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Abstract

This is an expanded version of a collection of lecture notes based on a mini talk series
aimed at counselors I gave at Ross/Ohio 2024. The goal of this set of notes is to develop
the basic theory of spectral sequences in a complete yet digestible manner, followed by a
plethora of illustrating examples drawn from a variety of subfields of math.
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1 Preliminary Remarks

1 Preliminary Remarks

Spectral sequences are often described as “messy” [1, p. 442], “tedious, but elementary” [2, p.
5], and even “ terrifying, evil, and dangerous [like specters]” [3].1 The goal of this set of lecture
notes is to argue otherwise.

We develop the basic theory of spectral sequences using filtered differential modules.
The same arguments can more or less be carried out in any abelian category (see Remark 2.8
for an example of where we need to be a little careful), but we stick to modules over a(n)
(unspecified) fixed ring for simplicity. Although sometimes useful (as in the construction of
the Bockstein spectral sequence), exact couples do not show up in this version of the notes,
and neither does the product structure on spectral sequences.2 Finally, the more advanced
reader knows that the cleanest, although perhaps pedagogically not the most effective, way to
understand spectral sequences is via the language of derived categories, which we leave to other
sources.

Conventions

• Throughout the text, we fix a base ring; a module is a left module over this base ring.
• The class of an element x ∈ C in a quotient module C/C ′ of C is denoted by [x]C/C′ .
• We follow the cohomological notational convention for spectral sequences; of course, the
homological convention can be obtained by switching subscripts and superscripts, and
applying the automorphism n 7→ −n to every indexing Z.

• When dealing with double complexes, we will use the convention where the vertical and
horizontal differentials anticommute, i.e. that ∂v∂h + ∂h∂v = 0. Some authors prefer
the convention that they commute, i.e. that ∂v∂h = ∂h∂v instead. These approaches are
clearly equivalent under the transformation ∂p,q

v 7→ (−1)q∂p,q
v .

1This sentence is also an excuse to list other standard references on the theory of spectral sequences.
2Perhaps they will be present in a future version.
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2 Introduction

2 Introduction

2.1 Differential Modules and Spectral Sequences

Definition 2.1.

(a) A differential module is a pair (C, ∂), where C is a module and ∂ : C → C is an
endomorphism such that ∂2 = 0.

(b) A morphism f : (C, ∂) → (C ′, ∂′) of differential modules is a morphism f : C → C ′

that commutes with the differentials, i.e., that satisfies ∂′f = f∂.

The condition ∂2 = 0 is equivalent to saying that the submodule B := im ∂ of coboundaries is
contained in the submodule Z := ker ∂ of cocycles, and we define the cohomology of (C, ∂) to
be

HC =
Z

B
=

ker ∂

im ∂
.

Taking cohomology is functorial: a morphism f : (C, ∂) → (C ′, ∂′) of differential modules
induces a map

Hf : HC → HC ′.

Remark 2.2. Sometimes we will use the notation B(∂) ⊂ Z(∂) and H(C, ∂) if we want to
emphasize ∂. Having said this, we will often drop the ∂ and call C itself the differential
module, and also drop all notational embellishment (e.g. primes) on ∂, using ∂ to refer to the
differential of any differential module. Similar notational sleights-of-hand will be made without
further comment.

Theorem 2.3. A short exact sequence of differential modules

0 → C ′ i−→ C
p−→ C ′′ → 0

induces an exact triangle in cohomology, i.e., there is a morphism δ : HC ′′ → HC ′ that
makes the triangle

HC

HC ′ HC ′′

HpHi

δ

exact.

This is a standard diagram chasing argument, and the only such argument we will give (and
need).

Proof. Given a class [c] ∈ HC ′′, pick a representative c ∈ C ′′ of [c] and a b ∈ C with p(b) = c.
Then p(∂b) = ∂p(b) = ∂c = 0, so that ∂b ∈ ker p = im i, and hence there is an a ∈ C ′ such that
i(a) = ∂b. Then i(∂a) = ∂i(a) = ∂2b = 0, whence a is a cocycle and hence [a] ∈ HC ′. The map
δ : HC ′′ → HC ′ takes [c] 7→ [a]. It is standard to check that this is well-defined irrespective of
the choices made above, and makes the above triangle exact. ■

Remark 2.4. Of course, the data of a short exact sequence 0 → C ′ → C → C ′′ → 0 amounts to
a submodule C ′ ⊂ C and an identification C/C ′ → C ′′ of the quotient module with C ′′. With
this perspective, the map δ in the above theorem, called the connecting homomorphism, is given
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2 Introduction

by the recipe “pick representative in C and take ∂”–this will be very helpful to keep in mind in
what follows.

Now we are ready to define spectral sequences.

Definition 2.5. A (cohomological) spectral sequence is a sequence E = (Er, ∂r)r≥0 of dif-
ferential modules and given isomorphisms H(Er, ∂r) →∼ Er+1 for each r ≥ 0.

