
map is the Q/Z-dual to the composite

H2(GS ,Φ
D)

⊕
v∈S Resv−−−−−−−→

⊕
v∈S

H2(Kv,Φ) →∼
⊕
v∈S

Ĥ0(Kv,Φ
D),

where the last isomorphism comes from Theorem 3.3.1 (and Remark 2.4.2 for v ∈ M∞
K ). The maps in the

second half of the sequence are obtained identically, leaving only the map H2(GS ,Φ
D)∗ → H1(GS ,Φ). This

comes from a global duality theorem, and we omit its description (which we will not need anyway). For a
description of this map, an extension of this sequence to two more terms, and the proof of exactness, see
the references mentioned above. The references also explain the case of possibly infinite S, where care must
be taken to introduce suitable restricted products and topologies (which, fortunately, may be safely ignored
when S is finite).

Corollary 2.4.4. In the above setting, the groups Hn(GS ,Φ) for n = 0, 1 are finite, and similarly for ΦD.

Proof. The case n = 0 follows from Theorem 2.4.3 and the finiteness of S and Ĥ0(Kv,Φ) for v ∈ S; indeed,
the last is a subquotient of Φ (Definition 1.4.1). The case n = 1 needs work; see [32, Cor. I.4.15].

The final result we will state without proof is

Theorem 2.4.5 (Tate’s Theorem on Global Euler-Poincaré Characteristics). In the above setting, we have

|H0(GS ,Φ
D)| · |H2(GS ,Φ

D)|
|H1(GS ,ΦD)|

=
∏

v∈M∞
K

|Ĥ0(Kv,Φ)|
|H0(Kv,Φ)|

.

Proof. See [16, Thm. 2], [32, Thm. I.5.1, Rem. I.5.2(a)], or [37, Thm. 8.7.4].
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3 Isogeny Invariance of the Birch and Swinnerton-Dyer Conjecture

In this last chapter, we first review some fundamentals related to abelian varieties and abelian varieties over
number fields, and use this to state the weak and strong Birch and Swinnerton-Dyer (BSD) conjectures for
such varieties. Then, after discussing three pairings associated to abelian varieties over (local and global)
number fields, we conclude by using the cohomological techniques developed so far to give a detailed sketch
of the proof due to Cassels (for elliptic curves) and Tate (for arbitrary abelian varieties) that the truth value
of the BSD conjecture for a given abelian variety over a number field is constant in its isogeny class.

We will assume familiarity with standard algebraic geometry (at the level of [14], [19], [30, Ch. I], [40,
Ch. 2-3], or [55]) and the basic theory of elliptic curves ([49]). In §3.3, some familiarity will be assumed
with the big flat site Spec(K)fl and sheaves on it ([30, Ch. I-II]), and in §3.4 we will also need some input
from the theory of analytic manifolds ([22, Ch.. 2],[45, Part II, Ch. III-IV]) and Haar measures on locally
compact abelian groups ([10]). The material presented has been taken principally from from [12], [21], [23],
[27], [31], and [32], and we generally follow the thread of exposition in [23, §5.2] and [32, §I.7].

3.1 A Crash Course on Abelian Varieties

The basic theory of abelian varieties is amply covered in [12], [31], [33] and [35]; here we summarize the key
points needed.55 Specifically, we review isogenies, Tate modules, characterstic polynomials of self-isogenies,
and dual abelian varieties.

As above, let K be a field and K → Ks → Ka a fixed choice of separable and algebraic closures of K,
with GK := Gal(Ks/K). The definition of an algebraic group is reviewed in §2.2, and we emphasize that
all products of K-schemes are taken over K.

Definition 3.1.1. (Abelian Variety) An abelian variety over a field K is a proper smooth geometrically
connected algebraic group over K.

Theorem 3.1.2. An abelian variety is a commutative algebraic group and a projective variety.

Proof. Commutativity is a consequence of the Rigidity Theorem for complete varieties (see [31, 2.4]).
Projectivity is proven in [31, 7.1]. For a different approach, see [40, 5.7.3].

For an abelian variety A over a field K, we will always denote its identity element by 0A ∈ A(K) ⊂ A.

Theorem/Definition 3.1.3 (Isogenies). Let A,B be abelian varieties over K and ϕ : A → B be a K-
scheme morphism. The following are equivalent.
(a) We have dimA = dimB, ϕ(0A) = 0B, and the induced map ϕ(Ka) : A(Ka) → B(Ka) is surjective.
(b) We have dimA = dimB, and ϕ is a morphism of K-group schemes with finite kernel A[ϕ] := ker(ϕ).
(c) The map ϕ is finite faithfully flat homomorphism of K-group schemes.

A morphism ϕ satisfying these equivalent conditions is called an isogeny over K, or a K-isogeny. For an
isogeny ϕ, we define the degree of ϕ to be deg(ϕ) := [K(A) : ϕ∗(K(B))] = |A[ϕ]|.56

Conditions (a) and (b) are easy to check, while (c) says that an isogeny is a quotient map (c.f. Theorem
2.2.1) with finite kernel. Unlike the case of elliptic curves, it is not true in general for higher dimensional
abelian varieties that a sum of isogenies is an isogeny, even when nonzero.

Proof.

55Consequently, proofs of the following results can often be found in all four references. For brevity, we will only quote one.
56In the last expression, |A[ϕ]| is the rank of the kernel as a finite group scheme ([34, Ch. 11]). In particular, if ker(ϕ) is

reduced, then deg(ϕ) = | kerϕ(Ka)| is the set-theoretic cardinality of the kernel of ϕ(Ka).

27



(a) ⇔ (b) By the Rigidity Theorem, a K-scheme morphism ϕ : A→ B satisfies ϕ(0A) = 0B iff it is a homomor-
phism of K-group schemes ([31, 2.2]). By Chevalley’s Theorem, surjectivity of f(Ka) is equivalent to
that of f ([55, Ex. 7.4.E]), and this is in turn equivalent to the finiteness of the kernel by the theorem
on fibre dimension and the properness of A ([14, Cor. 14.121] or [19, Ex. 3.22]).

(b) ⇔ (c) See [31, 8.1].
In this case, f∗OA is a locally free OB-module ([31, 8.1]), and then the equality of the two terms in the
definition of ker(f) follows by taking the ranks at the generic point ηB ∈ B and the identity 0B ∈ B.

Theorem/Definition 3.1.4 (Separable Isogenies). Let ϕ : A→ B be a K-isogeny of abelian varieties over
K. The following are equivalent:
(a) The field extension ϕ∗ : K(B) → K(A) is separable.
(b) The morphism ϕ is étale.
(c) The kernel A[ϕ] is an étale group scheme over K.

An isogeny ϕ is said to be separable if it satisfies these equivalent conditions.

Proof. See [12, Prop. 5.6].

Example 3.1.5. Let A be an abelian variety over a finite field K. The Frobenius moprhism Fr : A→ A is
an isogeny, but it is not separable.57 The proof is identical to the one given in [12, Prop. 5.15] for K = Fp.

If ϕ is a separable isogeny, then from (c) it follows that A[ϕ](Ks) →∼ A[ϕ](Ka) →∼ A(Ka)[ϕ(Ka)].

Theorem 3.1.6. Let A be an abelian variety of dimension g := dimA over K and n ∈ Z with n ̸= 0.
(a) The morphism [n] : A→ A is an isogeny of degree n2g.
(b) If n ̸= 0 in K, then [n] is separable and A[n](Ks) ∼= (Z/n)2g.

Proof.
(a) See [31, 8.2]. The idea is to choose a symmetric ample line bundle L → A (here, symmetric means

[−1]∗L ∼= L; by Theorem 3.1.2, there is some ample L → A, and then L ⊗ [−1]∗L is symmetric
and ample), and then to show that the restriction of [n]∗L to A[n] is both trivial (clear) and ample
(using the Theorem of the Cube and n ̸= 0) to conclude that A[n] is finite. Then we can apply
Theorem/Definition 3.1.3(b). To compute the degree, one can either use intersection theory ([31,
8.2]) or Hilbert polynomials ([54, 0BFG]).

