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1 Introduction and Acknowledgements

This is an introductory course on group theory, with a category-theoretic flavor. The primary text for
the course is Abstract Algebra by Dummit and Foote. It is based partly on the course Math 55 taught
at Harvard each year. I make no claims to the originality of the content presented, and I want to thank
my teachers, Professor Harris in particular, from whom I learned the present material. Any mistakes in
this material, and there will be many, are due to me, and to me alone. Please keep me notified about
any and all mistakes you spot.
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2 A Crash Course in Logic and Set Theory

2.1 Preliminaries

We take as primitive the three concepts:
(a) The notion of containment, i.e. what we mean by a P A.
(b) The existence of the empty set, denoted by H.
(c) For any statement p, either it is true, denoted by p ” T, or false, denoted by p ” F, but not both.

The following are logical connectives:
(a) Conjunction: the logical and, denoted by ^.
(b) Disjunction: the logical or, denoted by _. In logic, this is always the inclusive or.
(c) Exclusive disjunction: the logical xor, denoted by ‘.
(d) Negation: the logical not, denoted by  . The negation is involutary:  p pq ” p.
(e) Implication: the logical if-then, denoted by ñ. By definition, pñ q ” p pq _ q.
(f) Equivalence: the logical if and only if or iff, denoted by ô. Note pô q ” ppñ qq ^ pq ñ pq.

Claim 1 (De Morgan’s Laws) — These are the two claims:
(a) The negation of a disjunction is the conjunction of the negations, i.e.  pp_qq ” p pq^p qq.
(b) The negation of a conjunction is the disjunction of the negations, i.e.  pp^qq ” p pq_p qq.

Example 1

For x P R, the statement px2 ă 0 ñ x “ 23q ” T. Such a statement is called vacuously true.

For an implication s ” p ñ q, we call  p ñ  q the reverse of s, q ñ p the converse of s, and
 q ñ  p the contrapositive of s. It is a standard result that pñ q ”  q ñ  p, i.e. an implication is
true iff its contrapositive is.

The following are logical quantifiers:
(a) The universal quantifier, denoted by @. By definition, @a P A : ppaq ” pa P Aq ñ ppaq.
(b) The existential quantifier, denoted by D. By definition, Da P A : ppaq ”  p@a P A :  ppaqq.
(c) The uniqueness quantifier, denoted by D!. By definition,

D!a P A : ppaq ” pDa P A : ppaqq ^ ppa, b P A : ppaq ^ ppbqq ñ a “ bq.

The following are standard:
(a) Non-containment: a R A iff  pa P Aq.
(b) Set-difference: a P ArB iff a P A^ a R B.
(c) Subset: Set A is contained in or a subset of set B, written A Ď B, if @a P A : a P B.
(d) Proper subset: A Ă B (or A Ĺ Bq if p@a P A : a P Bq ^ pDb P B rAq.
(e) Union: AYB :“ ta : a P A_ a P Bu.
(f) Intersection: AXB :“ ta : a P A^ a P Bu.
(g) Symmetric Difference: A∆B :“ pArBq Y pB rAq “ pAYBqr pAXBq.

Definition 1. For a collection A of sets, the union
ď

A “
ď

APA

A :“ ta : pDA P A : a P Aqu, and

for any nonempty collection A , the intersection
č

A “
č

APA

A :“ ta : p@A P A : a P Aqu.

Think about why we had to include nonempty. Have you heard of the concept of a universal set ξ?

2.2 Cartesian Products, Relations and Functions

Define the ordered pair pa, bq :“ ttau, ta, buu. Therefore, pa, bq “ pc, dq ô a “ c ^ b “ d. Then, define
the cartesian product AˆB :“ tpa, bq : a P A^ b P Bu.

3



2 A Crash Course in Logic and Set Theory

Definition 2. A relation R between elements of set A and set B is any subset R Ď A ˆ B. If
pa, bq P R, we say a is related to b, and write aRb.

We often have to deal with three special kinds of relations: functions, equivalence relations, and order
relations.

Definition 3. A relation f Ď AˆB is said to be a function or a mapping, written f : AÑ B, if
(a) (Definition) @a P A : Db P B : afb, and
(b) (Uniqueness of Definition) @a P A,@b, b1 P B : afb^ afb1 ñ b “ b1.

Usually, for functions, we denote afb by fpaq “ b, and b is called the value of f at a.1 For a function
f : AÑ B, A is called the domain of definition or simply domain of f , and B is called the codomain
of f . For a subset S Ď A, the set fpSq :“ tfpsq : s P Su Ď B is called the image of S under f . The set
fpAq Ď B is called the image of f .

Example 2

The function f : R Ñ R given by fpxq “ x2 is distinct from the function g : Rě0 Ñ Rě0 given by
gpxq “ x2. For instance, the latter function has an inverse, but the former doesn’t.

For any subset T Ď B, the set f´1pT q “ ta P A : fpaq P T u Ď A is called the pre-image of T . For
any element b P B, the pre-image f´1ptbuq is, by abuse of notation, written as f´1pbq, and is called the
fiber over b. This will be important when we later talk about fibered products and fibered sums in a
category.

Definition 4. Two important classes of functions:
(a) A function f is said to be injective, written f : A ãÑ B, if @a, a1 P A : fpaq “ fpa1q ñ a “ a1.
(b) A function f is said to be surjective, written f : A� B, if @b P B : Da P A : fpaq “ b.
(c) A function f is said to be bijective, written f : AÑ„ B, if it is both injective and surjective.

The following is a handy characterization of bijective functions:

Claim 2 — A function f : AÑ B is bijective iff there is a function g : B Ñ A such that g˝f “ idA
and f ˝ g “ idB .

Proof. If f is bijective, then take g “ f´1. For the converse, suppose that f and g are as described. If
fpaq “ fpa1q, then applying g to both sides, g ˝ fpaq “ g ˝ fpa1q ñ a “ a1 so that f is injective. If b P B,
then gpaq P A : f ˝ gpaq “ b, so f is surjective. �

The set of all functions f : A Ñ B is denoted by BA. (Think about why.) For the set 2 :“ t0, 1u, the
set 2A is called the power set of A, written often as ℘pAq.

Example 3

The functions π1 : AˆB Ñ A given by π1pa, bq “ a and π2 : AˆB Ñ B given by π2pa, bq “ b are
called the projection maps onto the first and second factors respectively. If none of A and B are
empty, then these are surjective.

Think about what happens in the case either of A and B is empty.

2.3 Binary Relations

1Observe that we are allowed to write fpaq “ b without violating the transitivity of equality only because of condition
(b). Something like ln : Cˆ Ñ C is not actually a function, and that’s why you get problems like 0 “ ln 1 “ 2πı if you
try to write ln z “ w. In this case, ln is what is called a multi-valued or generalized function. Since such generalized
functions arise primarily in complex analysis, we will not study them here.
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2 A Crash Course in Logic and Set Theory

Definition 5. A binary relation ‹ on a set A is a relation ‹ Ď A2 :“ AˆA.

Example 4

The diagonal ∆ :“ tpa, aq : a P Au Ď A2 is the binary relation corresponding to equality.

2.3.1 Equivalence Relations

Definition 6. A binary relation „ on A is an equivalence relation if it satisfies the following
axioms:

(a) (Reflexivity) @a P A : a „ a.
(b) (Symmetry) @a, b P A : a „ bñ b „ a.
(c) (Transitivity) @a, b, c P A : pa „ b^ b „ cq ñ a „ c.

If a „ b, then a is said to be equivalent to b.

Equivalently, an equivalence relation is a subset Φ Ď A2 s.t.
(a) The diagonal ∆ Ď Φ.
(b) It is preserved under the involution σ : A2 Ñ A2 that swaps factors pa, bq ÞÑ pb, aq, i.e. σpΦq “ Φ.

(c) If we have the projection maps as shown:

A3

A2 A2 A2

π23 π13
π12 then π13pπ

´1
12 ΦXπ´1

23 Φq Ď Φ.

If „ is an equivalence relation on A, then for any a, the set tx P A : x „ au is called the equivalence
class of a under „. If C is an equivalence class, any element a P C is called a representative of the
class C. Two equivalence classes are either disjoint or equal, and so they form a partition of A.

Definition 7. A partition of A is any collection A “ tAi : i P Iu s.t.
(a) (Nonempty Subsets) @i P I : H Ĺ Ai Ď A.
(b) (Cover)

Ť

iPI Ai “ A.
(c) (Pairwise Disjoint) @i, j P I : i ‰ j ñ Ai XAj “ H.

If A “ tAi : i P Iu is a partition of A, then we write A “
š

iPI Ai.

Example 5

If ω1, ω2 P C, then the relation z „ w if Dm,n P Z : z ´ w “ mω1 ` nω2 is an equivalence relation
on C, written z ” w pmod Λq, where Λ “ Zxω1, ω2y. Two complex numbers ω1, ω2 P C are said to
be linearly independent over R if for λ1, λ2 P R, λ1ω1 ` λ2ω2 “ 0 ñ λ1 “ λ2 “ 0. If ω1 and ω2

are linearly independent over R, then they induce a partition of C into parallelograms.

2.3.2 Order Relations and Posets

Definition 8. A binary relation ĺ on a set A is called a (non-strict) partial order relation if
it satisfies the following axioms:

(a) (Reflexivity) @a P A : a ĺ a.
(b) (Antisymmetry) @a, b P A : pa ĺ bq ^ pb ĺ aq ñ a “ b.
(c) (Transitivity) @a, b, c P A : pa ĺ b^ b ĺ cq ñ a ĺ c.

An ordered pair pA,ĺq of a set A along with a specified partial order ĺ on A is called a partially
ordered set or a poset.

5



2 A Crash Course in Logic and Set Theory

Definition 9. A partial order ĺ on a set A is called a total order if in addition to the above it
satisfies the axiom:

(d) (Comparability) @a, b P A : a ĺ b_ b ĺ a.
An ordered pair pA,ĺq of a set and a total order on A is called a totally ordered set.

Example 6

pR,ďq is a totally ordered set. For any set A, the power set ℘pAq ordered by inclusion Ď is a poset.
As soon as |A| ą 2, p℘pAq,Ďq is not a totally ordered set.

2.4 Infinite Cartesian Products

Let A be a nonempty collection of sets. An indexing function is a surjection f : I � A for some
set I, called the index set. Given i P I, denote the set fpiq by Ai. Then A “ tAi : i P Iu is called an
indexed family of sets.

The most common index sets are the sets of the form rns :“ t1, 2, ¨ ¨ ¨ , nu and the set N of all positive
integers. Note that in this course, we let N :“ Zą0. Note that some people define it with ě 0; it is mostly
a matter of preference. We then define a tuple.

Definition 10. Let n P N. Given a set X, define an n-tuple of elements of X to be a function
x : rns Ñ X. If x is an n-tuple, we denote xpiq by xi, and call it the ith coordinate of x, and write
x “ px1, . . . , xnq.

Definition 11. Let A “ tA1, . . . , Anu be a family of sets indexed by rns. Let X “
Ťn
i“1Ai “

Ť

A .
Then the cartesian product of this family, denoted by

śn
i“1Ai or A1 ˆ ¨ ¨ ¨ ˆAn to be the set of

n-tuples px1, ¨ ¨ ¨ , xnq s.t. @i P rns, xi P Ai.

This motivates the following general definition:

Definition 12. Let A be a family of sets indexed by I. Let X “
Ť

iPI Ai. Then the cartesian
product of this family, denoted by

ś

iPI Ai is the set of functions x : I Ñ X s.t. @i P I, xi :“ xpiq P
Ai. We define the projection maps πα :

ś

iPI Ai Ñ Aα by x ÞÑ xα.

As we shall later see, this is the categorical product in the category pSetq.

2.5 The Axiom of Choice

Everyone’s heard of the Axiom of Choice. Everyone’s scared of it. No one actually knows what it’s
actually about. Let’s figure out. It turns out, it is closely related to the infinite cartesian products we
were talking about.