We leave it to the reader to formulate the notion of a morphism of spectral sequences. The
differential modules in the sequence E are often called the pages of the spectral sequence, for
reasons that should soon be clear. The essential data of a spectral sequence is contained in the
E0 page and the differentials ∂r for r ≥ 0; we will often use the given isomorphisms to implicitly
identify H(Er, ∂r) with Er+1 for each r ≥ 0.

Given a spectral sequence E, each page Er for r ≥ 0 is a subquotient3 of E0. This is
made precise by

Proposition 2.6. If E is a spectral sequence, then there is a chain of submodules

0 = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Z2 ⊂ Z1 ⊂ Z0 = E0

and, for each r ≥ 0, a surjection πr : Zr → Er with kernel Br, giving us an identification

Zr/Br →∼ Er.

Proof. Take B0 = 0 and Z0 = E0 with π0 = idE0 . Inductively, for each r ≥ 0, let

Br+1 := π−1
r B(∂r) ⊂ π−1

r Z(∂r) =: Zr+1 and πr+1 := [·]Er+1 ◦ πr|Zr+1 ,

where [·]Er+1 : Z(∂r) → Er+1 takes classes modulo B(∂r), using the given identification
H(Er, ∂r) →∼ Er+1. ■

Proposition 2.6 also works in the “other direction”: to give a spectral sequence E, it
also suffices to give a module E0 with a chain of submodules as in the proposition, and to give
the differentials ∂r : Zr/Br → Zr/Br for each r ≥ 0.

Definition 2.7. Given a spectral sequence E and submodules Br, Zr for r ≥ 0 as in Propo-
sition 2.6, we define

B∞ :=
⋃
r≥0

Br ⊂
⋂
r≥0

Zr =: Z∞ and E∞ := Z∞/B∞.

It is customary to call the module E∞, the “infinite-th” (or the “infinith,” or the “infinity”)
page of the spectral sequence E, and to say that E converges to E∞.

Remark 2.8. In a general abelian category, the (co)limits defining Z∞ and B∞ may not exist,
but we don’t need to worry too much about that because: these certainly exist in the category of
modules over a fixed ring, and, in practice, most spectral sequences we will work with degenerate
at some finite stage.

3The sub- of quotient-, which is also the quotient- of a sub-.
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2 Introduction

Remark 2.9. For each r with 1 ≤ r ≤ ∞, we have

Zr = {x ∈ E0 : (∀ j : 1 ≤ j < r) we have ∂j
(
[x]Ej

)
= 0}, and

Br = {x ∈ E0 : (∀j : 1 ≤ j < r)(∃ yj ∈ Ej) such that [x]Ej = ∂jyj}.

The conditions defining these sets are somewhat recursive: for each j ≥ 0, we need to have
∂j([x]Ej ) = 0 in order for [x]Ej+1 to be defined. For this reason, for each 0 ≤ r ≤ ∞, I like to
call Zr the submodule of r-deep cocycles and Br the submodule of r-deep coboundaries; this is,
of course, not standard terminology.

Often the differential modules we want to work with will either be graded or filtered.
Let’s talk about gradings and filtrations now.
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2 Introduction

2.2 Gradings

Fix an abelian group G.

Definition 2.10.

(a) A G-graded module is a module C along with submodules Cg ↪→ C indexed by g ∈ G
such that C is the internal direct sum of the Cg’s, i.e., the natural map

⊕
g∈GCg → C

is an isomorphism.
(b) A morphism f : C → C ′ of G-graded modules is a pair (f, d), where f : C → C ′ is a

morphism of modules and d ∈ G such that for all g ∈ G, we have f(Cg) ⊂ (C ′)g+d.
The element d ∈ G is called the degree of f is denoted by deg f .

Now we would like to combine the structures from Definitions 2.1 and 2.10.

Definition 2.11.

(a) A G-graded differential module is a pair (C, ∂), where C is a G-graded module and
∂ : C → C is an endomorphism of G-graded modules such that ∂2 = 0.

(b) A morphism f : (C, ∂) → (C ′, ∂′) of G-graded differential modules is a morphism
f : C → C ′ that is both a morphism of differential modules and of G-graded modules.

The degree deg ∂ ∈ G of ∂ is called the degree of the G-graded differential module (C, ∂). If
f : (C, ∂) → (C ′, ∂′) is a morphism of G-graded differential modules, then the relation ∂′f = f∂
implies deg ∂′ = deg ∂ in all but the most degenerate of cases, and we will assume this equality
of degrees to be the case whenever we speak of such morphisms.

Remark 2.12. If C is a G-graded differential module, then Z,B and HC are all G-graded via

Bg := B ∩ Cg ⊂ Z ∩ Cg =: Zg and HgC = Zg/Bg ↪→ HC

for g ∈ G. If f : C → C ′ is a morphism of such modules, then the induced morphism in
cohomology Hf : HC → HC ′ is a morphism of G-graded modules as well, with degHf = deg f .

Finally, if 0 → C ′ i−→ C
p−→ C ′′ → 0 is a short exact sequence of such modules, then the

connecting homomorphism δ : HC ′′ → HC ′ is graded of degree

deg δ = deg ∂ − deg i− deg p,

as is clear from the proof of Theorem 2.3 (see also Remark 2.4). This amounts to saying that
if you “go around” the exact triangle once, then you change the degree by exactly deg ∂.