(b) If charK = 0, then every isogeny is separable; if charK = p > 0 but p ∤ n, then p does not divide
n2g = [K(A) : ϕ∗(K(B))], so the extension ϕ∗ : K(B) → K(A) is separable. The kernel A[n] is an
étale group scheme of rank n2g, and so A[n](Ks) an abelian group of order n2g and exponent n. This
is true for each divisor of n; conclude by structure theorem for finitely generated abelian groups.

Theorem/Definition 3.1.7 (Isogenous Abelian Varieties). The relation ∼K on abelian varieties over K
given by A ∼K B if there is a K-isogeny f : A → B is an equivalence relation. Two abelian varieties A
and B are said to be isogenous (over K) if A ∼K B.

Proof. Reflexivity and transitivity are clear, and symmetry follows from the more precise statement that if
ϕ : A→ B is an isogeny of degree n ∈ Z≥1, then there is an isogeny ψ : B → A such that ψ ◦ϕ = [n]. This
itself follows from the factorization theorem for algebraic group quotients ([12, 5.12-13] or [34, 5.13]).

Next, we briefly discuss Tate modules. For this, suppose that ℓ is a prime other than charK. Given an
abelian variety A over K, we have from Theorem 3.1.6 a sequence of GK-modules

· · · → A[ℓ3](Ks)
·ℓ−→ A[ℓ2](Ks)

·ℓ−→ A[ℓ](Ks)
·ℓ−→ 0. (3.1)

57In fact, it is purely inseparable ([12, Props. 5.6(ii) and 5.15]).
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Definition 3.1.8 (Tate Module). In the above setting, we define the Tate module TℓA to be the profinite
GK-module which is the inverse limit of (3.1), i.e., TℓA := limn≥0A[ℓ

n](Ks).

Since each A[ℓn](Ks) is a Z/ℓn-module, the Tate module Tℓ(A) is naturally a Zℓ[GK ]-module. Let
VℓA := Qℓ ⊗Zℓ TℓA ∈ Qℓ[GK ]-Mod. The corresponding continuous morphism

ρℓ : GK → AutZℓ-Mod(TℓA)
Qℓ⊗−−−−−→ GL(VℓA)

is called the ℓ-adic representation associated to A and carries a lot of information about A (see, e.g., Lemma
3.1.9 and [27, Cor. IV.3.4]). Again using Theorem 3.1.6, we have that TℓA ∼=Zℓ-Mod Z2g

ℓ (although not
canonically), where g := dimA, so ρℓ has degree 2g. The construction of the Tate module is functorial:
to each K-group scheme homomorphism ϕ : A→ B, we get an associated Zℓ[GK ]-module homomorphism
Tℓϕ : TℓA→ TℓB (and similarly for Vℓ).

Lemma 3.1.9. Let ϕ : A → B be a K-isogeny and ℓ as above. The map Vℓϕ : VℓA → VℓB is an
isomorphism of Qℓ[GK ]-modules.

Proof. As in the proof of Theorem/Definition 3.1.7, pick an isogeny ψ : B → A such that ψ ◦ ϕ = [n],
where n := deg(ϕ). By the functoriality of Vℓ, we have Vℓψ ◦ Vℓϕ = Vℓ[n], and evidently Vℓ[n] = n is
multiplication by n on the Qℓ-vector space VℓA. Therefore, Vℓϕ is injective, and hence an isomorphism for
dimension reasons.58 Finally, Vℓϕ is GK-equivariant because ϕ is a K-morphism.

Now suppose that ϕ : A → A is a K-isogeny of an abelian variety to itself;59 then Vℓϕ is a Qℓ-vector
space endomorphism of Vℓϕ.

Definition 3.1.10 (Characteristic Polynomial). In the above setting, we define the characteristic polynomial
Pϕ of ϕ to be that of the endomorphism Vℓϕ, i.e., Pϕ(x) := det(x id−Vℓϕ).

Remark 3.1.11. The polynomial Pϕ(x) admits two other characterizations: as the characteristic polynomial
of ϕ acting on the étale cohomology H1

ét(A,Qℓ)–because of the duality between the Tate module and the
étale cohomology group ([31, §15])–and as the unique polynomial such that Pϕ(n) = deg(ϕ − [n]) for all
n ∈ Z ([31, §12]).60 It follows that Pϕ(x) ∈ Z[x] is a polynomial of degree 2g independent of ℓ.61

The final notion that we will need is that of the dual abelian variety.

Theorem/Definition 3.1.12 (Dual Variety). Let A be an abelian variety over K. The dual variety to A is
a pair (A∨,P), where A∨ is an abelian variety over K and P a line bundle on A×A∨, such that
(a) P|{0}×A is trivial62 and for all a ∈ A∨ the bundle P|A×{a} lies in Pic0(Ak(a)),

63 and
(b) (A∨,P) is universal with respect to these properties: for everyK-scheme T and line bundleL → A×T

such that L|{0}×T is trivial and for all t ∈ T the bundle L|A×{t} lies in Pic0(Ak(t)), there is a unique
K-morphism f : T → A∨ such that L ∼= (idA×f)∗P.

58Alternatively, the same argument with ψ tells us that VℓA and VℓB have the same dimension as well.
59An “endoisogeny”?
60By the way, this gives another way to see the result of Lemma 3.1.9, since Pϕ(0) = deg(ϕ) ̸= 0.
61For the beautiful story relating characteristic polynomials, zeta functions, the Weil conjectures, the Lefschetz fixed point

theorem from topology, and the historic motivation for étale cohomology, see [31, §19] and [40, Ch. 7].
62Here 0 = 0A ∈ A(K) is the identity element of A. A trivialization OA →∼ P|{0}×A is called a rigidification. It is unique

only up to scaling, and we get a better universal property by fixing rigidifications, but we won’t get into this.
63Recall that for each smooth geometrically integral variety X over a field K, we use Pic0(X) to denote the group of

isomorphism classes of line bundles on X which are algebraically equivalent to zero. For equivalent characterizations when
X = A is an abelian variety–the only case we will need–see [31, 9.2-3].
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The line bundle P (sometimes denoted PA) is called the Poincaré bundle (or sheaf) on A×A∨. Often,
A∨ is called the dual variety to A. By (b), the pair (A∨,P) is determined uniquely up to unique isomorphism
if it exists.

Remark 3.1.13.
(a) Taking T = SpecL for a field L/K in (b), we see that A∨(L) ∼= Pic0(AL), functorially in L. In

particular, when K is perfect, taking L = Ka tells us that the closed points of A∨ are in bijection
with GK-orbits in Pic0(AKa).

(b) Taking T = SpecK[ε] (where K[ε] := K[x]/(x2)) and using the exact sequence

0 → H1(A,OA) → Pic(AK[ε]) → Pic(A)

of groups coming from deformation theory, it follows that T0A
∨ →∼ H1(A,OA) ([12, 6.6]); in particular,

since dimK H1(A,OA) = dimK T0A = dimA for any abelian variety A ([35, §4]), we conclude that
dimA∨ = dimA.

(c) Taking T = A∨ × A and L := sw∗PA, where sw : A∨ × A → A × A∨ is the swap map, gives a
unique K-morphism ev : A → A∨∨ such that sw∗PA

∼= (idA∨ ×ev)∗PA∨ . One can then show that
ev is an isomorphism, justifying the name “dual variety” ([12, 7.9], [31, 9.5], [38, §III.20]).

(d) Let ϕ : A → B be a K-isogeny. Taking T = A × B∨ shows that there is a unique K-morphism
ϕ∨ : B∨ → A∨ such that (ϕ× idB∨)∗PB

∼= (idA×ϕ∨)∗PA as line bundles on A×B∨. One can show
that ϕ∨ is also an isogeny, called the dual isogeny ; indeed, one shows more specifically that B∨[ϕ∨]
is the Cartier dual A[ϕ]D ([34, §11c]) to A[ϕ], and is hence finite ([31, §11], [35, §15]; c.f. §3.3).