Let us set up again. Let A be a nonempty collection of nonempty sets. The cartesian product
ś

A
can equivalently be thought of as the set of functions c : A Ñ

Ť

A such that @A P A , cpAq P A. But
who’s to say that any such function exist at all? Well, duh: obviously, there are such functions–right?
For finite collections of finite sets: the answer is unamibiguously yes. This is called the axiom of finite
choice, and it accepted unequivocally by all mathematicians. Yet for infinite collections and sets, the
answer is not so clear. This innocent-seeming question, as it turns out, has far-reaching philosophical
implications. At the turn on the 20th century, when there was a turmoil for establishing mathematics
on a firmer foundation, Zermelo and Fraenkel came up with a system of axioms for set theory, which
we denote by ZF. However, as fate would have it, it was later shown that this system of axioms cannot
answer the above question in the positive or negative–that this system admits models in which the
above question can have either answer, and as such can neither prove nor disprove the existence of such
functions. Therefore, we have to consider an additional axiom:

6



2 A Crash Course in Logic and Set Theory

Axiom (The Axiom of Choice)

Let A be a collection of nonempty sets. Then there is a choice function c : A Ñ
Ť

A s.t.
@A P A : cpAq P A.

The Zermelo-Fraenkel system of axioms, along with the new axiom of choice, is denoted by ZFC. It
turns out to be a much more powerful system than ZF alone. The reason this axiom is so controversial is
that if you accept it, you also have to accept a series of unintuitive results and unanticipated consequences
that follow from it. The most (in)famous of these is the Banach-Tarski ”Paradox”. There are too many
equivalent formulations of this axiom to discuss here, but we will talk about the two that are the most
common and easiest to apply. Suffice it to say that any time you’re making an “arbitrary choice of
infinitely many elements,” you’re probably invoking the Axiom of Choice.

A related concept is well-ordering:

Definition 13. Let pA,ďq be a totally ordered set and H Ĺ B Ď A any subset. An element b0 P B
is called the smallest element of B if @b P B : b0 ď b. A totally ordered set pA,ďq is said to be
well-ordered by ď if every nonempty subset contains a smallest element.

Observe that, by antisymmetry, if a smallest element exists, then it is unique, so we may speak of the
smallest element.

Example 7

It can be proven by induction that pN,ďq is well-ordered. (Try it!) On the other hand, pR,ďq
or even pQ,ďq is not well-ordered because the interval p0, 1q in either does not contain a smallest
element.

A completely unexpected equivalent formulation of the Axiom of Choice is:

Proposition 1 (Well-Ordering Principle)

If A is any set, then there is a total order relation on A that is a well-ordering.

The following is taken verbatim from Munkres: “This theorem was proved by Zermelo in 1904, and
it startled the mathematical world. There was considerable debate as to the correctness of the proof;
the lack of any constructive procedure for well-ordering an arbitrary uncountable set led many to be
skeptical. When the proof was analyzed closely, the only point at which it was found that there might be
some question was a construction involving an infinite number of arbitrary choices, that is, a construction
involving–the choice axiom.” The proof that the AoC implies the WOP is rather long, so we omit it. It
can be found in the exercises in Munkres.

Let’s look at another equivalent proposition formulated by Hausdorff in 1914.

Proposition 2 (Hausdorff Maximum Principle)

Let pA,ĺq be a poset. Then there is a maximal totally ordered subset of A. In other words, there
is a subset B Ď A that is totally ordered by ĺ and such that it is not contained in a larger totally
ordered subset of A.

One can give an intuitive proof: pick an arbitrary element of A and throw it in B. Next pick any
element of A and check if it is comparable with the element in your box: if so, put it in; else, throw it
away. Continue till you are done checking all elements of A. Then every element not in the box will be
noncomparable with at least one element in the box, because that is why it was thrown. Of course, the
problem with this “proof” is: how do you know if you are done checking? That is where the well-ordering
principle comes in!

Proof. If A is empty, we are done. Hence, assume A is nonempty. By the well-ordering principle, we
may bijectively index A by a nonempty well-ordered set J , writing A “ taα : α P Ju. Define a function
χ : J Ñ t0, 1u by saying χpαq “ 0 if we “toss aα away” and 1 if we “put aα in the box.” More

7
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2 A Crash Course in Logic and Set Theory

formally, by well-ordering, J has a smallest element, say α0. Define χpα0q “ 1 and for every α ą α0,
set χpαq “ 1 ô aα is comparable under ĺ to every element of taβ |β ă α ^ χpβq “ 1u. Then we
claim that B “ taα : χpαq “ 1u is a maximal simply ordered subset of A. To show this, assume that
α ‰ β : χpαq “ χpβq “ 1; WLOG assume that β ă α. Then β ă α ^ χpβq “ 1 along with χpαq “ 1
implies that aα is comparable to aβ–this proves that any two elements of B are comparable, so that B
is totally ordered. On the other hand, it is maximal because if Dη P J : aη is not in B but comparable to
every element of B, then χpηq “ 0 AND aη is comparable to every element of taβ |β ă η^χpβq “ 1u Ď B
so that χpηq “ 1, a contradiction. �

Another important formulation is Zorn’s Lemma. We start with one confusing pair of terms:

Definition 14. Let pA,ĺq be a poset.
(a) An element m P A is called a maximal element or a non-dominated element if @a P A :

m ĺ añ m “ a.
(b) An element u P A is called an upper bound of A if @a P A : a ĺ u.

Observe that, by antisymmetry, every upper bound is maximal, but the converse it not necessarily
true. The key difference between these terms lies in the fact that a maximal element need not be related
to all elements, and consequently there can be more than one maximal element. However, an upper
bound is necessarily related with all elements by definition. This is highlighted by the fact that is A is
totally ordered by ĺ, then these two notions coincide.

With this, the formulation of the Axiom of Choice that we use most often is:

Lemma 1 (Zorn’s Lemma)

Let pA,ĺq be a poset. If every subset of A that is totally ordered by ĺ has an upper bound in A,
then A has a maximal element.

Proof. By the Maximum Principle, A has a maximal totally ordered subset B. By hypothesis, Du P A :
@b P B : b ĺ u. We claim that u is a maximal element of A: if a P A : u ĺ a and u ‰ a, then a R B, but
because a is comparable to u, it is comparable to every element of B. Then the set B Y tau would be a
larger totally ordered subset of A, contradicting the maximality of B. �

Another really useful equivalent formulation (whose equivalence is immediate by taking ĺ to be
inclusion Ďq is given as follows:

Lemma 2 (Kuratowski’s Lemma)

Let A be a collection of sets such that for all subcollections B Ď A that are totally ordered by Ď,
we have

Ť

B P A . Then A has an element that is properly contained in no other.

Finally, we mention only that all of these statements are, in fact, equivalent to each other and to the
following:

Lemma 3

Every vector space V has a basis.

Proof Sketch. Consider the collection A of sets of linearly independent elements, and apply Kuratowski’s
Lemma. This maximal element of A is the required basis. �

Example 8

A basis for R as a vector space over Q is called a Hamel basis.

Joke. The Axiom of Choice is obviously true, the Well-Ordering Principle obviously false, and who can
say about Zorn’s Lemma?

Why is this a joke? A detailed discussion of this and more topics can be found in Halmos or Munkres.
We shall limit our discussion of this topic here, and return to this later if needed.
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2 A Crash Course in Logic and Set Theory

2.6 Cardinalities of Sets

We are quite familiar with the theory of the cardinality of finite sets. This section is devoted to the
theory of cardinality of larger sets. The basic tool at our disposal is:

Claim 3 — If f : A ãÑ B is an injection, then the map f̃ : A Ñ fpAq by a ÞÑ fpaq, i.e. the map
formed by restricting the image of f , is a bijection. Therefore, we may consider A to be a subset
of B by the identification a „ fpaq.

We are now ready to speak of cardinalities.

Definition 15. If there is an injection f : A ãÑ B, then we say that the cardinality of A is at most
that of B, and write |A| ď |B|. If there is a surjection f : A� B, then we say that the cardinality
of A is at least that of B, and write |A| ě |B|. If there is a bijection f : AÑ„ B, then we say that
A and B have the same cardinality, and write |A| “ |B|.

Think about what we could mean by |A| ă |B|.

Example 9

If B Ď A is any subset, then |B| ď |A| and |A| ě |B|.

It is clear, that if f : A ãÑ B is an injection, then the function g : B Ñ A defined by sending
fpaq ÞÑ a and other elements arbitrarily is a surjection. For finite sets, if f : A � B is a surjection,
then by arbitrarily choosing an element of each fiber, we get an injection B ãÑ A. However, it is not
obvious for infinite sets that if f : A � B is a surjection, then there is an injection in the opposite
direction–and indeed, this needs the Axiom of Choice (in fact, this is one of the equivalent formulations).
Further, it is not obvious at all if |A| ď |B| and |B| ď |A| that |A| “ |B|: and that is the content of the
Schröder-Bernstein Theorem.

Theorem 1 (Schröder-Bernstein)

If B Ď A is any subset, and f : A ãÑ B is an injection, then |A| “ |B|.

Proof. Define the map h : AÑ B by

hpaq “

#

fpaq, if Dn ě 0 : a P fnpArBq,

a, otherwise.

We claim that h : A Ñ„ B. To show injectivity, the only case that needs thought is when fpaq “ b for
some a P fnpArBq and b : @n ě 0 : b R fnpArBq, which is not possible. To show surjectivity, if b P B
then either @n ě 0, b R fnpArBq so hpbq “ b works OR Dn ě 0 : b P fnpArBq. Since b P B, n ě 1. �

Corollary 1.1 — If f : A ãÑ B and g : B ãÑ A are injections, then |A| “ |B|.

Proof. By Claim 3, g allows us to identifyB with the subset gpBq Ď A. We’re done since |B| “ |gpBq|. �

This means that our definitions about cardinalities are consistent with the usual usage of the symbols
ď,ě and “.

Example 10

The map f : ZÑ N by fpnq “

#

2n, n ě 1,

1´ 2n, n ď 0
is a surjection. Therefore, |Z| “ |N|.

We now define the three most basic types of cardinalities:

9



2 A Crash Course in Logic and Set Theory

Definition 16. Recall that for n P N, rns :“ t1, 2, ¨ ¨ ¨ , nu.
(a) A set A is said to be finite if Dn P N : |A| “ |rns|. Otherwise, it is said to be infinite.
(b) A set A is said to be countably infinite, or simply countable, if |A| “ |N|.
(c) A set A is said to be at most countable if it is either finite or countably infinite. Otherwise,

it is said to be uncountable.

Example 11

The cardinality of the set of natural numbers is denoted by ℵ0. In other words, when we say
|A| “ ℵ0, we mean that A is countably infinite. We denote the cardinality of the set R by c, for
continuum.

The following are standard results that we’ll not prove here, and leave as (fun) exercises to the reader.
(a) A subset of an at most countable set is at most countable.
(b) A countable union of at most countable sets is at most countable.
(c) A finite product of at most countable sets is at most countable. (Warning: a countable product of

countable sets need not be countable!)
We prove some basic results about cardinalities.

Theorem 2 (Countability of Rationals)

|Q| “ ℵ0.

Proof. The map f : Q Ñ N given by sending 0 ÞÑ 1 and sending q ‰ 0, written in lowest terms as
q “ ˘a{b with a, b P N, to fpqq “ 2sign q`13a5b is an injection. Finish by Theorem 1. �

The following is a more sophisticated version of the standard Cantor’s “diagonal argument”:

Theorem 3 (Cantor’s Theorem)

If A is any set, the |A| ă |℘pAq|.