Example 2.13. A cochain complex is a differential Z-graded module C of degree deg ∂ = 1; such

an object is often denoted as (C•, ∂). If 0 → C ′ i−→ C
p−→ C ′′ → 0 is a short exact sequence of

cochain complexes with deg i = deg p = 0, then the exact triangle in cohomology from Theorem
2.3 “unfolds” to give us the usual long exact cohomology sequence

· · · → HqC ′ Hi−→ HqC
Hp−−→ HqC ′′ δ−→ Hq+1C ′ → · · ·

The notion of a G-grading can also be defined for spectral sequences.

Definition 2.14. A G-graded spectral sequence is a spectral sequence E = (Er, ∂r)r≥0 such
that each page (Er, ∂r) is a G-graded differential module and the given isomorphisms
HEr → Er+1 are morphisms of G-graded modules.
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2 Introduction

If E is a G-graded spectral sequence, setting

Bg
r := Br ∩ Eg

0 ⊂ Zr ∩ Eg
0 =: Zg

r

for all 0 ≤ r ≤ ∞ and g ∈ G gives G-gradings on the modules Br and Zr such that the
morphisms πr : Zr → Er are morphisms of graded G-modules for all r ≥ 0. We give E∞ a
G-grading by defining Eg

∞ := [Zg
∞]E∞ for all g ∈ G, which makes

0 → B∞ → Z∞ → E∞ → 0

a short exact sequence of G-graded modules. Finally, we invite the reader to define morphisms
of G-graded spectral sequences, and check that they induces morphisms of G-graded modules
on all the Br, Zr and E∞.
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2 Introduction

2.3 Filtrations

Definition 2.15.

(a) A (descending or cohomological) filtration F on a module C is a sequence (F pC)p∈Z of
submodules F pC ⊂ C such that for all p ∈ Z we have F pC ⊃ F p+1C. The filtration
is usually denoted by writing

F−∞C := C ⊃ · · · ⊃ F pC ⊃ F p+1C ⊃ · · · .

A filtered module is a pair (C,F ), where C is a module and F a filtration on C.
(b) A morphism of filtered modules f : C → C ′ is a morphism f respecting the filtrations,

i.e., such that for all p ∈ Z we have f(F pC) ⊂ F pC ′.

More generally, we can also define filtrations indexed by totally ordered abelian groups,
or morphisms that alter the filtering degree, but we will not need these notions in what follows.
Given a filtered module C, the graded module GrC associated to C is the Z-graded module
defined by

GrC =
⊕
p∈Z

GrpC where GrpC = F pC/F p+1C for p ∈ Z.

A morphism F : C → C ′ of filtered modules induces a morphism of Gr f : GrC → GrC ′ of the
associated graded modules.

Finally, we can combine Definitions 2.1 and 2.15 to arrive at

Definition 2.16.

(a) A filtered differential module is a pair (C, ∂), where C is a filtered module and ∂ :
C → C is an endomorphism of filtered modules such that ∂2 = 0.

(b) A morphism f : (C, ∂) → (C ′, ∂′) of filtered differential modules is a morphism f :
C → C ′ that is both a morphism of differential modules and of filtered modules.

Similarly, one can define filtered spectral sequences, although we will not need this
notion either.

Remark 2.17. If C is a filtered differential module, then (F pC, ∂|F pC) is a differential module
for each p ∈ Z, and and the inclusion F pC ↪→ F qC is a morphism of differential modules for
each p ≥ q ≥ −∞, yielding maps HF pC → HF qC. From this, we get two things:

(a) The associated graded module GrC acquires the structure of a Z-graded differential mod-
ule of degree 0 such that for all p ∈ Z we have

HpGrC = H(F pC/F p+1C).

(b) We get filtrations on B,Z and HC via

F pB := B ∩ F pC ⊂ Z ∩ F pC =: F pZ and F pHC := im(HF pC → HC)

for each p ∈ Z.4 The graded module associated to HC is then given by

GrpHC :=
im(HF pC → HC)

im(HF p+1C → HC)
∼=

F pZ

F pB + F p+1Z

for p ∈ Z.
4Note that the maps HF pC → HC need not be injective in general, and also that F pZ = Z(∂|FpC) and

F pB ⊃ B(∂|FpC), but the last containment can be proper in general.
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2 Introduction

We may now ask: given a filtered differential module C, what is the relationship be-
tween the Z-graded modules H•GrC and Gr•HC? In general, there need not be a map between
them in any direction; however, it seems implausible that they are not related altogether. Let’s
first examine a special case.

Example 2.18. A short exact sequence 0 → C ′ → C → C ′′ → 0 of differential modules induces
a two-step filtration

C ⊃ C ′ ⊃ 0

on C via the identifications mentioned in Remark 2.4 (i.e., F pC = C for p ≤ 0, and F 1C = C ′,
and F pC = 0 for p ≥ 2). In this case, we have in degrees 0 and 1 when read from left to right
(check!) that

GrC = C ′′ ⊕ C ′,

HGrC = HC ′′ ⊕HC ′, and

GrHC =
HC

Im(HC ′ → HC)
⊕ Im(HC ′ → HC).