(e) It is nontrivial to construct the dual variety, and there are several approaches. One is to use the general
construction of the Picard scheme PicX/K , and then take A∨ := Pic0X/K to be the connected compo-

nent of the identity; one must then show that A∨ is smooth, or equivalently reduced ([12, 6.18]). Over
K = C, the exponential exact sequence gives us an isomorphism exp : H1(Aan,OAan)/H1(Aan,Z) →
A∨(C) ([31, 9.4(c)]). A third approach is to take A∨ :=Ext1(A,Gm) on the big flat site Spec(K)fl,
in which case ϕ∨ =Ext1(ϕ,Gm), but then one must show this sheaf is representable ([31, §11], §3.3).
A fourth, concrete, approach is to construct A∨ directly as a quotient of A ([31, §10]); this has the
advantage that is also automatically proves Lemma 3.1.14 below.

(f) When dimA = 1, i.e., A is an elliptic curve, we have A ∼= A∨ as abelian varieties; indeed, this is often
used in the proof of the associativity of the group law on A (e.g., [49, §III.3]). This simplifies many
of the formulae appearing in the conjectures (e.g., Conjecture 3.4.4) in the case of elliptic curves.

Lemma 3.1.14. If A is an abelian variety over K, then A ∼K A∨.

Proof. This is often stated as the existence of a polarization on A; see [31, §9, 10, 13].

3.2 Abelian Varieties over Number Fields

In this section, we summarize basic results about abelian varieties over number fields. Firstly, we discuss
good and bad reduction of abelian varieties, introduce the Selmer and Tate-Shafarevich groups, and discuss
the Mordell-Weil Theorem. Finally, we state the Birch and Swinnerton-Dyer conjecture, and prove the
isogeny invariance of the weak form of it; the strong form is then treated in the last section, after discussing
three technical tools needed for it in the next one. The following material has been adapted from [21, Part
C], [27, Ch. III], [31], [32, §I.6-7], and [49, Ch. VII-VIII].

In this section, K denotes a number field and we use the notation established in Notation, Conventions,
and Fundamentals. For each prime p of OK , we denote by OK,p the localization of OK at p.
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Definition 3.2.1. (Good and Bad Reduction) Let A be an abelian variety over K and p be a prime of OK

(corresponding to a v ∈ M0
K). We say that A has good reduction at p (or v) if there is an abelian scheme64

A over SpecOK,p and a K-scheme isomorphism AK
∼=K-Sch A of the generic fiber of A with A. Otherwise,

we say that A has bad reduction at p.

Lemma 3.2.2. Let A be an abelian variety over K. There is a finite subset S ⊂ MK containing M∞
K and

an abelian scheme A over OK,S along with an isomorphism AK
∼=K-Sch A. In particular, an abelian variety

A over K has good reduction at almost all (i.e., all but finitely many places) of K.

Proof Sketch. This is the standard technique of spreading out. To produce A, use [40, Thm. 3.2.1(i)-(ii)]
and the fact that proper morphisms, smooth morphisms, and morphisms with geometrically connected fibers
spread out. Then apply [40, Theorem 3.2.1(iii)] to the product m : A × A → A and inversion i : A → A
morphisms to turn the spread out scheme A into an abelian scheme; see also [40, Remark 5.7.24].65

Remark 3.2.3. A theorem due to Chow and Lang asserts that when A has good reduction at p and A

as in Definition 3.2.1, then the isomorphism class of the abelian variey Ak(p) over k(p) does not depend

on the choice of A, and is called the reduction of A at p (or v) and denoted Ãp or Ãv. The modern
approach to this theorem is via Néron models: there is a smooth separated finite type scheme N over OK

such that for every smooth OK-scheme T with generic fiber T := TK , the natural map A(T) → A(T ) is
an isomorphism. One can use this to show that A has good reduction at p iff Nk(p) is an abelian variety,
and then any reduction of A at p is isomorphic to Nk(p). This shows also that A spreads out over OK,S

where S is the set of all primes of bad reduction. The definitive account can be found in [4].

Now suppose that A is an abelian variety with good reduction at a place v ∈ M0
K , so that the reduction

Ãv is an abelian variety over the finite field kv. The Frobenius morphism Frv : Ãv → Ãv is an isogeny
(Example 3.1.5); let Pv(x) ∈ Z[x] denote its characteristic polynomial (Definition 3.1.10 and Remark 3.1.11).

Remark 3.2.4. The polynomial Pv(x) has the property that if we write Pv(x) =
∏2g

i=1(x−αi) for algebraic

integers αi and g = dimA, then |αi| = q
1/2
v for each i (where qv := |kv|) and for each n ∈ Z≥1, we

have Ãv(kv,n) =
∏2g

i=1(1 − αn
i ), where kv,n is the degree n extension of kv ([31, §19]). It follows that

Ãv(kv) = Pv(1) = q−g
v Pv(qv) and that for each s ∈ C, we have |q−2gs

v Pv(q
s
v)| ≥ |1− q

1/2−s
v |2g.

Definition 3.2.5. Let A be an abelian variety over K and S ⊂ MK a finite set containing M∞
K and all the

places of bad reduction for A. With the above notation, we define the associated L-function to be

LS(A, s) :=
∏
v/∈S

q2gsv Pv(q
s
v)

−1.

It follows from Remark 3.2.4 that the product is dominated by ζK(s − 1/2)2g and hence converges to
give a holomorphic function on Re s > 3/2; see Conjecture 3.2.15.

Theorem 3.2.6. Let ϕ : A→ B be a K-isogeny of abelian varieties over K, and let S ⊂ MK be a finite set
containing M∞

K , all places of bad reduction for A and B66, and all places whose residue characteristic divides
deg(ϕ). Let KS ⊂ Ka be the maximal unramified-outside-S extension of K. Then A[ϕ](KS) →∼ A[ϕ](Ka)
and ϕ(KS) : A(KS) → B(KS) is surjective.

64An abelian scheme over a base scheme S is a proper smooth S-scheme A → S with geometrically connected fibers ([31,
§20]). This implies that for each point s ∈ S, the fiber As is an abelian variety over the residue field k(s); in particular, if, as
above, S is integral with generic point η ∈ S and function field K = k(η), then the generic fiber AK := Aη is an abelian variety
over K. The notion of an abelian scheme is the spreading out of the notion of an abelian variety to arbitrary base schemes.

65The rough idea is that the same defining equations for A suffice also to define A, as long as we stay away from the primes
dividing the denominators of the coefficients appearing in these equations.

66It can be shown using Néron models (Remark 3.2.3) and the Néron-Ogg-Shafarevich criterion that isogenous abelian varieties
have bad reduction at the same set of primes ([46, §1, Thm. 1, Cor. 2]), but we won’t need this.
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Proof Sketch. There are two approaches. One could argue by showing that for each p ∈ B(KS), the
schematic inverse image ϕ−1(p) splits over KS (and then use this for p = 0B to deduce the first statement),
and this can be proven by spreading out: by Remark 3.2.3, A,B spread out to abelian schemes A,B over
OK,S and ϕ to a finite flat morphism A → B which is étale thanks to the hypotheses on S. Then p
spreads out to a section of B over OK,S and hence ϕ−1(p) to a finite étale subscheme of A over OK,S ,
which can then be shown to split ([31, §20], [32, Lemma I.6.1]). The second approach notes that for each
v /∈ S, reduction gives an exact sequence 0 → A1(K

nr
v ) → A(Knr

v ) → Ãv(k
a
v) → 0, where exactness at

the right comes from Hensel’s Lemma, and the first group A1(K
nr
v ) can be interepreted as the group of

mnr
v -points of a formal group over Ov ([21, Thm. C.2.6]), and similarly for B. Then one can show that

A1(K
nr
v ) → B1(K

nr
v ) and Ãv(k

a
v) → B̃v(k

a
v) are surjective (by the assumption on residue characteristic and

Theorem 2.2.1(c) respectively), whence so is ϕ(Knr
v ) : A(Knr

v ) → B(Knr
v ). Combining these for all v /∈ S

yields the result.

It follows from Theorem 3.2.6 that if A is an abelian variety over K and ℓ a prime, then for any place
v ∈ M0

K of good reduction and such that ℓ ̸= 0 in kv, the ℓ-adic representation VℓA of GK is unramified

at v, i.e., the inertia group Iv acts trivially on VℓA.
67 Now the quotient Dv/Iv ∼= Gkv

∼= Ẑ is topologically
generated by the Frobenius endomorphism Frv, and so we get a well-defined action of Frv on VℓA.