Proof. The map f : A Ñ ℘pAq by a ÞÑ tau is an injection. Suppose g : A � ℘pAq. Then let S “ ta P
A : a R gpaqu P ℘pAq. By surjectivity, Ds P A : gpsq “ S. But then s P S ô s R S, a contradiction. �

This seemingly innocent but powerful statement allows us to establish the existence of uncountable
sets, and in fact of a tower of infinite sets, each with strictly large cardinality than the previous one.

Corollary 3.1 — The reals are uncountable. In other words, ℵ0 ă c. In fact, c “ 2ℵ0 .

Proof. Observe that by the bijection t ÞÑ t´1{2
tp1´tq , |R| “ |p0, 1q|. But by the maps t ÞÑ t´1{2

2 in both

directions and by Schröder-Berstein, it is clear that |p0, 1q| “ |r0, 1s|. The map ℘pNq Ñ r0, 1s given by
S ÞÑ

ř

sPS 2´s is a bijection. Therefore, |N| ă |℘pNq| “ |R| by Cantor. �

We end with a nice characterization of infinite sets. Again, this is not something we prove here, but
something that can be found in all standard set-theory books, like Halmos.

Claim 4 — Let A be a set. The following are equivalent:
(a) There is an injection f : N ãÑ A.
(b) There is a bijection of A with a proper subset of itself.
(c) A is infinite.

10



3 Groups

3 Groups

3.1 Introduction and Examples

Definition 17. Let G be a set.
(a) A binary operation ‹ on a set G is a function ‹ : G ˆ G Ñ G. For a, b P G, denote ‹pa, bq

by a ‹ b.
(b) A binary operation ‹ on G is associative if @a, b, c P G : pa ‹ bq ‹ c “ a ‹ pb ‹ cq.
(c) A binary operation ‹ on G is commutative if @a, b P G : a ‹ b “ b ‹ a.

Suppose ‹ is a binary operation on G and H Ď G. If @a, b P H : a ‹ b P H, then H is said to be
closed under the operation ‹.

Definition 18. An ordered pair pG, ‹q of a set G along with a specified binary operator ‹, called a
law of composition, on G is called a group if it satisfies the following axioms:

(a) (Associativity) The operation ‹ is associative.
(b) (Existence of Identity) De P G : @a P G : a ‹ e “ e ‹ a “ a.
(c) (Existence of Inverse) @a P G : Da´1 P G : a ‹ a´1 “ a´1 ‹ a “ e.

If the pair pG, ‹q satisfies the following additional axiom:
(d) (Commutativity) @a, b P G : a ‹ b “ b ‹ a,

then the group is called abelian or commutative. A group which does not satisfy (d) is called
nonabelian or noncommutative.

Often, when the group operation is understood, we abuse terminology, and call the set G a group.
Further, we call the cardinality |G| of the underlying set the order of the group.

Example 12

The trivial group G “ teu is the unique group of order 1.

Example 13

The set tT,Fu with law of composition ^ is not a group, but with law of composition ‘ is a group.

Example 14

pZ,`q, pQ,`q, pR,`q, pC,`q are all groups, but pN,`q is not. pQ r t0u, ¨q, pR r t0u, ¨q, pC r t0u, ¨q
are groups, but pZ r t0u, ¨q is not. For the sake of brevity, for F “ Q,R,C, we let Fˆ :“ F r t0u.

We introduce the following bit of terminology that we won’t use much:

Definition 19. Let G be a set and ‹ a binary operation on G.
(a) A structure pG, ‹q is called a semigroup if it satifies (a), but not necessarily (b) or (c).
(b) A structure pG, ‹q is called a monoid if it satisfies (a) and (b), but not necessarily (c).

pN,`q is a semigroup , whereas pZ r t0u, ¨q and pN0,`q are monoids.

Example 15

The set of all symmetries (isometries) of a plane figure X forms a group under composition, denoted
by SymX. For any set X, a bijection σ : X Ñ X is called a permutation, and the set of
permutations σ : X Ñ X forms a group under composition, denoted by SX or SX or PermpXq.
For X “ rns, the group Sn :“ Srns, also written Sn, is called the symmetric group on n letters.
It has order n!. As soon as n ě 3, Sn is nonabelian.

11



3 Groups

Example 16

For n P N the group Z{nZ is a group under the usual addition modulo n; it is called the cyclic
group of order n.
For any prime p, the set Zppq :“ tab P Q : pa, bq “ 1, p - bu is a group under addition.
In fact–both of these are more than just groups under addition: they are also closed under multi-
plication. Such a structure is called a ring. We’ll have more to say about rings later.

Example 17

For any n P N, the set of elements of Z{nZ that are coprime to n form a group under multiplication.
(This is because if pa, nq “ 1, then the map ϕa : Z{nZÑ Z{nZ given by left-multiplication by a is
a bijection.) This group is denoted by pZ{nZqˆ and has order ϕpnq.

Example 18

The set of nˆ n real matrices and non-zero determinant form a group under multiplication, called
the general linear group of degree n over R, and denoted by GLnpRq. As soon as n ě 2, GLnpRq
is not abelian. The group GLnpCq is defined similarly.

Example 19

The circle group S1 is the immensely important group tz P C : |z| “ 1u under usual multiplication.

From the definitions, the following are straightforward:

Claim 5 — If G is a group under ‹, then:
(a) (Uniqueness of Identity) The identity element e is unique.
(b) (Uniqueness of Inverses) For each a P G, D!a´1 P G. This allows us to define a map inv : GÑ

G by a ÞÑ a´1.
(c) (inv is an Involution) @a P A, pa´1q´1 “ a.
(d) (Contravariant Nature of inv) @a, b P G, pa ‹ bq´1 “ pb´1q ‹ pa´1q.
(e) (Generalized Associativity) @a1, ¨ ¨ ¨ , an P G, the value of a1 ‹ a2 ‹ ¨ ¨ ¨ ‹ an is independent of

the order of parenthetization.
(f) (Cancellation Laws) For any a, b, u, v P G, a ‹ u “ a ‹ v ñ u “ v and u ‹ b “ v ‹ bñ u “ v.

In general, we say a group is written multiplicatively if we “pretend” that ‹ is multiplication (¨).
Then, we omit the operation symbol. Some authors also write 1 for the identity element e, but we will
avoid that convention here; further, if we need to emphasize what group the identity element belongs to,
we will write it as eG. Finally, we write xn for x ¨ x ¨ ¨ ¨x

loooomoooon

n times

, and similarly for negative powers.

If pG, ‹q is abelian, then it is customary to write G additively, i.e. we “pretend” that ‹ is addition
(`). Then we write 0 for e and ´a for a´1. Finally, we write na for a` a` ¨ ¨ ¨ ` a

loooooooomoooooooon

n times

, and similarly for

negative n. Observe that under this convention, 0a “ 0: the zero on the right is the identity element of
the group, but zero on the left is not the identity element of the group–it simply reflects the fact that
we’re adding nothing. This notation is usually not used for nonabelian groups.

Henceforth, unless specified otherwise, we write all groups multiplicatively.

Proof. This can be found in Dummit and Foote, Chapter 1.
(a) If e, e1 are identity elements then e “ ee1 “ e1.
(b) Assume b, c are inverses of a; then b “ be “ bpacq “ pbaqc “ ec “ c.

Further, (c) and (d) are trivial, (e) can be shown by induction, and (f) is easy by multiplication by
inverses. �

12



3 Groups

Definition 20. If pG, ‹q is a group,and if H Ď G is closed under ‹ and preserved under inv, then
H is said to be a subgroup of G, written H ď G. In other words, H ď G iff @a, b P H, a ‹ b P H
and @a P H, a´1 P H.

Example 20

For any group G, the trivial subgroup teGu and the whole group G are subgroups of G.

A subgroup H ď G is proper, written H ă G, if H Ĺ G. It is nontrivial if teGu ă H.

Example 21

For any n P N, pnZ,`q ď pZ,`q.
If T is any triangle in the plane, then rotations form a subgroup of SymT .

Example 22

The subset of nˆn real matrices with determinant 1 form a subgroup of GLnpRq, called the special
linear group of degree n over R, and denoted by SLnpRq. Note that while the set of invertible
integer matrices “GLnpZq” is not a group under multiplication, SLnpZq very well is. (We’ll actually
see later that for any ring R, the group GLnpRq is actually defined slightly differently.)

Example 23

The group Z “ tz P C : Dn P N : zn “ 1u with law of composition the usual multiplication is called
the group of roots of unity in C. Then Z ď S1.

With these definitions, it is natural to ask: what are all the subgroups of a given group? In general,
this is a difficult question to answer. However, we can do it rather easily for some special cases.

Claim 6 — The only subgroups of pZ,`q are the pnZ,`q.

Proof. If H ď Z is trivial, then H “ 0Z. If H is nontrivial, it has some positive element. By the Well-
Ordering Principle, we may choose a smallest positive element, say n. Then if H contained an element
m s.t. n - m, then by the Euclidean algorithm, we could derive a contradiction to the minimality of n.
Therefore, H “ nZ. Finally notice that p´nqZ “ nZ. �

The following is a handy characterization of subgroups.

Claim 7 (The Subgroup Criterion) — If H Ď G, we have H ď G iff H ‰ H and @g, h P H : gh´1 P

H. If H is finite, it suffices to check that H is closed under the group operation.

Proof. If H ď G, then the claim holds. Conversely, H ‰ H ñ Dg P H ñ e “ gg´1 P H. Then
g´1 “ eg´1 P H, so that H is preserved under inv. Finally, gh “ gph´1q´1 P H, so it is closed under
‹. If H is finite, then for any g P H, the set te, g, g2, ¨ ¨ ¨ u is finite, so Di ą j : gi “ gj . By cancellation,
gi´j´1 “ g´1 P H, so H is automatically preserved under inv . �

3.2 Generators and Cyclic Groups

Observe that if G is a group and H,H 1 ď G are subgroups, then so is H X H 1. This leads us to the
following important concept:

13
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Definition 21. Given a group G and any subset S Ď G, the smallest subgroup of G containing S
is called the subgroup generated by S. It is denoted by xSy.

Abstractly, xSy “
Ş

HďG
HĚS

H. However, a more useful construction is xSy “ ta1a2 ¨ ¨ ¨ ak : ai P S Y S´1u.

This is based on the concept of a word in G, which is a mapping from a sequence pa1, ¨ ¨ ¨ , akq of elements
of G to the composition a1a2 ¨ ¨ ¨ ak P G. We will have more to say about words later.

If S “ tg1, ¨ ¨ ¨ , gnu, then we write xg1, ¨ ¨ ¨ , gny :“ xSy. If G is an abelian group written additively,
then xSy “ t

řn
i“1 λigi : n P N, λi P Z, gi P Su is simply the subgroup of all integer linear combinations of

the elements of S. Let’s start with a cute and simple application to number theory:

Lemma 4 (Bézout’s Lemma)

If a, b P Z are two integers, not both zero, and d “ pa, bq, then Dx, y P Z s.t. d “ ax` by.

The standard proof uses reverse-tracing the Euclidean Algorithm. Group Theory gives us a slicker

Proof. Consider the subgroup xa, by ď Z consisting of all integer linear combinations ax` by for x, y P Z.
By Claim 6, Dd P Z s.t. xa, by “ xdy. Since xa, by is not trivial, d ‰ 0. By symmetry, we may choose
d ą 0. We claim that then d “ pa, bq. Since a, b P xa, by, and since @c P xa, by “ xdy : d | c, in
particular d | a ^ d | b ñ d | pa, bq. Conversely, d P xdy “ xa, by ñ Dx, y P Z : ax ` by “ d. But then
pa, bq | ax` by “ d. Since both d and pa, bq are positive, and each divides the other, d “ pa, bq. �

A lot of the action of the group generated by a single element can be captured rather succinctly. We
are led to the notion of a cyclic group.

Definition 22. A group G is said to be cyclic if Dg P G s.t. G “ xgy. In this case, G is said to be
generated by g, and g is said to be a generator of G.