From this chart, the relationship between HGrC and GrHC becomes clear: Theorem 2.3 gives
us a map δ : H0GrC → H1GrC making (H•GrC, δ) a cochain complex with cohomology
GrHC.

In general, at least when the filtration on C is bounded and exhaustive (to be defined
soon), the correct answer to the above question is that there is a Z-graded spectral sequence E
such that

(a) for each r ≥ 0, we have deg ∂r = r (so, e.g., the E1 page is cochain complex),
(b) for r = 0 we have E0 = GrC with induced differentials, so that E1 = HGrC, and
(c) for r = ∞, we have an isomorphism E∞ ∼= GrHC.

In Example 2.18, this spectral sequence collapsed at the E2 page, i.e., we had E2
∼= E∞, and

the isomorphism E∞ ∼= GrHC was the content of Theorem 2.3. Our next goal is to prove this
general result; as we shall see, it is the key to understanding spectral sequences.
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2 Introduction

2.4 Product Structures: (Filtered) Differential Graded Algebras*
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3 Fundamental Spectral Sequences

3 Fundamental Spectral Sequences

3.1 Spectral Sequence associated to a Filtered Differential Module

Let C be a filtered differential module. Our goal is to produce a spectral sequence with E0 page
GrC and E∞ page GrHC. For this, for each pair of integers (p, r), let

Sp
r := {x ∈ F pC : ∂x ∈ F p+rC},

which is the collection of elements in F pC pushed r steps deep into the filtration by ∂.

Remark 3.1. It follows from the definition that

(a) for each p ∈ Z, we have Sp
r ⊃ F p+rC for all r ≥ 0 and Sp

r = F pC for all r ≤ 0.
(b) for each p, r ∈ Z, we have Sp

r ∩ F p+1C = Sp+1
r−1 , and

(c) for each p, r, s ∈ Z, we have ∂Sp
r ⊂ Sp+r

s .

The idea is that for each r ≥ 0, the submodule Sp
r behaves like the submodule of r-deep

cycles, and its image ∂Sp
r ⊂ Sp+r

r+1 is behaves the submodule of (r + 1)-deep coboundaries. To
make this precise, consider for each p ∈ Z and r ≥ 0 the submodules of GrpC defined by

Bp
r :=

∂Sp−r+1
r−1 + F p+1C

F p+1C
⊂ Sp

r + F p+1C

F p+1C
=: Zp

r ,

from which we have for each p ∈ Z that

0 = Bp
0 ⊂ Bp

1 ⊂ Bp
2 ⊂ · · · ⊂ Zp

2 ⊂ Zp
1 ⊂ Zp

0 = GrpC.

For each p ∈ Z and r ≥ 0, let

Ep
r :=

Zp
r

Bp
r

∼=
Sp
r + F p+1C

∂Sp−r+1
r−1 + F p+1C

∼=
Sp
r

∂Sp−r+1
r−1 + Sp+1

r−1

,

where in the last isomorphism we are using Remark 3.1(b), and define the map ∂p
r : Ep

r → Ep+r
r

by the diagram

0 ∂Sp−r+1
r−1 + Sp+1

r−1 Sp
r Ep

r 0

0 ∂Sp+1
r−1 + Sp+r+1

r−1 Sp+r
r Ep+r

r 0,

∂ ∂ ∂p
r

where the rows are short exact; in English, ∂p
r is given by the recipe “pick representative in Sp

r ,
take ∂, and then take the class”. Let πp

r : Zp
r → Ep

r be the canonical surjection. Then it follows
immediately for each r ≥ 0 that ∂2

r = 0 and for each p ∈ Z that

Bp
r+1 = (πp

r )
−1B(∂p

r ) and Zp
r+1 = (πp

r )
−1Z(∂p

r ),

giving us a Z-graded spectral sequence E satisfying deg ∂r = r for each r ≥ 0. This is the
required spectral sequence, and this is what allows us to relate H•GrC and Gr•HC. Precisely,
we have

Theorem 3.2 (The Fundamental Theorem of Spectral Sequences). Given a filtered differen-
tial module C, there is a Z-graded spectral sequence E = (E•

r , ∂r)r≥0, natural in C, such
that

(a) for each r ≥ 0, we have deg ∂r = r, and
(b) for r = 0 we have E0 = Gr•C with the induced differentials (so that E•

1 = H•GrC).

12



3 Fundamental Spectral Sequences

If, further, the filtration on C is both

(i) bounded, i.e., there is a p0 ∈ Z such that F pC = 0 for all p ≥ p0, and
(ii) exhaustive, i.e., such that

⋃
p∈Z F

pC = C,

then

(c) the sequence E converges to Gr•HC, i.e., E•
∞

∼= Gr•HC.

Further, the convergence is natural in C.

In this case, we say that the sequence E abuts to HC, and write E ⇒ HC.