Lemma 3.2.7. In the above setting, Pv(x) equals the characteristic polynomial of Frv acting on VℓA.

Proof. Reduction gives Dv/Iv ∼= Gkv -isomorphisms Tℓ(A) → Tℓ(Ãv); see [27, §III.3] and [31, §19].

Next, suppose that ϕ : A → B be a K-isogeny of abelian varieties over K. By Theorem/Definition
3.1.3(c), we have a short exact sequence

0 → A[ϕ] → A→ B → 0 (3.2)

in GrpK . Considering a piece of the associated long exact sequence in Galois cohomology, and for each
v ∈ MK the corresponding sequence over Kv (Remark 2.2.3(d)), we obtain the commutative diagram with
exact rows

0 cokerϕ(K) H1(K,A[ϕ]) WC(A)[ϕ∗] 0

0
⊕

v∈MK

cokerϕ(Kv)
⊕

v∈MK

H1(Kv, Av[ϕv])
⊕

v∈MK

WC(Av)[ϕv,∗] 0,

where we have used Example 2.2.9 to write H1(K,A) as WC(A), the notation ϕ∗ : WC(A) → WC(B)
denotes the induced map of Weil-Châtelet Groups (and similarly for each Kv), the vertical maps are given
by the sum of the local restriction maps, and we are using

Lemma 3.2.8. For each ξ ∈ H1(K,A[ϕ]) (resp. WC(A)), we have Resv ξ = 0 for almost all v.

Proof. See [32, Lemma I.6.3].

Definition 3.2.9. In the above setting, we define the ϕ-Selmer group and Tate-Shafarevich group of A to
be, respectively,

Selϕ(A) := ker

H1(K,A[ϕ]) →
⊕

v∈MK

WC(Av)

 and X(A) := ker

WC(A) →
⊕

v∈MK

WC(Av)

 .

67This characterizes places v of good reduction, see [46, §1, Thm. 1]. (This is the criterion of Footnote 66.)
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According to Example 2.2.9, the elements of the Tate-Shafarevich group X(A) can be interpreted as
(K-isomorphism classes) of principal homogeneous spaces for A which are everywhere locally trivial, i.e.,
admit a Kv-rational point for each v ∈ MK , and is therefore a quantitative measure of the obstruction to
the local-to-global principal for abelian varieties. From the above definitions, we immediately obtain the
short exact sequence of groups

0 → B(K)/ϕ(A(K)) → Selϕ(A) → X(A)[ϕ∗] → 0. (3.3)

The key finiteness result in the whole story is

Theorem 3.2.10. If ϕ : A→ B is a K-isogeny of abelian varieties over K, then Selϕ(A) is finite.

Proof. Identical to the proof for elliptic curves in [49, Theorem X.4.2]. The idea is to construct a finite S
with M∞

K ⊂ S ⊂ MK such that (in the notation of Remark 2.2.3(d)), we have Selϕ(A) ⊂ H1(K,A[ϕ];S),
and then to show that the latter group is finite. Here are some more details.
(1) Let S ⊂ MK be a finite set as in Theorem 3.2.6. Given any ξ ∈ Selϕ(A) and v ∈ MK , by considering a

suitable lift in Z1
cts(Gv, Av[ϕv]), there is a pv ∈ A(Ka

v ) so that for all σ ∈ Gv, we have ξ(σ) = pσv −pv.
In particular, this holds for all σ ∈ Iv. Considering the reduction morphism A(Ka

v ) → Ãv(k
a
v) and

noting that Iv acts trivially on the latter by definition tells us that when σ ∈ Iv, ξ(σ) belongs to the
kernel of the reduction morphism. But again, considering the formal group law structure on A1(K

a
v )

(as in the proof of Theorem 3.2.6) along with the hypothesis that the residue characteristic of v does
not divide deg(ϕ) tells us that Av[ϕv](K

a
v ) injects into Ãv(k

a
v), and hence ξ(σ) = 0 for all σ ∈ Iv.

(2) If M is a finite discrete GK-module and S a finite set with M∞
K ⊂ S ⊂ MK , then H1(GK ,M ;S) is

finite. Indeed, by Lemma 2.1.1 and the fundamental theorem of infinite Galois theory, there is a finite
Galois L/K such that GL acts trivially on M . Then by the profinite inflation-restriction sequence
(Theorem 1.2.6 and Remark 2.1.5) and the finiteness of H1(L/K,MGL) (Remark 1.1.6(b)), we may
replace K by L and hence are reduced to the case where GK acts trivially on M . Then, by Remark
2.1.8(a), H1(GK ,M) = Homcts

Grp(GK ,M). If M has exponent m ∈ Z≥1, and KS,m is the maximal
abelian extension of K of exponent m unramified outside of S, then under the above identification,
H1(GK ,M ;S) lies in the image of Hom(Gal(KS,m/K),M) → Homcts

Grp(GK ,M). Finiteness follows
from the fact that KS,m/K is finite; this is proven using the two fundamental finiteness results from
algebraic number theory: the finiteness of the class group Cl(K) and the finite generation of the
S-unit group O×

K,S .
68

Here are two important corollaries.

Corollary 3.2.11. Let A be an abelian variety over a number field K, and let n ∈ Z≥1.
(a) (Weak Mordell-Weil) The group A(K)/nA(K) is finite.
(b) The group X(A)[n] of n-torsion in the Tate-Shafarevich group is finite.

Proof. Both claims follow from Theorems 3.1.6 and 3.2.10 and the sequence (3.3).

For a phrasing of the above proof of Corollary 3.2.11(a) in the language of étale cohomology, see [30,
Thm. III.4.22]. Corollary 3.2.11(b) is a piece of evidence towards the currently open conjecture that for
each abelian variety A over K, the whole Tate-Shafarevich group X(A) is finite; see Conjecture 3.4.4

Corollary 3.2.12. Let A ∼K B be isogenous abelian varieties over a number field K. If one of X(A) or
X(B) is finite, then so is the other. Therefore, for any A over K, the group X(A) is finite iff X(A∨) is.

68These results are themselves equivalent to certain adèlic and idèlic compactness results.
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Proof. By Theorem/Definition 3.1.7, we may assumeX(B) is finite and show thatX(A) is. Let ϕ : A→ B
be a K-isogeny. From Theorem 3.2.10 and (3.3), the kernel X(A)[ϕ∗] is finite; we conclude by considering

the exact sequence 0 → X(A)[ϕ∗] → X(A)
ϕ∗−→ X(B). The second statement follows from the first

combined with Remark 3.1.13(c) and Lemma 3.1.14.

The other key ingredient in the proof of the full Mordell-Weil Theorem–the finite generation of A(K)–is
the theory of heights.69 Recall ([49, §VIII.5]) that for each n ∈ Z≥0, there is a unique GQ-invariant function
h : Pn(Qa) → R such that if K ⊂ Qa is a number field and p = [x0 : · · · : xn] ∈ Pn(K) ⊂ Pn(Qa) is chosen
with all xi ∈ K, then

h(p) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log
n

max
i=0

|xi|v,

where Qv ⊂ Kv is the completion of Q in Kv. Given an abelian variety A and a very ample line bundle
L → A, we consider the corresponding embedding φL : A → PH0(A,L)∨ ∼= Pn

K for some n ∈ Z≥1 and
the resulting height function hL : A(Ka) → R given by postcomposing with h on Pn(Ka) = Pn(Qa). One
can then show that if L is symmetric, then hL is (up to a bounded function) a quadratic form on A(Ka),70

and so by using Corollary 3.2.11(a) and descent via this height function,71 we obtain exactly as for elliptic
curves,

Theorem 3.2.13 (Mordell-Weil). For any abelian variety A over K, the group A(K) is finitely generated.

See [47]. In particular, we define the rank of A to be the rank of A(K), i.e., rk(A) := dimQA(K)Q.

Lemma 3.2.14. Let ϕ : A → B be a K-isogeny of abelian varieties over a number field K. Then the
map ϕ(K)Q : A(K)Q → B(K)Q is Q-linear isomorphism. In particular, A and B have the same rank, say
r ∈ Z≥0. Moreover, if a1, . . . , ar ∈ A(K) give a Q-basis for A(K)Q, then so do ϕ(a1), . . . , ϕ(ar) ∈ B(K).