A generator of G need not be unique: for instance, both `1 and ´1 generate Z. It is immediate from
the definition that all cyclic groups are abelian.

Example 24

pZ,`q is cyclic because it is generated by 1. For any n P N, the group pZ{nZ,`q is cyclic because
it is generated by 1̄. pR,`q is not cyclic.

Example 25

If for some n P N, the group pZ{nZqˆ is cyclic with generator a, then a is called a primitive root
modulo n.

Let’s add one more term to our vocabulary as we move along. This’ll come in handy later.

Definition 23. For a group G and g P G, the order of g, written |g|, is the smallest positive integer
n (if it exists) s.t. gn “ e. If no such positive integer exists, then g is said to have infinite order.

Some authors prefer to use the terminology “zero order” in stead of “infinite order,” and for good
reason, as we shall later see. Observe that an element of a group has order 1 iff it is the identity. Observe
that for any g P G, the order of g is just the order of the subgroup xgy of G generated by g.

Example 26

In pZ{4Z,`q, the element 1 has order 4, whereas the element 2 has order 2. In the group Z, every
nonzero element has infinite order.
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3.3 Homomorphisms

Let us now consider relationships between groups. The fundamental way to understand relationships
between groups are maps between them that “respect their group structure.” This is a theme you’ll see
showing up rather frequently in mathematics.

Definition 24. Let pG, ‹q and pH, ˛q be groups. A map ϕ : G Ñ H is called a homomorphism
of groups if it respects group structures, i.e. @g, h P G : ϕpg ‹ hq “ ϕpgq ˛ ϕphq. The set of all
homomorphisms ϕ : GÑ H is denoted by HompG,Hq.

The condition be expressed compactly by saying that a ϕ P HompG,Hq iff the following diagram
commutes:

GˆG H ˆH

G H

‹

ϕˆϕ

˛

ϕ

It should be noted that:
(a) When the group operations for G and H are not explicitly written, the homomorphism condition

simply becomes ϕpghq “ ϕpgqϕphq.
(b) When G and H are more than just groups, e.g. rings, fields, modules, etc., the notation HompG,Hq

takes on additional, more specicif meaning. In the coming sections, unless otherwise specified,
HompG,Hq refers only to the set of group homomorphisms.

(c) For any group G, |HompG, teuq| “ |Hompteu, Gq| “ 1.

Example 27

For any n,m P Z s.t. n | m, we get the natural “reduction mod n” homomorphissm Z{mZÑ Z{nZ.
The special case m “ 0 is simply the reduction ZÑ Z{nZ.

Example 28

The map det : GLnpRq Ñ Rˆ is a homomorphism.

Example 29

Given any group G and a fixed element g P G, the natural map Z Ñ G taking n ÞÑ gn is a
homomorphism.

Here are some immediate consequences of the definition:

Claim 8 — Let ϕ P HompG,Hq. Then:
(a) ϕpeGq “ eH .
(b) @g P G : ϕpg´1q “ ϕpgq´1.

Proof. For any g P G, ϕpgq “ ϕpgeGq “ ϕpgqϕpeGq, so by cancellation we get (a). Similarly, we have
eH “ ϕpeGq “ ϕpgg´1q “ ϕpgqϕpg´1q, so by uniqueness of inverses, we get (b). �

We have some more vocabulary to familiarize ourselves with.

Definition 25. Let ϕ P HompG,Hq.
(a) The kernel of ϕ is the fiber over eH , i.e. kerϕ :“ tg P G : ϕpgq “ eHu.
(b) The image of ϕ is the set-theoretic image, i.e. imϕ “ th P H : Dg P G : ϕpgq “ hu.
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Observe that if ϕ : GÑ H is any homomorphism, we right away get two subgroups: kerϕ ď G and
imϕ ď H. There is a very handy characterization of the nature of ϕ just from these:

Claim 9 — A homomorphism ϕ : GÑ H is injective iff kerϕ “ teGu; it is surjective iff imϕ “ H.

Proof. The second claim is a tautology. If ϕ is injective, then by Claim 8(a), kerϕ “ teGu. Conversely,
let kerϕ “ teGu. Then if for g, h P G : ϕpgq “ ϕphq, then by Claim 8(b), ϕpgh´1q “ ϕpgqϕphq´1 “ eH so
that gh´1 P kerϕñ gh´1 “ eG ñ g “ h; this shows that ϕ is injective. �

Let’s look at some examples.

Example 30

In Example 27 above, the kernel is npZ{mZq.

Example 31

In Example 28 above, the kernel ker det “ SLnpRq ď GLnpRq.

Example 32

In Example 29 above, let ordpgq ď Z denote the kernel. Then ordpgq ď Z, and by Claim 6,
ordpgq “ xny for some n. If we choose our n ě 0, then this n is precisely the order of g in G.

In fact, if you observe carefully, kerϕ is more than just a subgroup of G: it has the special property
that @g P G,@k P kerϕ : ϕpgkg´1q “ ϕpgqϕpkqϕpgq´1 “ ϕpgqeHϕpgq

´1 “ eH , i.e. gkg´1 P kerϕ. This
can be written compactly as @g P G : gpkerϕqg´1 “ kerϕ. A subgroup N ď G is said to be normal if
@g P G : gNg´1 “ N ; this is denoted by N Ĳ G. It is clear that every subgroup of an abelian group is
normal, but that is not necessarily always the case with nonabelian groups. We will have a lot more to
say about normal subgroups.

3.4 Isomorphisms and Automorphisms

We now have a way to think of what it means for two groups to have the “same structure.”

Definition 26. A bijective homomorphism ϕ : GÑ H is called an isomorphism.

If ϕ : G Ñ H is an isomorphism then the inverse map ϕ´1 : H Ñ G is also an isomorphism.
This allows us to establish an equivalence relation on the set of all groups: if there is an isomorphism
ϕ : G Ñ H, then G and H are said to be isomorphic, and this is denoted by G – H. Intuitively, this
means that the groups G and H are the same, just labelled differently.

Example 33

Consider the groups Z{3Z and the group G of rotations an equilateral triangle in the plane. Then
G has order 3, and is generated by the single element rot p2π{3q. The map ϕ : Z{3 Ñ G given by
1 ÞÑ rot p2π{3q is an isomorphism.

Think about why specifiying simply ϕp1q is sufficient to define the map ϕ. In general, if G is a cyclic
group and H is any group, then a ϕ P HompG,Hq is completely determined by the image of a generator
of G. This is because a cyclic group is a quotient of a free group on one generator–more on that below.

The following is another way to think about isomorphisms that generalizes more easily.
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Claim 10 — A ϕ P HompG,Hq is an isomorphism iff Dψ P HompH,Gq : ψ˝ϕ “ idG and φ˝ψ “ idH .

Example 34

The homomorphisms exp : pR,`q Ñ pRą0, ¨q and log : pRą0, ¨q Ñ pR,`q are inverses to each other,
so that pR,`q – pRą0, ¨q.

The following are straightforward consequences of having the same structure:

Claim 11 — If G – H, then:
(a) |G| “ |H|.
(b) G is abelian iff H is.
(c) @g P G : |g| “ |ϕpgq|.

Using Claim 3, we come up with and tuck away the following lemma, which will be useful later.

Lemma 5

If ϕ : G ãÑ H is an injective homomorphism, then rϕ : G Ñ imϕ is an isomorphism. In particular,
G is isomorphic to a subgroup of H.

In a sense, a broad goal of Group Theory is to classify all groups. We don’t want to count multiple
times the groups that have essentially the same structure, so we say rather that the broad goal of Group
Theory is to classify all groups up to isomorphism. In general, this is a difficult task. However, it can
be done rather easily in special cases:

Theorem 4

Let G be a cyclic group. If G is infinite, G – Z. If |G| ă 8, then G – Z{|G|Z.

Proof. Let g P G be any generator. Consider the homomorphism of Example 29; it is surjective by
definition. If G is infinite, then the powers gn are all distinct, so that the map is injective; this means
that it is an isomorphism. If G is finite, then from Example 32, we know that |g| “ |G|; and it is clear
that in that case we get a natural bijective homomorphism Z{|g|ZÑ G. �

If the last part of the argument wasn’t very convincing, don’t worry. We’ll treat it more formally
later. The cyclic group of order n is sometimes denoted by Cn or Zn, and the infinite cyclic group is
sometimes denoted by C8 or Z8. Usually when denoted like this, we write Zn or Z8 multiplicatively.

An interesting question to think about is: if G – H, how many distinct isomorphisms ϕ : G Ñ H
do we have? In general, there may be more than one. For instance, in Example 33, both the maps
1 ÞÑ rotp2π{3q and 1 ÞÑ rotp4π{3q are isomorphisms. Suppose we know ϕ : G Ñ H is an isomorphism,
and let ψ : G Ñ H be another one. Then ξ :“ ψ´1 ˝ ϕ : G Ñ G is an isomorphism of a group onto
itself; conversely, if ξ : G Ñ G is an isomorphism, then ψ :“ ϕ ˝ ξ´1 : G Ñ H is another isomorphism.
Therefore, considering the number of isomorphisms G Ñ H is the same as considering the number of
isomorphisms GÑ G. This leads us to the following definition:

Definition 27. Let G be a group.
(a) A homomorphism ϕ : GÑ G is said to be an endomorphism. The set of endomorphisms is

denoted by EndpGq :“ HompG,Gq.
(b) An isomorphism ϕ P EndpGq is said to be an automorphism. The set of all automorphisms

is denoted by AutpGq.

Observe that if G and H are arbitrary groups, then there is no notion of composition on HompG,Hq.
However, we can impose a binary operation on EndpGq by composition: taking pψ,ϕq P EndpGq2 to
ψ˝ϕEndpGq. This binary operation is naturally associative, and also has a natural identity element: idG.
However, in this structure, inverses need not exist: for instance, if e P EndpGq is the null homomorphism
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that takes everything to e, then it has no inverse, i.e. Eψ P EndpGq : ψ ˝ e “ idG. Therefore, in general,
pEndpGq, ˝q is only a monoid. However, as you’ve probably guessed by now, pAutpGq, ˝q is a group, and
it is called the automorphism group of G. For any group G, the automorphism group AutpGq packages
a lot of information about the structure of G. We’ll talk more about automorphisms and automorphism
groups later.

3.5 Groups of Small Order

Let’s try to classify some groups of small order upto isomorphism. Here’s some handy vocabulary:

Definition 28. Let G “ tg1, ¨ ¨ ¨ , gnu be a finite group with g1 “ e. The multiplication table or
group table or Cayley table or the Cayley matrix of the group G is the nˆn matrix whose i, j
entry is gigj .

For a finite group, the Cayley table contains all the information about the structure of the group.
Since the size of the table increases as the square of the size of the group, it is conceptually (and
computationally) feasible to use Cayley tables to understand group structure only for groups of relatively
small orders. The following are elementary observations:

Claim 12 — Let G be a finite group.
(a) The first row and column of the Cayley matrix are copies of tg1, ¨ ¨ ¨ , gnu.
(b) By the cancellation property, every row and column of the Cayley matrix contains each

element of the group exactly once. This means that the Cayley matrix is a Latin square.
(c) G is abelian iff the Cayley matrix of G is symmetric.

Example 35

The trivial group G “ teu has the Cayley matrix:

‹ e

e e

Example 36

Let’s look at groups of order 2. Then G “ te, au for some a ‰ e. What can a2 possibly be? Well,
a2 P G so a2 “ e or a2 “ a; by the cancellation property, the latter would mean a “ e, which is not
the case. Therefore, a2 “ e. This determines the Cayley table completely:

‹ e a

e e a
a a e

Therefore, there is a unique group of order 2. In other words, Z{2Z – S2 – ptT, F u,‘q and so on.
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Example 37

Let’s look at groups of order 3. Then G “ te, a, bu. Observe that by the cancellation property, ab
can’t be a or b, so it must be e. Therefore, b “ a´1. We can now fill in the remaining spots by using
Claim 12(b). This leads us to the complete table, showing that a3 “ b3 “ e.