Proof. All that remains to be shown is (c). The conditions (i) and (ii) imply, respectively, that
for each p ∈ Z we have

Zp
∞ =

F pZ + F p+1C

F p+1C
and Bp

∞ =
F pB + F p+1C

F p+1C
, (1)

and so

Ep
∞ =

Zp
∞

Bp
∞

∼=
F pZ + F p+1C

F pB + F p+1C
∼=

F pZ

F pB + F p+1Z
∼= GrpHC.

This isomorphism is given by the recipe “lift to F pZ and take the image,” and is therefore
natural in C. ■

That’s it! That’s all there is to spectral sequences; everything else is addendum. As
observed before, Theorem 3.2 is nothing but a (massive) generalization of Theorem 2.3.
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3 Fundamental Spectral Sequences

3.2 Spectral Sequence associated to a Filtered Cochain Complex

We can combine definitions 2.10 and 2.15 as well, at least for G = Z: if C is a filtered, Z-graded
module, then for each p, q ∈ Z, we define F p,qC := F pCp+q, so that for a fixed n ∈ Z, the
sequence of submodules

Cn ⊃ · · · ⊃ F p,n−pC ⊃ F p+1,n−p−1C ⊃ · · ·

gives a filtration on Cn. In this case, we define the bigraded5 module associated to C, still
denoted by GrC, by setting

Grp,q C := GrpCp+q = F p,qC/F p+1,q−1C

for p, q ∈ Z. Similarly, we can combine all three of definitions 2.1, 2.10, 2.15, to arrive at the
definition of a filtered cochain complex C: this is a filtered, Z-graded differential module with
differential of degree deg ∂ = 1 preserving the filtration. In this case, the associated graded
module to HC is also a filtered, Z-graded module with

Grp,q HC =
F pHp+qC

F p+1Hp+qC
=

im(Hp+qF pC → Hp+qC)

im(Hp+qF p+1C → Hp+qC)
.

In this case, if for each p, q ∈ Z and r ≥ 0, we set

Sp,q
r = {x ∈ F p,qC : ∂x ∈ F p+r,q−r+1C},

and let

Bp,q
r :=

∂Sp−r+1,q+r−2
r−1 + F p+1,q−1C

F p+1,q−1C
⊂ Sp,q

r + F p+1,q−1C

F p+1,q−1C
=: Zp,q

r , and Ep,q
r =

Zp,q
r

Bp,q
r

,

then we obtain a bigrading on the spectral sequence E from the previous section. (The reader
is encouraged to convince themselves that the bigrading here, which seems confusing at first
glance, is the only natural one possible.) The map ∂p,q

r has to shift p degree by r as before,
but only increase the “total” p+ q degree by 1, so that ∂p,q

r : Ep,q
r → Ep+r,q−r+1.The analogous

result to Theorem 3.2 is then

Theorem 3.3 (The Fundamental Theorem of Spectral Sequences, Bigraded Version). Given a
filtered cochain complex C, there is a bigraded spectral sequence E = (Er, ∂r)r≥0, natural
in C, such that

(a) for each r ≥ 0, we have deg ∂r = (r,−r + 1), and
(b) for r = 0, we have E•,•

0 = Gr•,•C with induced (“vertical”) differentials.

If, further, the filtration on C is both

(i) locally bounded, i.e., for each n ∈ Z there is an r0 ≥ 0 such that F rCn = 0 for all
r ≥ r0, and

(ii) locally exhaustive, i.e., such that for each n ∈ Z we have
⋃

r∈Z F
rCn = Cn,

then

(c) the sequence E converges to Gr•,•HC, i.e., E•,•
∞ ∼= Gr•,•HC.

Finally, this convergence is natural in C.

5Here, and in what follows, “bigraded” simply means graded by G = Z⊕ Z.
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3 Fundamental Spectral Sequences

Proof. The proof is identical to that of Theorem 3.2, since the equalities similar to (1) are
obtained for a fixed pair (p, q) by applying the new conditions (i) and (ii) to n = p+ q + 1 and
n = p + q − 1 respectively–this is why it suffices to work with locally bounded and exhaustive
filtrations. ■
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3 Fundamental Spectral Sequences

3.3 Spectral Sequence(s) associated to a Double Complex

One important context in which filtered cochain complexes arise is through double complexes.
Let K•,• be a double complex with differentials ∂v and ∂h of bidegrees (1, 0) and (0, 1) satisfying

∂2
v = ∂2

h = (∂v + ∂h)
2 = 0.