Proof. Identical to the proof of Lemma 3.1.9, using the functor −(K)Q this time.

We are now ready to formulate

Conjecture 3.2.15 (Weak Birch and Swinnerton-Dyer). Let A be an abelian variety over a number field
K and S ⊂ MK a finite set containing M∞

K and all places of bad reduction for A. Then LS(A, s) can be
analytically continued to a neighborhood of s = 1, and ords=1 LS(A, s) = rk(A).

Note that the quantity ords=1 LS(A, s) is independent of the choice of S–as predicted by the conjecture–
thanks to Remark 3.2.4. The strength of the conjecture lies in the connection it proposes between the global
arithmetic of K (manifested in rk(A)) and the local arithmetic of K (manifested in the analytic object
LS(A, s) made up of local factors coming from the reductions Ãv). We are immediately ready to prove

Theorem 3.2.16. Let A ∼K B be isogenous abelian varieties over a number field K. If the weak BSD
conjecture (Conjecture 3.2.15) is true for one of A or B, then it is true for both.

Proof. Let S ⊂ MK be a finite set as in Theorem 3.2.6; then LS(A, s) = LS(B, s) thanks to Lemma 3.1.9,
Lemma 3.2.7, and the observation that Vℓϕ ◦VℓFrv,A = VℓFrv,B ◦Vℓϕ for all suitable ℓ. The result follows
from Lemma 3.2.14.

69Unfortunately, we do not have the space to develop the theory of heights, an important topic in diophantine geometry.
70As for elliptic curves, one can normalize by defining the Néron-Tate canonical height ĥL(p) := limn→∞ 2−2nhL(2np),

which is an actual quadratic form.
71Here we are using Theorem 3.1.2 to obtain the existence of some very ample line bundle.
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3.3 Three Pairings associated with Abelian Varieties

In this section, we describe the local Tate pairing, the Cassels-Tate pairing, and the Néron-Tate canonical
height pairing, which will serve as important tools in the final section. For an overview of these pairings,
and the description of two more–the Weil eϕ pairing and the Tate-Lichtenbaum pairing–see [48].72

Recall (Footnote 37) that there is a fully faithful embedding GrpK ↪→ Shv(Spec(K)fl,Ab) =: AbK
of the category of commutative algebraic groups over a field K into the category of abelian sheaves over
the big flat (i.e., fppf) site Spec(K)fl, and we identify GrpK with its (essential) image ([38, Ch. III]).
In AbK , there is an internal sheaf Hom operation, and for G ∈ AbK , we define its Cartier dual to be
GD := Hom(G,Gm). For instance, when G ∈ GrpK , then by definition GD(K) = HomGrpK (G,Gm) is the
character group of G.73 The endofunctor (−)D = Hom(−,Gm) of AbK is left exact (and AbK has enough
injectives–[30, Prop. III.1.1]), so we may define its derived functor Ext•(−,Gm) := R•Hom(−,Gm). Now
for a general G and n ∈ Z≥0, the sheaf Extn(G,Gm) may not come from an algebraic group, i.e., lie in the
essential image of GrpK ,74 but here are three important scenarios–the only ones we’ll need–when it does:
(a) when n = 0 and G is finite; this is the usual formulation of Cartier duality ([34, §11c]), and
(b) when n = 0, 1 and G = A is an abelian variety. The case n = 0 is clear: AD = 0 by the properness

of A. The case n = 1 is of the dual abelian variety A∨ =Ext1(A,Gm) ([38, §III.18]).
Given a K-isogeny ϕ : A→ B of abelian varieties, the derived functor R•(−)D gives the exact sequence

0 = AD → A[ϕ]D
δ−→Ext1(B,Gm)

Ext1(ϕ,Gm)−−−−−−−→Ext1(A,Gm),

yielding the promised isomorphism B∨[ϕ∨] ∼= A[ϕ]D of Remark 3.1.13(d) ([38, §III.19]). From this, we get
(see [34, §11c]) a natural bilinear morphism of K-group schemes

A[ϕ]×B∨[ϕ∨] → Gm,

which, if deg(ϕ) = n, factors through µn. When K is perfect, this in turn yields GK-invariant bilinear
pairings

A[ϕ](Ka)×B∨[ϕ∨](Ka) → µn(A
a).

As in §2.4, precomposing with cup products in Galois cohomology gives for each p, q ∈ Z≥0 a bilinear map

Hp(K,A[ϕ])×Hq(K,B∨[ϕ∨]) → Hp+q(K,µn). (3.4)

These products then give rise to a wealth of different pairings, natural in A and B. For instance, taking
p = q = 0 gives the Weil eϕ pairing, which can be shown to be nondegenerate and has important uses ([31,
§16], c.f. [49, §III.8]). Another pairing obtained from this is the local Tate pairing.

Theorem/Definition 3.3.1. (Local Tate Pairing) For an abelian variety A over a local number field K
and for p = 0, 1, there is a bilinear pairing

⟨−,−⟩ : Hp(K,A)×H1−p(K,A∨) → Q/Z

with the following properties.
(a) The pairing is nondegenerate, i.e., induces an isomorphism A∨(K) →∼ WC(A)∗.75

72Evidently, John Tate made a lot of contributions to this area, c.f. Footnote 1 of [48].
73Note also that when G is geometrically reduced, we have GD(Ka) = HomGrpKa (GKa ,Gm) ∼= HomGrp(G(Ka),Gm(Ka)),

establishing the agreement with the notion introduced in §2.4. The last isomorphism here is using [19, Prop. II.2.6].
74See, e.g., [34, Ex. 1-1] for G = Ga and n = 0.
75Here we are using, of course, Example 2.2.9. We also get an isomorphism WC(A∨) →∼ A(K)∗. Finally, the same thing

holds for the dual variety.
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(b) The pairing is natural, i.e., if ϕ : A→ B is a K-isogeny, then ⟨ϕ∗(−),−⟩ = ⟨−, ϕ∨∗ (−)⟩.

Proof Sketch. ([48, §8]) We do the case p = 0; the other case is obtained by biduality (Remark 3.1.13(c)).
For n ∈ Z≥1, using Theorem 3.1.6, take A = B, ϕ = [n], and p = q = 1 in (3.4) to get a bilinear map

H1(K,A[n])×H1(K,A∨[n]) → H2(K,µn).

Using Examples 2.2.7, 2.2.8, and 2.2.10, write this last group as Br(K)[n] ∼= (Q/Z)[n] = 1
nZ/Z. Precom-

pose on the left with the connecting map δ : A(K)/nA(K) → H1(K,A[n]) of Galois cohomology, and
show that the image pairs trivially with A∨(K)/nA∨(K) obtained similarly to descend on the right to the
quotient H1(K,A∨)[n] = WC(A∨)[n], resulting in a pairing

A(K)/nA(K)×WC(A∨)[n] → 1

n
Z/Z.

Taking a suitable limit as n → ∞ gives the pairing. See [32, Cor. I.3.4] for an approach along these lines
using the Barsotti-Weil formula, or [32, Rem. I.3.5] or [52] for Tate’s original construction.

Remark 3.3.2. In the above setting, one can show that Hp(K,A) = 0 for p ≥ 2 (see [32, Cor. I.3.4] or
combine Props. 15 and 16 of [44, §II.5.3]). Also, there are natural topologies on the groups in (a) such that
the isomorphisms are topological isomorphisms.

Another cohomological pairing we will need to use is the Cassels-Tate pairing.

Theorem/Definition 3.3.3 (Cassels-Tate). For an abelian variety A over a (global) number field K, there
is a bilinear pairing

⟨−,−⟩CT : X(A)×X(A∨) → Q/Z

with the following properties.
(a) If X(A) and X(A∨) are finite (see Corollary 3.2.12), then the pairing is nondegenerate.76

(b) The pairing is natural, i.e., if ϕ : A→ B is a K-isogeny, then ⟨ϕ∗(−),−⟩CT = ⟨−, ϕ∨∗ (−)⟩CT.

Proof. Unsurprisingly, the pairing is cohomological, although the construction is more involved. See [32,
I.6.9], [41], or [48, §10]; the second reference has four constructions, and shows why they all agree.