‹ e a b

e e a b
a a b e
b b e a

Therefore, again, there is a unique group of order 3–Z{3Z.

Example 38

You will show on the homework that there are exactly two nonisomoprhic groups of order 4–Z{4Z
and another group K4 called the Klein 4-group.

Z{4Z e a a2 a3

e e a a2 a3

a a a2 a3 e
a2 a2 a3 e a
a3 a3 a a2 a2

K4 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

The two groups are nonisomorphic because Z{4Z contains an element of order 4, whereas every
element of K4 has order 2. Observe, in particular, that both the groups of order 4 are abelian. We
will see later when we study direct products that K4 – Z{2Zˆ Z{2Z.
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4 Building Vocabulary

4.1 Cosets and Quotient Groups

The primary question that we want to investigate in this section is: when is a given subgroup H ď G
normal? As we’ve seen, if G is abelian, then every subgroup H Ĳ G. When G is not abelian, the answer
is more subtle, and naturally leads us to the theory of quotient groups.

Let’s start with a concrete example. Fix n P N0. We’ve seen that there is an equivalence relation on
Z given by saying a „ b iff ´a ` b P nZ; in that case we write a ” b pmod nq. The set of equivalence
classes is denoted by Z{nZ and (luckily) has a nice group structure of its own. This group is a way of
abstracting away the nonessential information, and carrying with us only the remainder of an integer
when divided by n. This generalizes rather nicely to abitrary groups, except we have to be careful about
the order (since groups, in general, are not abelian). Start off by defining:

Definition 29. Let G be a group and H ď G any subgroup.
(a) For any a P G, the set aH :“ tah : h P Hu is called a left coset of H in G. The set of left

cosets of H in G is denoted by G{H.
(b) For any a P G, the set Ha :“ tha : h P Hu is called a right coset of H in G. The set of right

cosets of H in G is denoted by HzG.

For any a P G, it is clear that aH “ H ô Ha “ H ô a P H. Notice that aH “ bH does not mean
a “ b; it simply means that a´1b P H. Similarly, Ha “ Hb ô ab´1 P H. The cosets eH and He are
denoted simply by H. We are now ready for the generalization.

Definition 30. Given a subgroup H ď G, define an equivalence relation on G called left equiv-
alence modulo H given by a ”l b pmod Hq iff a´1b P H. Since a´1b P H ô aH “ bH, the
equivalence classes are precisely the left cosets of H in G.

We know from the general theory of equivalence relations that G{H is a partition of G. Note that in
general, the left cosets of a subgroup are not subgroups because they do not contain the identity element
e; the only left coset that is indeed a subgroup is H itself. The following claim is the heart of the theory:

Theorem 5

If H ď G, then all the left cosets of H in G have the same cardinality. In particular, the function
ϕa : H Ñ aH taking g ÞÑ ag is a bijection.

The proof is trivial: the map is injective because of the cancellation property and surjective by
definition. This in itself already has numerous consequences:

Corollary 5.1 (Lagrange’s Theorem) — If G is a finite group and H ď G, then |H| divides |G|.

Proof. G is partitioned into left cosets and by Theorem 5 they have the same size, so |G| “ |G{H|¨|H|. �

Corollary 5.2 — If G is a finite group and g P G, then |g| divides |G|. Further, @g P G : g|G| “ e.

Proof. Apply the above to the subgroup xgy ď G. �

Corollary 5.3 (Euler’s Theorem) — If n P N and a P Z : pa, nq “ 1, then aϕpnq ” 1 pmod nq.

Proof. Apply the above to the group pZ{nZqˆ. �

Corollary 5.4 (Fermat’s Little Theorem) — If p is a prime and a P Z : p - a, then ap´1 ” 1 pmod pq.

Proof. Apply the above to the case n “ p. �
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You know your theory is going in the right direction if what people call theorems are now simple
corollaries to your theorems! We also have a heads up on our classification of groups:

Corollary 5.5 — If G is a group of prime order p, then G – Zp.

Proof. If g P G is any nonidentity element, then 1 ă |g| divides |G| “ p. Therefore, |g| “ p and G “ xgy.
In fact, we’ve shown something stronger: if G is a group of prime order, then any nonidentity element
generates G. �

Of course, we can choose to do the exactly identical thing and define right equivalence modulo H
by saying a ”r b pmod Hq iff ab´1 P H. The equivalence classes under ”r are the right cosets of H
in G. Clearly, when G is abelian, then these two notions coincide. Even when G is nonabelian, we
have:

Lemma 6

If G is any group (possibly infinite) and H ď G any subgroup, then |G{H| “ |HzG|.

Proof. Consider the map G{H Ñ HzG given by taking aH ÞÑ Ha´1. Note that this map is well-
defined, i.e. does not depend on the choice of the representative a of the coset aH because aH “ bH ô

a´1b P H ô a´1pb´1q´1 P H ô Ha´1 “ Hb´1. By the exact same argument, the map HzG given by
Hb ÞÑ b´1H is well-defined and an inverse to the given map. Therefore, the map is a bijection. �

This number is called the index of H in G and is denoted by |G : H|. If G is finite, then it is clear
from Lemma 5.1 that |G{H| “ |G|{|H|; this doesn’t exactly make sense if G is infinite. Infinite groups
can have subgroups of finite or infinite index, for e.g. x0y has infinite index in Z, whereas xny has index n.

Note that in the case G “ Z and H “ nZ, the left cosets G{H themselves form a group, with the
natural law of composition that makes the projection map π : G Ñ G{H a homomorphism. When
exactly does this happen?

Theorem 6

For any H ď G, the set of left cosets G{H themselves form a group with law of composition
aH ¨ bH “ abH iff H Ĳ G. In this case, G{H is called the quotient group of G by H, and the
natural quotient map π : GÑ G{H given by a ÞÑ aH is a homomorphism.

Recall that H is a normal subgroup, i.e. H Ĳ G, iff @g P G : gHg´1 “ H ô @g P G : gH “ Hg.

Proof. Suppose H is normal; we have to check that the law of composition is well-defined, i.e. we have
to check that @a, a1, b, b1 P G : aH “ a1H ^ bH “ b1H ñ abH “ a1b1H. Now aH “ a1H ñ a´1a1 P H
and bH “ b1H ñ b´1b1 P H. Since H Ĳ G, b´1pa´1a1qb P H so that b´1a´1a1bb´1b1 “ pabq´1a1b1 P H.
Conversely, if G{H is a group with group law as given, then π is a homomorphism, so H “ kerπ Ĳ G. �

This allows us to give a complete answer to our initial question:

Corollary 6.1 — A subgroup H ď G is normal iff it is the kernel of a (surjective) homomorphism.

Proof. First, observe that if ϕ : G Ñ K is any homomorphism, then rϕ : G Ñ imϕ is a surjective
homomorphism with the same kernel. We’ve seen that H “ kerϕ Ĳ G. Conversely, if H Ĳ G, then H is
the kernel of the quotient homomorphism π : G� G{H. �

Henceforth, for the sake of brevity, whenever we say “cosets,” we mean left cosets, unless specified
otherwise. There is another way to look at the key concept of quotient groups that has a more category-
theoretic flavor.
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Theorem 7 (Characteristic Property of Quotient Groups)

Suppose H Ĳ G, and ϕ P HompG,Kq such that H ď kerϕ, then D! Φ P HompG{H,Kq s.t. the
following diagram commutes:

G K

G{H

ϕ

π D!Φ

Further,
(a) If ϕ is surjective, then so is Φ.
(b) If H “ kerϕ, then Φ is injective.

Proof. Since we want the diagram to commute, we must have Φ : aH ÞÑ ϕpaq. This is well-defined
because aH “ a1H ñ aa1´1 P H ñ ϕpaa1´1q “ eK ñ ϕpaq “ ϕpa1q. This is a homomorphism because
ΦpaH ¨ bHq “ ΦpabHq “ ϕpabq “ ϕpaqϕpbq “ ΦpaHqΦpbHq. Finally, this determines Φ uniquely. If ϕ
is surjective, then the commutativity of the diagram implies that Φ is surjective. If H “ kerϕ, then
ΦpaHq “ ΦpbHq ñ ϕpaq “ ϕpbq ñ ϕpa´1bq “ eK ñ a´1b P kerϕ “ H ñ aH “ bH. �

This characterstic property leads us naturally to an isomorphism theorem.

4.2 First Isomorphism Theorem, Exact Sequences, Simple Groups

Theorem 8 (First Isomorphism Theorem)

If ϕ : GÑ K is any homomorphism, then G{ kerϕ – imϕ.

Note that this is the analogue of the rank-nullity formula for vector spaces.

Proof. If ϕ : G Ñ K is any homomorphism with kernel kerϕ, then rϕ : G Ñ imϕ is a surjective
homomorphism with the same kernel kerϕ. Taking H “ kerϕ in Theorem 7, Φ : G{H Ñ„ imϕ. �

Example 39

Let’s return to an argument we left before. Let G be a cylic group with generator g; then we get a
natural map ϕ : ZÑ G by n ÞÑ gn, and this is surjective by definition. If G is infinite, then the map
is injective and so is an isomorphism. If G is finite, then kerϕ “ x|g|y, so by the First Isomorphism
Theorem, Z{x|g|y – G.

Often when we have a series of such homomorphisms, a compact way to express such relationships is by
using exact sequences.

Definition 31. Suppose we have a sequence of groups with homomorphisms:

¨ ¨ ¨
ϕi´2
ÝÝÝÑ Gi´1

ϕi´1
ÝÝÝÑ Gi

ϕi
ÝÑ Gi`1

ϕi`1
ÝÝÝÑ ¨ ¨ ¨

This sequence is said to be exact at Gi if imϕi´1 “ kerϕi. (Note that this implies but is not
implied by ϕi ˝ϕi´1 being the null homomorphism.) A sequence is said to be exact if it is exact at
each term in the sequence.

Example 40

Let A,B,C be any groups.
(a) The sequence teu Ñ A

ϕ
ÝÑ B is exact at A iff ϕ is injective.

(b) The sequence B
ψ
ÝÑ C Ñ teu is exact at C iff ψ is surjective.
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These sequences, which seem to be rather special, show up frequently enough in mathematics to
deserve a name, and are the fundamental language of a branch called homological algebra. The smallest
and simplest example of an exact sequence is the “short exact sequence,” which, depending on how you
count it, has either 3 or 5 terms. (Prof. Harris’s words.)

Definition 32. For groups A,B,C and homomorphisms ϕ P HompA,Bq and ψ P HompB,Cq, the
sequence

teu Ñ A
ϕ
ÝÑ B

ψ
ÝÑ C Ñ teu

is called a short exact sequence if ϕ is injective, imϕ “ kerψ, and ψ is surjective. This can be
written equivalently as

A ãÑ
ϕ
B �

ψ
C.

Example 41

The following are examples of short exact sequences.
(a) Z{2Z ãÑ

ι1 Z{2Zˆ Z{2Z �
π2 Z{2Z.

(b) Z{2Z ãÑ
φ Z{6Z �

ψ Z{3Z, where φ : 1̄ ÞÑ 3̄ and ψ : 1̄ ÞÑ 1̄.

Example 42

This example is for those familiar with the theory of quadratic residues. Let p be a prime, and let
Fˆp :“ pZ{pZqˆ denote the set of nonzero remainders modulo p, i.e. t1, 2, ¨ ¨ ¨ , p´1u (the terminology
will be explained later). Consider the group pFˆp , ¨q and its subgroup pFˆp q2 of quadratic residues.

If ψ : Fˆp Ñ t˘1u is the Legendre symbol ψ : ā ÞÑ āpp´1q{2 “

´

a
p

¯

, then the sequence

t1u Ñ pFˆp q2 ãÑ Fˆp �
ψ
t˘1u Ñ t1u

is a short exact sequence.