Then the total cochain complex (Tot(K)•, ∂) defined by

Tot(K)n =
⊕

p+q=n

Kp,q

with differential ∂ = ∂v + ∂h of degree deg ∂ = 1 admits a filtration by taking

F r Tot(K)n =
⊕

p+q=n
p≥r

Kp,q

with Gr•,•Tot(K) ∼= K•,•, called for obvious reasons the filtration by columns. This filtered
cochain complex gives rise to a bigraded spectral sequence (E•,•

r )r≥0 thanks to Theorem 3.3,
with

Bp,q
r ⊂ Zp,q

r ⊂ Kp,q

and differentials ∂p,q
r : Ep,q

r → Ep+r,q−r+1
r . The zeroth page E0 is simplyK itself with the vertical

differential ∂v; the first page is the vertical cohomology HvK with the horizontal differential
induced by ∂h. In general, we have have for r ≥ 1 that

Zp,q
r = {x ∈ Kp,q : ∂vx = 0 and for 1 ≤ j < r there are xj ∈ Kp+j,q−j such that

∂hxj−1 = ∂vxj , where x0 = x}

and

Bp,q
r = {x ∈ Kp,q : for 1 ≤ j < r there are yj ∈ Kp−r+j,q+r−1−j such that

∂hyj−1 = ∂vyj , where y0 = 0, and ∂hyr−1 = x+ ∂vz for some z ∈ Kp,q−1},

with the map ∂p,q
r : Ep,q

r → Ep+r,q−r+1
r given by the recipe: lift [x] ∈ Ep,q

r to x ∈ Zp,q
r ,

pick a sequence (xj)
r−1
j=1 as described, and then ∂p,q

r [x] = [(−1)r−1∂hxr−1] in Ep+r,q−r+1
r .

Figure 1: A pictorial representation of the differential ∂2,3
3 : E2,3

3 → E5,1
3 for a first quadrant

double complex. Each color denotes a fixed total degree, and the saturation indicates how deep
we are in the filtration.

One sufficient condition that implies the convergence requirements of Theorem 3.3 is
that K•,• be a first quadrant double complex, i.e., Kp,q = 0 if p < 0 or q < 0. We have proven

16



3 Fundamental Spectral Sequences

Theorem 3.4 (Spectral Sequence of a Double Complex I). Given a double complex (K•,•, ∂v, ∂h),
there is a bigraded spectral sequence E = (Er, ∂r)r≥0, natural in K, such that

(a) for each r ≥ 0, we have deg ∂r = (r,−r + 1),
(b) for r = 0, 1, 2, the pages Er can be described as

Ep,q
0 = Kp,q and ∂p,q

0 = ∂v,

Ep,q
1 = Hq

v(K
p,•) and ∂p,q

1 = [∂h], and

Ep,q
2 = Hp

hH
q
v(K).

If, further, K is a first quadrant double complex, then

(c) E is a first quadrant spectral sequence that abuts to H•Tot(K).

The theorem is often expressed by writing

Hp
hH

q
v(K) ⇒ Hp+q Tot(K).

The abutment statement means that, once the spectral sequence mechanism has “run”, then
for each n ≥ 0, we can recover HnTot(K) by working “right to left”, namely starting with En,0

∞ ,
which is a subobject of HnTot(K), and successively solving extension problems moving left and
upwards along the diagonal. In other words,

FnHnTot(K) = En,0
∞ ,

and for each integer j with 1 ≤ j ≤ n, there is a short exact sequence

0 → Fn−j+1HnTot(K) → Fn−jHnTot(K) → En−j,j
∞ → 0,

with F 0HnTot(K) = HnTot(K) at the last stage.

Remark 3.5. If K is a first quadrant double complex, then for each fixed (p, q), the module Ep,q
∞

is obtained already at a finite stage; namely, if r > p then Ep,q
r ⊃ Ep,q

r+1 and if r > q + 1, then
Ep,q

r ↠ Ep,q
r+1, so that in any case Ep,q

max{p+1,q+2}
∼= Ep,q

∞ .

Further, we get by taking q = 0 that for each n we have

En,0
2 ↠ En,0

3 ↠ · · · ↠ En,0
n+1 →

∼ En,0
∞ ,

so that the “x-axis” starting on the E2 pages consists of progressive smaller quotient objects
leading to the first graded piece. The resulting map enB : En,0

2 ↠ En,0
∞ ↪→ HnTot(K), called the

base edge map,6 can be described as follows: for any n ≥ 0 and r ≥ 2, we have

Zn,0
r = Zn(FnTot(K)) = {x ∈ Kn,0 : ∂vx = ∂hx = 0} ⊂ ZnTot(K).

The edge map enB is therefore induced by

Zn,0
2 ZnFnTot(K) ZnTot(K)

En,0
2 HnTot(K),

∼

6For an explanation of the terminology, see §4.6.1.
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3 Fundamental Spectral Sequences

or in English by the recipe “lift to Zn,0
2 and take image in HnTot(K)”.

Similarly, we get by taking p = 0 that for each n we have

E0,n
1 ⊃ E0,n

2 ⊃ · · · ⊃ E0,n
n+2 = E0,n

∞ ,

so that “y-axis” starting on the E1 page consists of progressively smaller subobjects leading to
the final graded piece. The resulting map enF : HnTot(K) ↠ E0,n

∞ ↪→ E0,n
2 , called the fiber edge

map, can described by the diagram

ZnTot(K)
ZnTot(K) + F 1Tot(K)n

F 1Tot(K)n
= Z0,n

∞ Z0,n
2

HnTot(K) E0,n
2 ,

or again in English by “lift to ZnTot(K), take the piece in K0,n; this is in Z0,n
2 , and now take

the image in E0,n
2 ”.