Remark 3.3.4.
(a) If A admits a principal polarization by a K-rational divisor, then the resulting bilinear pairing X(A),

is alternating. This can be used to show that, in this setting (which holds always for elliptic curves and
Jacobians), the Tate-Shafarevich group, if finite, must have order a perfect square; this is consistent
with experimentatal observations. See again [8, Ch. XII] and [41].

(b) There is a common generalization of Thms. 2.3.3, 3.3.1, and 3.3.3, via motivic cohomology ([18]).

The final pairing needed is not cohomological, but rather arithmetic in nature.

Theorem/Definition 3.3.5 (Néron-Tate Canonical Height Pairing). For an abelian variety A over a (global)
number field K, there is a bilinear pairing

⟨−,−⟩NT : A(Ka)×A∨(Ka) → R

with the following properties.
(a) The induced pairing on the quotients by the torsion subgroups is nondegenerate.
(b) The pairing is natural, i.e., if ϕ : A→ B is aK-isogeny, then ⟨ϕ(Ka)(−),−⟩NT = ⟨−, ϕ∨(Ka)(−)⟩NT.

76Perhaps more generally, the pairing is nondegenerate on the non-divisible quotients of X(A) and X(A∨).
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Proof. See [21, Thm. B.5.8] or [25, Ch. 5]. The idea is that, in the notation explained above, we have
⟨−,−⟩NT = ĥP, where P is the Poincaré bundle on A×A∨.

The height pairing allows us to define an important invariant of an abelian variety over a number field.

Definition 3.3.6 (Regulator). Let A be an abelian variety over a (global) number field K. We define the
regulator of K to be

Reg(A) := | det[⟨ai, a′j⟩]ri,j=1|,

where r := rk(A) = rk(A∨) is the common rank of A and A∨ (Lemmas 3.1.14 and 3.2.14), and a1, . . . , ar ∈
A(K) (resp. a′1, . . . , a

′
r ∈ A∨(K)) is any choice of elements whose images form a Z-basis for the free quotient

A(K)free := A(K)/A(K)tors (resp. A
∨(K)free).

By the bilinearity of the canonical height pairing, the regulator is well-defined independent of the choices
of the ai and a′j , and it is nonzero by Theorem/Definition 3.3.5(a). It is an interesting measure of the
arithmetic complexity of A, and a key term appearing in the strong BSD conjecture, which we discuss now.

3.4 Main Proof

The more precise form of the Birch and Swinnerton-Dyer conjecture also predicts the first coefficient of
LS(A, s) in its Taylor expansion around s = 1 (analogously to the analytic class number formula for the
Dedekind zeta function ζK). Evidently, this depends on S, and so we need some normalization to eliminate
this dependence. This is done as follows.

For a number field K and v ∈ MK , normalize the Haar measure on the locally compact topological
abelian group Ga(Kv) to satisfy µv(Ov) = 1 when v is nonarchimedean and to be the usual Lebesgue measure
otherwise; with this normalization, for any compact S ⊂ Kv and λ ∈ K×

v , we have µv(λS) = |λ|vµv(S).
These normalizations give rise to the product measure µ, called the Tamagawa measure ([8, §X.3.1]), on the
additive group Ga(AK) of the adèle ring AK , with the property that the compact quotient Ga(AK)/Ga(K)
has Tamagawa measure |µ| = 2−r2 |disc(K)|1/2, where r2 is the number of complex places of K and disc(K)
is the discriminant of the number field K ([26, Prop. XIV.6.6]). Next, suppose that A is an abelian variety
of dimension g ∈ Z≥1 over a number field K, and suppose ω ∈ Γ(A,Ωg

A/K) is a nonzero invariant top

differential (take the gth exterior power in [12, Prop. 3.15]). For each place v of K, the set of Kv-points
A(Kv) = Av(Kv) of A is a smooth compact analytic group over Kv ([22, Ch. 2], [45, Part II, Ch. III-IV]),
and the choice of ω (considered as an element of Γ(Av,Ω

g
Av/Kv

)) along with µv determines a Haar measure

|ω|vµgv on A(Kv) ([22, §7.4]). The volume of A(Kv) with respect to this measure is called the v-adic period
of A, and is denoted µv(A,ω) :=

∫
A(Kv)

|ω|vµgv.

Remark 3.4.1. If v ∈ M0
K is a place of good reduction for A and ω is chosen to reduce to a nonzero

differential on Ãv,
77 the exact sequence 0 → A1(Kv) → A(Kv) → Ãv(kv) → 0 along with the isomorphism

A1(Kv) ∼= mg
v from the formal group law (c.f. the proof of Theorem 3.2.6) can be used to show that

µv(A,ω) = q−g
v |Ãv(kv)| (see [23, §2.6.2]).

We can now define a modified L-function.

77Here’s what this means explicitly. Let A be a model of A over SpecOK,pv as in Definition 3.2.1. Then pullback by the
basechange morphism A→→ A (resp. Ãv → A) gives us a K-linear map K ⊗OK,pv

Γ(A,Ωg) → Γ(A,ΩgA/K) (resp. kv-linear

map kv ⊗OK,pv
Γ(A,Ωg) → Γ(Ãv,Ω

g

Ãv/kv
)), where Γ(A,Ωg) := Γ(A,Ωg

A/OK,pv
) The hypothesis is saying that there is an

element ω̄ ∈ Γ(A,Ωg) that maps to ω under the first map and whose image under the second map is nonzero. As in Lemma
3.2.2, this is the case for almost all v. One could also work globally with the Néron model (Remark 3.2.3) to make this definition;
c.f. [23, §2.6.2], where our definition is equivalent to his vω = 1.
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Definition 3.4.2. Let A be an abelian variety over a number field K, and S ⊂ MK a finite set as in
Definition 3.2.5. In the above notation, define the associated modified L-function to be

L∗
S(A, s) := LS(A, s) · |µ|g ·

∏
v∈S

µv(A,ω)
−1,

where ω ∈ Γ(A,Ωg
A/K) is any a nonzero invariant differential reducing to a nonzero differential (see Footnote

77) on Ã(v) for all v /∈ S.

Remark 3.4.3. The function L∗
S(A, s) is independent of the choice of ω: if ω′ is another form with the

same properties, then–since the space of invariant g-forms is 1-dimensional–there is a λ ∈ K× such that
ω′ = λω. The hypotheses on ω and ω′ ensure that |λ|v = 1 for all v /∈ S, so that the product formula gives∏

v∈S |λ|v = 1, and hence
∏

v∈S µv(A,ω
′) =

∏
v∈S |λ|v

∏
v∈S µv(A,ω) =

∏
v∈S µv(A,ω). Moreover–and

this is the point of this definition–assuming Conjecture 3.2.15 for an abelian variety A, the Taylor coefficient
lims→1(s− 1)−rk(A)L∗

S(A, s) is independent of the choice of S; this follows from Remarks 3.2.4 and 3.4.1.

We are now ready to state

Conjecture 3.4.4. (Strong Birch and Swinnerton-Dyer) Let A be an abelian variety over a number field
K, and S ⊂ MK a finite set of places containing M∞

K and all places of bad reduction for A. Then X(A)
is finite, L∗

S(A, s) admits an analytic continuation to a neighborhood of s = 1, and

lim
s→1

L∗
S(A, s)

(s− 1)rk(A)
=

|X(A)| · Reg(A)
|A(K)tors| · |A∨(K)tors|

.

Remark 3.4.5.
(a) For the agreement with the usual way the BSD conjecture is stated for elliptic curves–e.g., as in [49,

Conjecture C.16.5])–see Remark 3.1.13(f) and [27, §III.6].
(b) The (inverse) correction factor |µ|−g

∏
v∈S µv(A,ω) is the volume of A(AK,S) for a suitable Tamagawa

measure on it ([23, Prop. 3.16]; c.f. [8, §X.3]). There is also a way to define a complete L-function
L(A, s) with local factors also at infinite places and places of bad reduction of A (see [27, §III.5]), and
to state the conjecture in terms of this L(A, s), the correct (inverse) correction factor needed then is
the volume of A(AK) with respect to the Tamagawa measure ([23, Prop. 2.64 and Conj. 3.15]).