In a sense, short exact sequences are all we need to deal with, because of the following result whose
proof is evident:

Claim 13 — A sequence

¨ ¨ ¨
ϕi´2
ÝÝÝÑ Gi´1

ϕi´1
ÝÝÝÑ Gi

ϕi
ÝÑ Gi`1

ϕi`1
ÝÝÝÑ ¨ ¨ ¨

is exact at Gi iff @i :
teu Ñ imϕi´1 ãÑ Gi �

ϕi kerϕi`1 Ñ teu

is a short exact sequence.

This is all the vocabulary we need for what we do in this course; more about exact sequences can be
found in a course on module theory or homological algebra. The following lemma explains our obsession
with exact sequences:

Lemma 7

If teu Ñ A
ϕ
ÝÑ B

ψ
ÝÑ C Ñ teu is a short exact sequence, then A – imϕ and B{ imϕ – C.

Conversely, if ϕ : G Ñ K is any homomorphism, then teu Ñ kerϕ ãÑ G � G{ kerϕ Ñ teu is a
short exact sequence, with the third term G{ kerϕ – imϕ.

In less mathematical terms, this means exactly that if teu Ñ A
ϕ
ÝÑ B

ψ
ÝÑ C Ñ teu is a short exact

sequence, then by naturally identifying A with imϕ ď B we get B{A – C. In other words, B can be
“broken up” into the component pieces coming from A and C, and how these two pieces interact com-
pletely determines the structure of B. This is very much analogous to the direct sum of vector spaces: if
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U, V are vector spaces, then teu Ñ U
ι1
ÝÑ U ‘ V

π2
ÝÑ V Ñ teu is a short exact sequence, and, essentially,

this is the only way to combine these spaces together. However, when A and C are groups, there are
many different ways to “combine” these groups together, and the way these groups A and C interact
give us insights into the structure of the combination B.

In other words, given a group G, we can start to analyse the structure of G by:
(a) Finding all normal subgroups H Ĳ G, and
(b) Considering how the groups H and G{H “stitch together” to make G.

All groups have nontrivial proper subgroups–if G is cyclic, then we understand the subgroups of
G completely; as soon as G is not cyclic, it has a nontrivial proper cyclic subgroup generated by any
nonidentity element. However, the same is not true of normal subgroups–as we’ve seen above, the more
normal subgroups a group has, the more complex its structure can be. In a sense, then, the most
“fundamental” or “atomic” groups are the ones which have no nontrivial proper normal subgroups at
all!

Definition 33. A group G is called simple if the only normal subgroups of G are teGu and G.

The following is the key property of simple groups:

Claim 14 — If G is simple, then any homomorphism ϕ : GÑ K is either the null map or injective.

In other words, if G is simple, then any nontrivial homomorphism from G to any other group K must
embed it into K. Therefore, we can analyse the structure of K by considering homomorphisms from
known simple groups to it. In general, it is hard problem to determine whether a group is simple.

Example 43

For any prime p, the group Zp is simple because it has nontrivial proper subgroups at all.

Example 44

We will show later that for n ě 3, Sn is not simple. In particular, there is a subgroup An of Sn

that is of index 2 (and hence normal). It is nontrivial result that for n ě 5, An is simple, and the
case n “ 5 is the reason for the unsolvability of the general quintic.

There are three more named isomorphism theorems that we will return to later. First, let’s talk
about notation for group structure.
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4.3 Direct Products, Free Products and Group Presentations

4.3.1 Direct Products

We know that if G is a group and H Ĳ G, then we can create a “smaller” group G{H. Let’s look at
some ways to build bigger groups from smaller ones.

Definition 34. Suppose G1, ¨ ¨ ¨ , Gn are groups. Then the cartesian product
śn
i“1Gi whose ele-

ments are n-tuples pg1, ¨ ¨ ¨ , gnq with gi P Gi, endowed with the law of composition given pointwise
is called the direct product of the groups Gi.

Example 45

When all the Gi’s are the same, Gi “ G, then
śn
i“1Gi is written Gn. For example, taking

G “ Z,Q,R,C with law of composition given by addition, we get the familiar spaces Zn,Qn,Rn,Cn.

Example 46

If n,m P N such that pn,mq “ 1, then Zn ˆ Zm – Zmn. (Prove this!)

If Gi are groups, then |
śn
i“1Gi| “

śn
i“1 |Gi|, and if any Gi is infinite, then so is their direct product.

The following are elementary observations:

Claim 15 — Let G1, ¨ ¨ ¨ , Gn be groups.
(a) The natural projection maps πα :

śn
i“1Gi Ñ Gα are group homomorphisms.

(b) For i P rns, Gi can be identified as Gi – teG1u ˆ teG2u ˆ ¨ ¨ ¨ ˆGi ˆ ¨ ¨ ¨ ˆ teGnu Ĳ
śn
i“1Gi.

(c) Under the natural identification above, if i ‰ j, gi P Gi and gj P Gj , then gigj “ gjgi. In
other words, elements of different constituent groups commute with each other.

It is clear what the definition for arbitrary cartesian products should be.

Definition 35. Let G “ tGiuiPI be a family of groups indexed by some set I. Then the direct
product or direct sum of G , denoted by

ś

iPI Gi is the cartesian product of G endowed with the
law of composition given pointwise.

The direct product of groups satisfies, and is completely characterized by, its universal property:

Theorem 9 (Characteristic Property of Direct Products)

Suppose G “ tGiuiPI is a family of groups indexed by set I. Then a direct product G :“
ś

iPI Gi is
a group with projection homomorphisms πα : GÑ Gα such that given any group H and homomor-
phisms ϕα P HompH,Gαq, D!ϕ P HompH,Gq s.t. @α P I : πα ˝ ϕ “ ϕα, i.e. the following diagram
commutes:

G

Gα H

πα

ϕα

D!ϕ

Further, this universal property characterizesG upto unique isomorphism that preserves projections,
so that we may use the definite article “the” when talking about the direct product of a family of
groups.

Proof. Recall that the cartesian product is defined as the set of functions x : I Ñ
Ť

iPI Gi from the
indexing set to the union of the underlying sets Gi of the groups pGi, ‹iq s.t. @α P I : xα “ xpαq P Gα.
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The projection maps are simply the maps πα : x ÞÑ xα. In the present scenario, we may endow these
with a group structure by saying that the composition x ‹ y is the function I Ñ

Ť

iPI Gi that takes any
α P I to xα ‹α yα. Uniqueness upto unique isomorphism follows from the standard universal property
argument in the category pGrpq. �

Let us examine closely the observation in Claim 15(c). It says that under the natural identifications
of Gi, Gj Ĳ G the elements of the groups Gi and Gj for i ‰ j commute with each other. There is
another, more elaborate, product of groups in which we don’t have this requirement. It is called the free
product of groups. Let’s build up to that.

Correction. Given a family of groups tGiuiPI , the constructions of the direct product
ś

iPI Gi and the
direct sum

À

iPI Gi coincide only for finite families. In general, the direct sum of groups is defined to
be the subgroup of the direct product in which all but finitely many elements are the identity. For
instnce,

ś8

i“0 Z is the group of infinite sequences pa1, a2, ¨ ¨ ¨ , an, ¨ ¨ ¨ q of integers, whereas the direct sum
À8

i“0 Z – pZrxs,`q contains only sequences with all but finitely many terms zero. These concepts clearly
coincide for finite I; as we shall see later, the direct sum is NOT the categorical sum in the category
pGrpq.

4.3.2 Free Products

Let’s start with a slightly different concept:

Definition 36. Let tXiuiPI be an indexed family of sets. The coproduct or the disjoint union
of this family, denoted by

š

iPI Xi :“
Ť

iPItiu ˆ Xi. In case of a finite family, we simply write
X1

š

X2

š

¨ ¨ ¨
š

Xn. The elements of this disjoint union are elements of the form pi, xiq for xi P Xi.

Example 47

If X1 “ X2 “ ta, b, cu, then X1

š

X2 “ tp1, aq, p1, bq, p1, cq, p2, aq, p2, bq, p2, cqu. Intuitively, the
disjoint union treats the components as if they were disjoint objects, even if they’re originally not.
In other words, we can think of X1

š

X2 :“ ta, b, c, a1, b1, c1u, where the prime denotes the elements
from the second set.

Example 48

RY R “ R but R
š

R contains the r in the first R and r1 in the second R s.t. 1 ‰ 11 etc.

Theorem 10 (Characteristic Property of Coproduct)

Let tXiuiPI be an indexed family of sets. The coproduct X “
š

iPI Xi is a set with inclusion maps
: ια : Xα Ñ X such that given any set Y and any functions ψα : Xα Ñ Y there is a unique function
ψ : X Ñ Y such that @α P I : ψ ˝ ια “ ψα, i.e. the following diagram commutes:

X

Xα Y

D!ψ
ια

ψα

Further, this universal property characterizes the coproduct upto unique isomorphism that preserves
inclusions.

Proof. The ια : Xα Ñ X is xα ÞÑ pα, xαq. Then ψ is given by ψpα, xαq “ ψαpxαq for xα P Xα. �

When X1 and X2 are inherently disjoint, then we have a very natural identification X1 Y X2 –

X1

š

X2. We want to do something similar for groups.
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Definition 37. Let G “ tGiuiPI be an indexed family of groups. Define a word in G to be a finite
sequence of elements of the coproduct of the underlying sets G “

š

iPI Gi, i.e. a word is an m-tuple
of the form pg1, ¨ ¨ ¨ , gmq where each gi is an element of some Gα. In other words, the set of words
in G is WpG q “

Ť8

m“0G
m.

The sequence of length zero is called the empty word, and is denoted by pq. Define a binary operation
on WpG q by concatenation: pg1, ¨ ¨ ¨ , gmqph1, ¨ ¨ ¨ , hkq “ pg1, ¨ ¨ ¨ , gm, h1, ¨ ¨ ¨ , hkq. This is associative and
has two-sided identity pq, but there are no inverses. We’ve not used the group structures of Gi at all.

Definition 38. An elementary reduction is an operation of one of the following forms:

pg1, ¨ ¨ ¨ , gi, gi`1, ¨ ¨ ¨ , gmq ÞÑ pg1, ¨ ¨ ¨ , gigi`1, ¨ ¨ ¨ , gmq if Dα : gi, gi`1 P Gα;

pg1, ¨ ¨ ¨ , gi´1, eα, gi`1, ¨ ¨ ¨ , gmq ÞÑ pg1, ¨ ¨ ¨ , gi´1, gi`1, ¨ ¨ ¨ , gmq.

Define an equivalence relation on words W „ W 1 if there is a sequence W0 “ W,W1, ¨ ¨ ¨ ,Wn “ W 1

where for each i, either Wi is obtained from Wi´1 by an elementary reduction or Wi´1 is obtained by
an elementary reduction of Wi. The set of equivalence classes is called the coproduct or free product
of the groups tGiu and is denoted by

š

iPIpGi, ‹iq or ˚iPI Gi.

Claim 16 — Given an indexed family of groups tGiu, their free product is a group under compo-
sition by concatenation.

Proof. First we need to check that concatenation respects the equivalence relation, but that is clear: if
W „W 1 then for any word V , VW „ VW 1 and similarly for right concatenation. The class of pq is the
identity, and for a word W “ rpg1, ¨ ¨ ¨ , gmqs, the class of pg´1

m , ¨ ¨ ¨ , g´1
1 q is the inverse W´1. �

What is not easy to show however is that the reduced word representing any given equivalence class
is unique. We want to show that:

Proposition 3

Every element of ˚iPI Gi is represented by a unique reduced word.