This “finite-stage stabilization” property of spectral sequences arising from first quad-
rant double complexes allows us to write down this extension problem of recovering HnTot(K)
for low n explicitly as the exact sequence of low degree terms. Namely,

Proposition 3.6 (Low Degree Exact Sequence). Given a first quadrant double complex K
and the clockwise spectral sequence E arising from it, there is an exact sequence

0 → E1,0
2

e1B−→ H1Tot(K)
e1F−→ E0,1

2

∂0,1
2−−→ E2,0

2

e2B−→ ker(H2Tot(K)
e2F−→ E0,2

2 ) → E1,1
2

∂1,1
2−−→ E3,0

2 .
(2)

For r ≥ 2, the map ∂0,r−1
r : E0,r−1

r → Er,0
r , is called the transgression map, and is a

map from a subobject of E0,r−1
2 to a quotient object of Er,0

2 .

Proof. Follows from stitching together the exact sequences

0 → E1,0
2

e1B−→ H1TotK → E0,1
∞ → 0,

0 → E0,1
∞ → E0,1

2

∂0,1
2−−→ E2,0

2 → E2,0
∞ → 0,

0 → E2,0
∞ → F 2H2TotK → E1,1

3 → 0,

0 → F 2H2TotK → H2TotK → E0,2
∞ → 0,

0 → E1,1
3 → E1,1

2

∂1,1
2−−→ E3,0

2 ,

along with noting that in expression of e2F as the composite H2TotK → E0,2
∞ ↪→ E0,2

2 , the latter

map is injective, so that the kernel of e2F is the same as that of H2TotK → E0,2
∞ . I will leave it

to the reader to fill in the details and verify that the maps are as claimed. ■

Clearly, reversing the roles of p, q produces another filtration, namely one by rows, and
again gives rise to a bigraded sequence, with differentials ∂r of bidegree (−r + 1, r). From this
we get

18



3 Fundamental Spectral Sequences

Theorem 3.7 (Spectral Sequence of a Double Complex II). Given a double complex (K•,•, ∂v, ∂h),
there is a bigraded spectral sequence E = (Er, ∂r)r≥0, natural in K, such that

(a) for each r ≥ 0, we have deg ∂r = (−r + 1, r),
(b) for r = 0, 1, 2, the pages Er can be described as

Ep,q
0 = Kp,q and ∂p,q

0 = ∂h,

Ep,q
1 = Hp

h(K
•,q) and ∂p,q

1 = [∂v], and

Ep,q
2 = Hq

vH
p
h(K).

If, further, K is a first quadrant double complex, then

(c) E is a first quadrant spectral sequence that abuts to H•Tot(K).

This theorem is often expressed by writing

Hq
vH

p
h(K) ⇒ Hp+q TotK.

The abutment statement means now that to recover HnTotK, we would work “left to right”.
The rest of the above theory–all of Remark 3.5 and Proposition 3.6–works similarly after swap-
ping the indices p and q everywhere.

When we need to distinguish these, we’ll call the sequence arising from the filtra-
tion by columns the clockwise spectral sequence and denote it by

(
(c)E•,•

r , (c)∂•,•
r

)
r≥0

and the
sequence arising from the filtration by rows the counterclockwise spectral sequence, and denote
it by

(
(r)E•,•

r , (r)∂•,•
r

)
r≥0

. Both of these sequences abut to the same object–namely the total
cohomology H•TotK–and the power of spectral sequences often lies in making the resulting
comparisons.
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3 Fundamental Spectral Sequences

3.4 Product Structures in Spectral Sequences*

From filtered DGA.

20



4 Examples

4 Examples

4.1 Some Named Algebraic Lemmas

In this section, we will use the above theory to easily deduce some well-known named lemmas,
other proofs of which using diagram chasing are quite tedious and messy.

4.1.1 Snake Lemma

The first standard consequence is the Snake Lemma.

Lemma 4.1 (Snake). Given a commutative diagram

0 A′ B′ C ′

A B C 0

f ′ g′

f

α β

g

γ

with exact rows, there is an exact sequence

0 → ker f → kerα
[f ]−→ kerβ

[g]−→ ker γ
δ−→ cokerα

[f ′]−−→ cokerβ
[g′]−−→ coker γ → coker g′ → 0.

The map ker f → kerα is the inclusion map, and the map coker γ → coker g′ comes from the
inclusion γ(C) ⊂ g′(B′). The map [f ] is the map induced by f , and similarly for g, f ′, and g′.