(c) By the bilinearity of the height pairing, Conjecture 3.4.4 for an abelian variety A over K is equivalent
to the assertion that

lim
s→1

L∗
S(A, s)

(s− 1)r
=

|X(A)| · | det[⟨ai, a′j⟩NT]
r
i,j=1|

[A(K) :
∑r

i=1 Zai] · [A∨(K) :
∑r

j=1 Za′j ]
,

where r := rk(A) = rk(A∨) ∈ Z≥0, and a1, . . . , ar ∈ A(K) (resp. a′1, . . . , a
′
r ∈ A∨(K)) is any family

of elements which gives a Q-basis for A(K)Q (resp. A∨(K)Q).

The goal for the rest of this essay is to prove

Theorem 3.4.6 (Cassels-Tate). Let A ∼K B be isogenous abelian varieties over a number field K. If the
strong BSD conjecture (Conjecture 3.4.4) is true for one of A or B, it is true for both.

It is rather remarkable that none of the terms which appear individually in the Taylor coefficient in
Conjecture 3.4.4–the size of the Tate-Shafarevich group, the regulator, or the sizes of the torsion subgroups–
are in general the same for isogenous abelian varieties. Accordingly, Theorem 3.4.6 serves as very powerful
theoretical evidence for Conjecture 3.4.4. We closely follow the proof of [32, Thm. I.7.3].
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Proof. We proceed with a series of reductions. To prove the theorem, by Theorem/Definition 3.1.7, we
may assume Conjecture 3.4.4 to be true for B and show it for A, given a K-isogeny ϕ : A → B. Let
ϕ∨ : B∨ → A∨ by the dual isogeny (Remark 3.1.13(d)). By Corollary 3.2.12, the finiteness of X(B) implies
also that of X(B∨), X(A), and X(A∨).

Now suppose that ωB ∈ Γ(B,Ωg
B/K) is a nonzero invariant differential and let ωA := ϕ∗ωB. Let

S ⊂ MK be a finite set containing M∞
K and all places of bad reduction for A and B (c.f. Footnote 66),

all places whose residue characteristic divides deg(ϕ), and all places where ωA and ωB do not reduce to a
nonzero differential form upon reduction (Footnote 77). Let r ∈ Z≥0 denote the common rank of A, B, A∨,
and B∨, and let a1, . . . , ar ∈ A(K) (resp. b′1, . . . , b

′
r ∈ B∨(K)) be any family of elements giving a Q-basis

of the A(K)Q (resp. B∨(K)Q); then if we let bi := ϕ(ai) (resp. a′i := ϕ∨(b′i)), then b1, . . . , br ∈ B(K)
(resp. a′1, . . . , ar ∈ A(K∨)) also gives a Q-basis of B(K)Q (resp. A∨(K)Q), by Lemma 3.2.14. By Theorem
3.2.16 and Remarks 3.4.3 and 3.4.5(c), it remains to show that

∏
v∈S

µv(B,ωB)

µv(A,ωA)
=

|X(A)|
|X(B)|

·
|det[⟨ai, a′j⟩NT]

r
i,j=1|

|det[⟨bi, b′j⟩NT]ri,j=1|
·
[B(K) :

∑r
i=1 Zbi] · [B∨(K) :

∑r
j=1 Zb′j ]

[A(K) :
∑r

i=1 Zai] · [A∨(K) :
∑r

j=1 Za′j ]
. (3.5)

By Theorem/Definition 3.3.5(b), we have for each i, j = 1, . . . , r that

⟨ai, a′j⟩NT = ⟨ai, ϕ∨(b′j)⟩NT = ⟨ϕ(ai), b′j⟩NT = ⟨bi, b′j⟩NT, (3.6)

eliminating the middle term on the right of (3.5). By the Snake Lemma applied to the commutative diagram

0
∑r

i=1 Zai A(K) A(K)/
∑r

i=1 Zai 0

0
∑r

i=1 Zbi B(K) B(K)/
∑r

i=1 Zbi 0,

∼= ϕ(K)

we get that
[B(K) :

∑r
i=1 Zbi]

[A(K) :
∑r

i=1 Zai]
=

| cokerϕ(K)|
| kerϕ(K)|

=: indϕ(K), (3.7)

and similarly for the duals.78 Similarly, the ratio of periods can be interpreted as an index: for v ∈ MK ,

µv(B,ωB) · µv(A,ωA)
−1 = indϕ(Kv). (3.8)

Indeed, ωA = ϕ∗ωB tells us that the counting measure, |ωA|vµgv, |ωB|vµgv, and the counting measure again
respectively are compatible Haar measures in the exact sequence of compact abelian groups

0 → kerϕ(Kv) → A(Kv) → B(Kv) → cokerϕ(Kv) → 0,

and so we are done by Fubini’s Theorem.79 Combining (3.5), (3.6), (3.7), (3.8), the finiteness of X(A)
and X(B), and Lemma 0.0.1(1), we are reduced to showing that

indX(ϕ) ·
∏
v∈S

indϕ(Kv) =
indϕ(K)

indϕ∨(K)
, (3.9)

78Note that cokerϕ(K) is finite thanks to Theorem 3.2.10 and the sequence (3.3). Alternatively, (3.7) proves this.
79Here we are using that the kerϕ(Kv) and cokerϕ(Kv) are finite (the latter uses an argument similar to, but even easier

than, the one in Footnote 78). The particular version of Fubini’s Theorem used is a straightforward generalization of the
“quotient integral formula” for compatible Haar measures (e.g., [10, Thm. 1.5.3]) to longer exact sequences of locally compact
abelian groups.
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where X(ϕ) = ϕ∗ : X(A) → X(B) is the induced map of Tate-Shafarevich groups.80 Finally, the nonde-
generacy and naturality of the Cassels-Tate pairing (Theorem/Definition 3.3.3) tells us that kerX(ϕ∨) =
(imX(ϕ))⊥, the orthogonal complement being with respect to ⟨−,−⟩CT, so again by nondegeneracy,
| kerX(ϕ∨)| = | cokerX(ϕ)|, and hence

indX(ϕ) = | kerX(ϕ∨)| · | kerX(ϕ)|−1. (3.10)

Let Φ := A[ϕ](KS) = A[ϕ](Ka) = Av[ϕv](K
a
v ) (the equalities coming from Theorem 3.2.6), considered

variously as a GS , GK or Gv-module for v ∈ MK , and ΦD be its Cartier dual (in the sense of §2.4), so that
by Remark 3.1.13(d) and Footnote 73, we have ΦD = B∨[ϕ∨](KS), etc. We need two lemmas.

Lemma 3.4.7. There is a commutative diagram of finite abelian groups

0 H0(GS ,Φ)
⊕

v∈S Ĥ0(Kv,Φ) H2(GS ,Φ
D)∗

0 cokerϕ(K) H1(GS ,Φ) H1(GS , A)[ϕ∗] 0

0
⊕

v∈S cokerϕ(Kv)
⊕

v∈S H1(Kv,Φ)
⊕

v∈S WC(Av)[ϕv,∗] 0

0 H1(GS , B
∨)[ϕ∨∗ ]

∗ H1(GS ,Φ
D)∗ cokerϕ∨(K)∗ 0

α′ α α′′

β′ β β′′

such that the rows and columns are complexes, and the rows and (extended) middle column are exact.81

Proof Sketch. The (extended) middle column comes from Theorem 2.4.3. The first row that is not a part
of it arises from taking the long exact sequence in GS-cohomology of the exact sequence of discrete Z[GS ]-

modules 0 → Φ → A(KS)
ϕ(KS)−−−−→ B(KS) → 0 coming from Theorem 3.2.6, the second row is obtained

similarly, and the third row is obtained by Q/Z-dualizing the corresponding row for ϕ∨, where we are using
Remark 3.1.13(d) and the finiteness result Corollary 2.4.4. The maps α, α′, α′′ are the sums of corresponding
restriction maps. For each v ∈ S, the Q/Z-duality between Bv(Kv) and WC(B∨

v ) (Theorem/Definition
3.3.1) induces by naturality (3.3.1(b)) a duality between cokerϕ(Kv) and WC(B∨)[ϕ∨v,∗], and the map β′

is the Q/Z-dual to the composite

H1(GS , B
∨)[ϕ∨∗ ]

∑
Resv−−−−→

⊕
v∈S

WC(B∨)[ϕ∨v,∗] →∼
⊕
v∈S

cokerϕ(Kv)
∗.