Proof Sketch. This amounts to constructing a canonical reduction algorithm from the set W of words to
the subset R ĎW of reduced words; i.e. a map r : W Ñ R with the property that:

(a) r|R “ idR, and
(b) If W „W 1 then rpW q “ rpW 1q.

The exact construction is tedious, but can be found in the special notes uploaded if you’re interested. �

For each group Gα there is a canonical injective homomorphism ια : Gα Ñ ˚iPI Gi defined by
gα ÞÑ pgαq. We usually identify Gα with its image and avoid writing parenthesis. With this, we’ve
succeeded in making some sense out of product of elements of different groups such that elements of
different constituent groups need not commute with each other.

All of this is a lot of theoretical work, so let’s look at some concrete examples to understand what’s
going on.

Example 49

The free product Z8 ˚Z8 can be described as follows: let a be a generator for the first group and b
for the second one. Then the elements of Z8 ˚Z8 are elements of the form an1bm1an2bm2 ¨ ¨ ¨ ankbmk

where ni,mj P Z. For instance, some elements would be g “ a2b3a´3b4 and h “ b´3a´2b2a´2; then
gh “ a2b3a´3b4 ¨ b´3a´2b2 “ a2b3a´3ba´2b2a´2 and hg “ b´3a´2b2a´2a2b3a´3b4 “ b´3a´2b4a´3b4.
Clearly, this group is nonabelian.
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Example 50

Similarly, the free product Z2 ˚ Z2 contains elements of the form αβαβ etc. and composition by
concatenation. For instance, pαβαβqpβαβq “ α whereas pβαβqpαβαβq “ βαβαβαβ.

Theorem 11 (Characteristic Property of Free Products)

Suppose G “ tGiuiPI is a family of groups indexed by a set I. Then a free product ˚iPI Gi is
a group with inclusion homomorphisms ια : Gα Ñ ˚iPI Gi such that given any group H and
homomorphisms ψα P HompGα, Hq, D!ψ P Homp˚iPI Gi, Hq s.t. @α P I : ψ ˝ ια “ ψα, i.e. the
following diagram commutes:

˚iPI Gi

Gα H

D!ψ
ια

ψα

Further, this universal property characterizes the free product upto unique isomorphism that pre-
serves inclusions.

Now we use this theory of free products to develop a class of groups called the free groups.

4.3.3 Free Groups and Presentations

Definition 39. Let S be a set. Define the free group generated by S, denoted by F pSq, as
follows:

(a) If S “ H, then let F pHq “ teu.
(b) If |S| “ 1, i.e. S “ tσu for a single element, then define F ptσuq “ tσn : n P Zu – Z8 to be

the group of formal powers of σ under the usual composition.
(c) If |S| ą 1, then define F pSq :“ ˚σPS F ptσuq.

Example 51

For any n P N, the free group on n generators, denoted by Fn or Fn is simply the group F prnsq.
In other words, Fn – ˚ni“1 Z8.

Theorem 12 (Characteristic Property of Free Group)

Let S be any set. Then the free group generated by S is a group F pSq with an inclusion map
ι : S ãÑ F pSq such that if H any group and ϕ : S Ñ H any function, then D!Φ P HompF pSq, Hq
extending ϕ, i.e. s.t. ϕ “ Φ ˝ ι, i.e. s.t. the following diagram commutes:

F pSq

S H.

D!Φ
ι

ϕ

Proof. Set maps ϕ : S Ñ H correspond bijectively to collections of homomorphisms ϕσ : F ptσuq Ñ H
via φσpσ

nq “ φpσqn. Apply Theorem 11. �

We are now ready to talk about group presentations. Recall that just as the intersection of subgroups
is a subgroup, it is easy to see that the intersection of normal subgroup is normal.
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Definition 40. Let G be any group and R Ď G any subset. Then the normal closure of R in
G, denoted Rnc or sometimes (ambiguously) R, is defined to be the smallest normal subgroup of G
containing R. In other words, R “

Ş

HĲG
HĚS

H.

Observe that R “ R iff R Ĳ G.

Definition 41. A group presentation is an ordered pair pS,Rq usually denoted by xS|Ry, where
S is any set and R any subset of F pSq. The elements of S are called generators and the elements
of R are called relators or relations. This defines a group by xS|Ry “ F pSq{R.

Intuitively, in passing to the quotient by R, we are “modding out” by elements of R, i.e. declaring
that they are the identity.

Definition 42. Let G be an arbitrary group. A presentation of G is a group presentation xS|Ry
with an isomorphism xS|Ry – G.

If such an isomorphism exists, it is uniquely determined by specifying which element of G corresponds
to each generator in S. Often, the isomorphism is understood or irrelevant, and we say xS|Ry is a
presentation of G.

Definition 43. If G admits a presentation xS|Ry with S finite, then G is said to be finitely
generated. If it admits a presentation with both S,R finite, then it is said to be finitely presented.

IfG is finitely presented and S “ ts1, . . . , snu andR “ tr1, . . . , rnu, then we usually write xs1, . . . , sn|r1, r2, . . . , rny
for xS|Ry. xs1, . . . , sn|r1 “ q1, . . . , rn “ qny is alternative notation for xs1, . . . , sn|r1q

´1
1 , . . . , rnq

´1
n y.

Example 52

The following are presentations of some familiar groups:
(a) The free group on ta1, ¨ ¨ ¨ , anu has the presentation F pta1, ¨ ¨ ¨ , anuq “ xa1, ¨ ¨ ¨ , an|Hy. In

particular, Z “ F1 has the presentation xα|Hy.
(b) The group Z ˆ Z has presentation xβ, γ|βγβ´1γ´1y. This can equivalently be written as

xβ, γ|βγ “ γβy.
(c) The cyclic group Z{nZ has presentation Z{nZ – xα|αny.
(d) The group Z{mZˆ Z{nZ has presentation xβ, γ|βm, γn, βγβ´1γ´1y.

Example 53

The following are presentations you may not have seen before:
(a) The group K4 has presentation xa, b|a2 “ b2 “ pabq2y, and so does Z2 ˆ Z2. Therefore,

K4 – Z2 ˆ Z2.
(b) The group S3 has presentation S3 – xσ, τ |σ

3, τ2, τστ´1σy.
(c) The quaternion group Q8 is defined by Q8 “ t1,´1, i,´i, j,´j, k,´ku with the usual quater-

nion product rules. This has presentation Q8 – xi, j|i
4, i2j´2, ij´1ijy.

Given an arbitrary presentation, it may be difficult to tell when two elements of a group are equal.
Even in simple presentations, there may be hidden or implicit relations that may cause unseen collaps-
ing.
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Example 54

The group xα|α5, α17y is trivial. Similarly, but perhaps not as obviously,

G “ xu, v|u4 “ v3 “ e, uv “ v2u2y

is trivial.

Topologists Tietze and Dehn around 1910 posed the following two problems: the isomorphism
problem is to decide, given two finite presentations, whether the resulting groups are isomorphic; and
the word problem is to decide, given a finite presentation, whether a word in S is equal to the identity.
It was shown independently by Adian (in 1955) and Rabin (in 1958) that there is no algorithm for solving
these problems that is guaranteed to give an answer in finite time, i.e. these problems are algorithmically
undecidable. This laid rest to a famous problem in topology called the homeomorphism problem: given
two spaces, there is no algorithm that is guaranteed to tell us if these spaces are homeomorphic in finite
time. However, we’ve seen of course that this is possible in certain special cases, like we did for S3.

4.3.4 Free Abelian Groups

There is another construction, very similar to the free group, called the free abelian group generated
by a set. Let’s quickly have a look at that. In this section, all our groups are abelian, so we write the
group operation additively.

For this section, we take a different approach: we define the free abelian group as the group satisfying
a certain universal property (this would prove that such a construction, if it existed, would be unique),
and then construct it. So let’s start with the characteristic property.

Definition 44 (Characteristic Property of Free Abelian Group). Let S be any set. Then a free
abelian group generated by S is an abelian group ZxSy with an inclusion map ι : S ãÑ ZxSy such
that if H is any abelian group and ϕ : S Ñ H any function, then D!Φ P HompZxSy, Hq extending
ϕ, i.e. s.t. ϕ “ Φ ˝ ι, i.e. s.t. the following diagram commutes:

ZxSy

S H.

D!Φ
ι

ϕ

By the standard universal property argument in the category pAbq, such a construction, if it exists,
is unique upto a unique isomorphism preserving ι, so that we may refer to the free abelian group
generated by a set S.

Theorem 13

For any set S, the free abelian group generated by S exists, and can be thought of as the group of
all formal finite integer linear combinations of elements of S.

Proof. A formal finite integer linear combination (ffilc) of elements of S is a finite sum of the form
řn
i“1 λisi where n P N0,@i : λi P Z, si P S. (More formally, a ffilc of elements of S is a function

f : S Ñ Z with finite support, i.e. such that fpsq “ 0 for all but finitely many s P S.) The set of all
such ffilc’s of elements of S forms a natural abelian group under pointwise addition, and satisfies the
characteristic property of the free abelian group. �

Example 55

For any set S, F pSq – ZxSy iff |S| ď 1.
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Proposition 4

For a finite set S “ tσ1, ¨ ¨ ¨ , σnu, ZxSy – Zn via the map
řn
i“1 λiσi ÞÑ pλ1, ¨ ¨ ¨ , λnq. In general, for

any set S, ZxSy –
À

σPS Zxtσuy.

Example 56

Let Ĉ “ CYt8u be the complex plane along with the point at infinity. Then we define the divisor

group DivpĈq to be the free abelian group generated by the elements of Ĉ, i.e. DivpĈq :“ ZxĈy. It
consists of formal linear combinations like 2p1q`3pıq´7p2`4ıq`5p8q. We have a natural surjective

homomorphism called the degree map deg : DivpĈq Ñ Z given by
řn
i“1 nipPiq ÞÑ

řn
i“1 ni. The

kernel of this map is called the subgroup of principal divisors on Ĉ and is denoted by Div0
pĈq. The

divisor class group or Picard group of Ĉ is defined to be the quotient PicpĈq :“ DivpĈq{Div0
pĈq.

By the First Isomorphism Theorem, PicpĈq – Z. These are objects of study in the algebraic
geometry of Riemann surfaces.

This is as far as we’ll go with our theory of free abelian groups, but watch out for 1 (one) HW problem
that needs them.

4.4 A Few More Groups of Small Order

We’re done classifying groups of order ď 5, and we know all of them are abelian. Let’s now look at
groups of order 6.

Theorem 14

If G is a group of order 6, then either G – Z6 or G – S3.

Proof. We do this is steps.
(a) Let g ‰ e P G. By Lagrange, |g| P t2, 3, 6u. If |g| “ 6, then G – Z6. Hence, assume that all

elements of G have order either 2 or 3.
(b) We show now that G must have an element of order 3. Assume that all elements of G have order

2. By the HW problem, G is abelian. Let g ‰ e P G. Then |xgy| “ 2 so that Dh P G r xgy. Then
H :“ xg, hy ď G is a subgroup with presentation xg, h|g2 “ h2 “ e, gh “ hgy – K4; this is a
subgroup of G of order 4, which is not possible by Lagrange’s Theorem. This contradiction shows
that G must contain an element of order 3.

(c) Let σ P G with |σ| “ 3. Then xσy ď G is a subgroup of index 2, and so by another HW problem,
xσy Ĳ G. Let τ P Gr xσy. Then by normality, τστ´1 P te, σ, σ2u. We split into subcases:

(i) Assume τστ´1 “ e; then σ “ e, a contradiction.

(ii) Assume τστ´1 “ σ; this means that σ and τ commute. We show that τ must have order
2. Assume that τ had order 3; then xσ, τ |σ3, τ3, στσ´1τ´1y – Z3 ˆ Z3 would be a subgroup
of G of order 9, and this is impossible. Therefore, τ must have order two. But then G “

xσ, τ |σ3 “ τ2 “ e, στ “ τσy – Z3ˆZ2 – Z6 has the element στ of order 6, a contradiction to
hypothesis.