Proof. Consider the above diagram as a first quadrant double complex with A in position (0, 0).
On the one hand, the associated clockwise spectral sequence has E1 page

cokerα cokerβ coker γ

kerα kerβ ker γ

[f ′] [g′]

[f ] [g]

and E2 page

ker[f ′] ∗ coker[g′]

ker[f ] ∗ coker[g]

∂

for some map ∂ and some objects in the places marked with a ∗. The only difference in the
E3 = E∞ page is that ker[f ′] (resp. coker[g]) gets replaced by ker ∂ (resp. coker ∂). On the other
hand, the associated counterclockwise spectral sequence has all zeroes on the E1 = E∞ page
except for ker f at (0, 0) and coker g′ at (2, 1). Comparing degree n terms in total cohomology
for n = 0, 1, 2, 3 yields, respectively that

0. ker[f ] = ker f ,7

7Here and below, an equality sign means that the natural map between the two objects on either side is an
isomorphism.
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1. the lower entry labelled ∗ is zero and ∂ is a monomorphism,
2. the upper entry labelled ∗ is zero and ∂ is an epimorphism, and
3. coker[g′] = coker g′.

In all, ∂ is an isomorphism; let δ denote the composite ker γ ↠ coker[g]
∂−1

−−→ ker[f ′] ↪→ cokerα.
The result then follows from putting all the above results together. ■

We leave to the reader the task of checking that “snake map” δ constructed above
agrees with the one they may have seen constructed in a different way (say using diagram-
chasing).

Corollary 4.2 (Kernel-Cokernel Exact Sequence). Let A
f−→ B

g−→ C be a composable pair of
morphisms. Then there is an exact sequence

0 → ker f → ker gf
[f ]−→ ker g → coker f

[g]−→ coker gf → coker g → 0.

Again, the square brackets denote induced maps. The map ker g → coker f is the composite
ker g ↪→ B ↠ coker f .

Proof. Apply Lemma 4.1 to

0 C C 0

A B coker f 0.

idC

f

gf g

It remains to identify the “snake map” δ of Lemma 4.1 with the map [g] : coker f → coker gf
induced by g, a task we leave to the reader. ■

Remark 4.3. The Kernel-Cokernel Exact Sequence is responsible for the additivity of the Her-
brand quotient as well as of the index of Fredholm operators.

4.1.2 Weak Four and Five Lemmas

Lemma 4.4 (Weak Four). Suppose are given a commutative diagram

A′ B′ C ′ D

A B C D

f ′ g′ h′

α

f

β

g

γ

h

δ

with exact rows.

(a) If α is epic, and β and δ monic, then γ is monic.
(b) If δ is monic, and α and γ are epic, then β is epic.

This can be deduced directly from diagram chasing or from repeated applications of
the Snake Lemma (Lemma 4.1)–both proofs left to the reader–but there is a better way to argue
directly using spectral sequences as follows.
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Proof. We’ll prove (a); then (b) follows either by duality or by a similar argument. Consider
the above diagram as a first quadrant double complex with A at position (0, 0). On the one
hand, the clockwise spectral sequence has E1 page

0 cokerβ coker γ coker δ

kerα 0 ker γ 0,

[g′] [h′]

where again square brackets denote induced maps. There are no further differentials coming
in or out of the entry ker γ in position (2, 0), and hence E2,0

∞ = ker γ. On the other hand, the
counterclockwise spectral sequence evidently has zeroes at the positions that could potentially
contribute to total cohomology in degree 2, and so this forces ker γ = 0. ■

Corollary 4.5 (Five Lemma). Suppose we are given a commutative diagram

A′ B′ C ′ D′ E′

A B C D E

f ′ g′ h′ i′

α

f

β

g

γ

h

δ

i

ε

with exact rows. If β and δ are isomorphisms, α is epic, and ε is mono, then γ is an
isomorphism.

Proof. Follows from two applications of Lemma 4.4, or directly via a very similar (and in fact
easier) spectral sequence argument. ■

4.1.3 The n2-Lemma for n ≥ 2

Similarly, we can now prove

Lemma 4.6 (The n2-Lemma). Let n ∈ Z≥2, and suppose we are given a commutative n×n
grid with rows and columns complexes, and all rows, and all columns but possibly one,
exact. Then all rows and columns are exact.

The same result holds (say by symmetry) all columns, and all rows but possibly one, are exact.

Proof. Immediate from comparing the abutment of the clockwise and counterclockwise spectral
sequences. ■

In fact, the spectral sequence machinery also gives us the tools to very easily prove
Maclane’s variations of the nine lemma.

Lemma 4.7. Sharp

Lemma 4.8. Symmetric

It is left up to the reader to come up with more such lemmas and to prove them using
the machinery of spectral sequences.
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4.2 Spectral Sequences Arising from a Filration on the Space

4.2.1 Equivalence of Cellular and Singular Homology

4.2.2 Serre Spectral Sequence via CW Complexes

As an example, we compute the cohomology of K(Z, 3).
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4.3 Künneth and Universal Coefficient Spectral Sequences
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4.4 Čech-de Rham Spectral Sequence

4.4.1 Mayer-Vietoris Sequence

4.4.2 An Application to Symplectic Topology
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4.5 Frölicher Spectral Sequences

4.5.1 Compact Kähler Manifolds

4.5.2 Stein Manifolds
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4.6 Grothendieck Spectral Sequence

4.6.1 Leray-Serre Spectral Sequence

4.6.2 Čech-Derived Functor Cohomology Spectral Sequence

4.6.3 Lyndon-Hochschild-Serre Spectral Sequence
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