Similarly, β′′ is the Q/Z-dual to the composite

cokerϕ∨(K)
∑

Resv−−−−→
⊕
v∈S

cokerϕ∨(Kv) →∼
⊕
v∈S

WC(Av)[ϕv,∗]
∗.

The commutativity of the diagram follows from the definition of the maps α and β in Theorem 2.4.3 and the
duality maps of Theorem/Definition 3.3.1, and this proves also that the outer columns are complexes.

80The formulation (3.9) of Theorem 3.4.6 has the pleasant reinterpretation that the ratio of the indices of the global maps
ϕ(K) and ϕ∨(K) is given by the product of the local contributions indϕ(Kv) and the contribution indX(ϕ) coming from the
failure of the local-to-global principle.

81Here we are using the shorthand notation H1(GS , A) := H1(GS , A(KS)) and similarly for B and the duals.
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Lemma 3.4.8. There is an exact sequence

0 → kerX(ϕ) → H1(GS , A)[ϕ∗] →
⊕
v∈S

WC(Av)[ϕv,∗]

and similarly for the duals.

Proof Sketch. A sequence X
f−→ Y

g−→ Z of morphisms of abelian groups yields an exact sequence 0 →
ker f → ker gf

f−→ ker g. Applying this to

WC(A)[ϕ∗]
∑

Resv−−−−→
⊕

v∈MK

WC(Av)[ϕv,∗]
pr−→

⊕
v/∈S

WC(Av)[ϕv,∗]

tells us that we need to identify the kernel of the map WC(A) →
⊕

v/∈S WC(Av) with H1(GS , A). The
profinite inflation-restriction sequence (Theorem 1.2.6 and Remark 2.1.5) tells us that the inflation map
H1(GS , A) → H1(K,A) is injective, giving us a subgroup. It remains to identify this subgroup with the
kernel, and this is done exactly as in [32, Prop. I.6.5].82

Given these lemmas, we are ready to finish the proof of Theorem 3.4.6. From Lemma 3.4.7 and the
Snake Lemma, there is an exact sequence

0 → kerα′ → kerα→ kerα′′ → kerβ′/ imα′ → 0. (3.11)

By Lemma 0.0.1(2) applied to (3.11), the first column, and the lowest row of Lemma 3.4.7, we get

indX(ϕ) ·
∏
v∈S

| cokerϕ(Kv)| ·
| cokerϕ∨(K)|
| cokerϕ(K)|

=
|H1(GS ,Φ

D)|
| kerα|

, (3.12)

where we have also used (3.10) and from (the proofs of) Lemmas 3.4.7 and 3.4.8 that kerα′′ = kerX(ϕ)
and cokerβ′ = kerX(ϕ∨)∗. Next, Lemma 0.0.1(2) applied to the extended middle column of Lemma 3.4.7
yields (along with the fact that H0(GS ,Φ) = kerϕ(K) and H0(GS ,Φ

D) = kerϕ∨(K), and similarly for the
local factors) that

∏
v∈S

1

| kerϕ(Kv)|
· | kerϕ(K)|
| kerϕ∨(K)|

=
| kerα|

|H0(GS ,ΦD)| · |H2(GS ,ΦD)|
·

∏
v∈M∞

K

|Ĥ0(Kv,Φ)|
|H0(Kv,Φ)|

. (3.13)

Finally, multiplying (3.12) and (3.13) shows that the required equality (3.9) is equivalent to Theorem 2.4.5.

82Including full details in this proof would need us to develop the theory of abelian varieties over local number fields more
fully than we have space for. The key technical input needed here is that H1(kv, A(K

nr
v )) = 0, which uses the fact that A has

good reduction at v, that Weil-Châtelet groups over finite fields are trivial ([27, Thm. III.4.3]), and an argument with Hensel’s
lemma similar to the one in Footnote 45; alternatively, one could use Néron models, as is done in [32, Prop. I.3.8].
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Conclusion

In this essay, we began by defining abstract (§1) and profinite group cohomology (§2.1), and Galois co-
homology (§2.2). Next, we discussed how the Tate-Nakayama theorem combined with Galois cohomology
gives class field theory (§2.3). Finally, we discussed how the artithmetic duality theorems of Tate and Poitou
(§2.4) combined with a few other duality theorems for abelian varieties over local and global number fields
(§3.3) can be used to prove the Cassels-Tate theorem on the isogeny invariance of the strong Birch and
Swinnerton-Dyer conjecture (§3.4). Needless to say, there is much more to be said about each of these
topics. We end this essay by giving a brief (and necessarily incomplete) overview of some further directions
in which the material of this essay can be taken.

In group cohomology, one important topic we did not have space to discuss was the Lyndon-Hochschild-
Serre spectral sequence, which is a powerful computational tool ([28, Ch. VI], [56, §6.8]). Further, by
Example 1.1.4 and Remark 1.1.6(c), there is at least as much to be said about group cohomology as there
is about the topological cohomology of Eilenberg-MacLane spaces (of which there is a lot). For instance, if
G is a free group, then K(G, 1) is a bouquet of circles, and so cdZ(G) ≤ 1; the converse–that any (finitely
generated or torsion free) group of cohomological dimension at most 1 is free–is a deep theorem due to
Stallings [50] and Swan [51], which resolved important conjectures in group theory. For an application
of group cohomology (or more precisely its close analog, bounded group cohomology) to amenability and
geometric group theory, see [29, Ch. 2]. For several other topics in group cohomology such as finiteness
conditions and Euler characteristics of groups, see [6].

Another interesting result that can be proved using Galois cohomology is the Golod-Shafarevich theorem
on the existence of infinite class field towers of number fields ([8, Ch. IX]). For the much more that
remains to be said about the Galois cohomology of local and global number fields and global class field
theory, see [2] and [37]. Besides its applications to class field theory (and those mentioned in §2.2), Galois
cohomology is an essential tool for studying rationality questions via Galois descent ([40, Ch. 4,5]). When
applied to algebraic groups such as orthogonal groups, this has applications to the classification of quadratic
forms over number fields ([3, Ch. IV], [8, Ch. X], [44, Ch. III]). Further, as noted above (Footnote 4),
Galois cohomology is also one special case of, and a starting point for, the theory of étale cohomology, the
importance of which for modern arithmetic geometry cannot be overstated ([30], [40, Ch. 6-9]). For several
other applications of Galois cohomology, see [3], [13], or [44]. We also want to mention that class field
theory (Theorem 2.3.3), local Tate duality (Theorem/Definition 2.4.1), and the duality from the Cassels-Tate
pairing (Theorem/Definition 3.3.3) can be simultaneously generalized by duality theorems and a Poitou-Tate
type exact sequence (Theorem 2.4.3) in motivic cohomology ([18]).

Finally, in addition to providing important theoretical evidence for the Birch and Swinnerton-Dyer con-
jecture, the Cassels-Tate theorem has other applications and supports other conjectures in number theory.
One direct application is to the partial resolution of the parity conjecture by the brothers Dokchitser. If A
is an abelian variety over a number field K and L(A, s) its complete L-function (Remark 3.4.5(b)), then it
is conjectured that L admits a functional equation in which s and 2− s play symmetric roles (analogous to
the one satisfied by ζ-functions). A consequence of this result asserts that, in this case, (−1)rk(A) = w(A),
where w(A) is a root number of A, which is again computed from local data–this is the parity conjecture. It
is a weaker form of Conjecture 3.2.15, which is still “responsible for a wide range of [otherwise] unexplained
arithmetic phenomena” ([24]). Roughly a decade ago, the brothers Tim and Vlad Dokchitser resolved the
parity conjecture for elliptic curves (assuming the finiteness of the Tate-Shafarevich group), and one key
ingredient in their proof is the Cassels-Tate theorem for all abelian varieties ([11, Lemma 1.2]). Besides
explaining all the “parity phenomena,” this result brings us one step closer to the still-elusive full Birch and
Swinnerton-Dyer conjectures.
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