(iii) The only option left is τστ´1 “ σ2, and this gives us the group presentation G “ xσ, τ |σ3 “

τ2 “ e, τστ´1 “ σ2y – S3.

�

As you can imagine, the larger the order of the group is, the more difficult it becomes to classify
subgroups. We know that there is only group of order 7, namely Z7, but already we’ve run into an order
we don’t know how to work on: we don’t yet have the tools to classify all groups of order 8 or 9. That’ll
have to wait another week or two. Till then, let’s look at some other common families of groups.
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4.5 Dihedral, Symmetric, Alternating Groups

In this section, we familiarize ourselves with some standard groups.

4.5.1 Dihedral Groups

Definition 45. The dihedral group D2n of order 2n is the group of symmetries of a regular n-gon
in the Cartesian plane. It has the group presentation: xr, s|rn, s2, srs´1ry.

The group presentation is sometimes written instead as xσ, τ |σn, τ2, τστ´1σy. It is not hard to see
that this group presentation defines a group of order 2n (see DF) and this is precisely the group of
symmetries of a regular n-gon. Further, each element of the group can be written uniquely as sirj for
0 ď i ď 1, 0 ď j ď n, and these interact by the same flipping idea srj “ r´js. This is called the dihedral
group because D2n is the group of rotations of a dihedron with base a regular n-gon as its base.

4.5.2 Symmetric Groups

We’ve seen that given any set Ω, the set of “permutations on Ω,” i.e., bijections σ : Ω Ñ Ω, forms a
group under composition, called the symmetric group on Ω, and is denoted by SΩ or SΩ. We first
observe that this group essentially depends only on the size of Ω.

Claim 17 — If |∆| “ |Ω|, then S∆ – SΩ. In particular, if θ : ∆ Ñ Ω is any bijection, then the
map conjθ : S∆ Ñ SΩ given by conjθpσq “ θ ˝ σ ˝ θ´1 is an isomorphism.

Note that in this case each step of the conjugation takes us to an element of a different set. Apart
from this difference, the proof is identical to the one you did on your HW. In essence, conjugation is
simply a “change of labels” operation. Note, in particular, the similarity to change of basis matrices
from linear algebra.

Proof. For any σ P S∆, conjθpσq ˝ conjθpσ
´1q “ idΩ, so that indeed conjθpσq P SΩ. The map conjθ´1 :

SΩ Ñ S∆ is a two-sided inverse to conjθ, so that conjθ is a bijection. Finally, for σ, τ P S∆, conjθpσ˝τq “
conjθpσq ˝ conjθpτq, so that conjθ is a homomorphism. �

The converse is also true.

Claim 18 — If ∆ and Ω are any sets, then S∆ – SΩ ñ |∆| “ |Ω|.

This is significantly harder to prove, and the general case can be found in DF. It’s much easier in the
finite case.

Claim 19 — If ∆ and Ω are nonempty finite sets, then S∆ – SΩ ñ |∆| “ |Ω|.

Proof. For a finite set X of cardinality n, by Claim 5.6, |SX | “ |Sn| “ n!, i.e. |SX | “ |X|!. Therefore,
S∆ – SΩ ñ |S∆| “ |SΩ| ñ |∆|! “ |Ω|! ñ |∆| “ |Ω|. �

Therefore, in essence, we need only look at the groups Sn for n P N. For n “ 1, S1 – teu, and for
n “ 2, S2 – Z{2Z, and the only nonidentity permutation is the one that switches the two elements.
We’ve already seen one notation for elements of Sn: for instance,

σ “

ˆ

1 2 3
2 3 1

˙

P S3

is the element that sends 1 ÞÑ 2, 2 ÞÑ 3 and 3 ÞÑ 1. As you can imagine, this notation gets really
cumbersome as n increases. Moreover, and more importantly, this notation gives us no idea how to
compute higher powers or compositions efficiently. For instance, if

ξ “

ˆ

1 2 3 4 5
3 5 4 1 2

˙

P S5,

can you tell me immediately what ξ100 is? If you enjoy coding, try to implement an algorithm that
composes permutations.

To talk about higher symmetric groups, let’s first familiarize ourselves with more efficient notation.
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Definition 46. For a given n P N, a cycle of length k (or a k´cycle) in Sn is a permutation of
the form

ˆ

a1 a2 ¨ ¨ ¨ ak´1 ak
a2 a3 ¨ ¨ ¨ ak a1

˙

,

i.e. a permutation that cyclically permutes the integers a1, ¨ ¨ ¨ , ak P rns, and leaves the other n´ k
integers fixed. The cycle above is notated simply by pa1a2 ¨ ¨ ¨ akq or sometimes by pa1, a2, ¨ ¨ ¨ , akq
(especially if the integers aj have more than 1 digit). Note that the cycle pa1a2 ¨ ¨ ¨ akq is the same
as the cycle pajaj`1 ¨ ¨ ¨ ak´1aka1 ¨ ¨ ¨ aj´1q for any 1 ď j ď k.

Example 57

In cycle notation, the identity permuation is simply pq. The σ above is p123q “ p231q “ p312q ‰
p213q. The ξ above is NOT a cycle.

Two cycles σ and τ are said to be disjoint if the sets of integers they cyclically permute are.

Theorem 15 (Cycle Decomposition)

The following three claims underly the key significance of this notation:
(a) Any permutation can be written essentially uniquely as a product of disjoint cycles.
(b) It is easy to compute powers of cycles.
(c) Disjoint cycles commute.

By “essentially uniquely” we mean to say that the decomposition is unique upto the order of the
disjoint cycles (which doesn’t matter by part (c)) and upto the notational ambiguity mentioned in the
definition above.

The claims in pbq and pcq are obvious. For instance, if σ “ pa1a2 ¨ ¨ ¨ akq, then observe that σk “ pq.
Therefore, given any m, to find σm write m “ qk ` r for 0 ď r ă k; if r “ 0, then σm “ pq, and
if 0 ă r ă k, then σm “ pa1a1`ra1`2r ¨ ¨ ¨ q. For instance, if σ “ p12345q, then to find σ297, write
297 “ 295` 2 so that σ297 “ σ2 “ p13524q.

The proof of Theorem 15(a) is simply the following canonical algorithm.

Algorithm 1 (Cycle Decomposition Algorithm) — To decompose any given permutation σ into
cycles.

Stp.1. To start a new cycle, pick the smallest element a of rns not in any previous cycle. (Start the
algorithm with a “ 1.)

Stp.2. Trace a “ σ0paq, σpaq, σ2paq, . . . until the first repetition when σN paq “ a. Add the cycle
pa, σpaq, σ2paq, ¨ ¨ ¨ , σN´1paqq to your list.

Stp.3. Repeat Step 1 till all elements of rns are part of some cycle.
Stp.4. Remove all cycles of length 1. Compose the remaining cycles together in any order to get the

cycle decomposition for σ.

Note that Sn is a finite group, so Steps 2 and 3 will always terminate. In the cycle decomposition,
any elements fixed by σ are simply omitted from the cycle notation. The decomposition is unique and
the cycles are disjoint because the relation a „σ bô Di : a “ σipbq is an equivalence relation on rns; the
equivalence classes of „σ are called the orbits of σ.

Example 58

The cycle decomposition algorithm applied to the ξ above yields the cycles p134q and p25q so that
ξ “ p134qp25q. From this, it is obvious that

ξ100 “ p134q100p25q100 “ p134q “

ˆ

1 2 3 4 5
3 2 4 1 5

˙

.

In this case, the orbit of 1 is t1, 3, 4u and the orbit of 2 is t2, 5u; there are only two orbits.
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From this we immediately see two things:

Proposition 5

The order of a permutation is the least common multiple of the lengths of the cycles in its cycle
decomposition.

Proposition 6

As soon as n ě 3, the group Sn is non abelian.

Proof. For n ě 3, the cycles p12q and p13q don’t commute. �

We know that any permutation in Sn can be written essentially uniquely as a product of disjoint
cycles. By contrast, every permutation can be written in many ways as the product of nondisjoint cycles.
However, there is something common among these decompositions: a “parity.”

Definition 47. A 2-cycle is called a transposition.

Note that, by definition, every transposition has order 2.

Proposition 7

Every σ P Sn can be written as a product of transpositions. Equivalently, Sn “ xT y, where
T “ tpijq|1 ď i ă j ď nu. In general, this decomposition need not be unique.

Proof. This follows from Theorem 15(a) along with the simple observation that

pa1a2 ¨ ¨ ¨ akq “ pa1akqpa1ak´1q ¨ ¨ ¨ pa1a3qpa1a2q.

Notice that p123q “ p13qp12q “ p12qp13qp12qp13q “ p12qp23q. �

Note that while the transpositions in the decomposition above are different, the parity of the number
of transpositions in the same. As we shall see, this is no coincidence.

4.5.3 Alternating Groups

Observe that the group Sn “acts on” any set with n elements, i.e. for any set A “ ta1, ¨ ¨ ¨ , anu, we can
define a map Sn ˆAÑ A by sending pσ, ajq ÞÑ aσpjq. We denote this by σpajq :“ aσpjq. Note that this
action satisfies the properties idrnspajq “ aj and σpτpajqq “ pσ ˝ τqpajq. (We will make the notion of
group actions more precise later.) To make the notion of “parity” precise, we make a series of definitions.

Definition 48. Let x “ px1, ¨ ¨ ¨ , xnq be an n-tuple of independent variables xj for 1 ď j ď n.
(a) Define the Vandermonde polynomial of x to be ∆pxq :“

ś

1ďiăjďnpxi ´ xjq.
(b) For any σ P Sn, define σx “ σpxq :“ pσpx1q, ¨ ¨ ¨ , σpxnqq “ pxσp1q, ¨ ¨ ¨ , xσpnqq.

Notice that (a) for any σ, τ P Sn, pσ ˝τqpxq “ σpτxq, and that (b) for any σ P Sn, ∆pσpxqq “ ˘∆pxq.
Therefore, the following definition makes sense.

Definition 49. Given any σ P Sn, define the sign of σ to be signpσq :“ ∆pσxq{∆pxq. The sign of
σ is sometimes also denoted as p´1qσ.

Clearly, this is independent of the choice of x, and depends only on σ.

Definition 50. A permutation σ P Sn is said to be even if signpσq “ 1 and odd if signpσq “ ´1.

The following lemma is the key:
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Lemma 8

For n ě 2, the map sign : Sn Ñ t˘1u is a surjective homomorphism.

Proof. For any τ, σ P Sn,

signpσ ˝ τq “
∆pσ ˝ τpxqq

∆pxq
“

∆pσpτxqq

∆pτxq

∆pτxq

∆pxq
“ signpσq signpτq.

Now notice that for n ě 2, signpidq “ 1 and signp12q “ ´1. �

We now prove what we promised.

Proposition 8

Any transposition is an odd permutation. A permutation is odd iff it is the product of an odd
number of transpositions, and it is even iff it is the product of an even number of transpositions. In
particular, the parity of the number of transpositions in any decomposition of a permutation into
transpositions is constant.

Proof. Notice that for any transposition pijq, if λ “ p1iqp2jq, then pijq “ λp12qλ. This means that
signpijq “ signpλq signp12q signpλq “ signpλq2 signp12q “ ´1. Let σ be any transposition, and write σ as
a product of m not-necessarily-disjoint transpositions; then signpσq “ p´1qm. �

From this, and the observation made above in the proof of Proposition 7, we see that a k-cycle is odd
iff k is even. Therefore, a permutation σ is odd iff the number of cycles of even length in its decomposition
is odd. We are now ready to talk about alternating groups.

Definition 51. The alternating group on n letters, denoted by An or An, is the kernel of the
sign homomorphism sign : Sn Ñ t˘1u.

In other words, the alternating group on n letters is simply the group of even permutations on n letters.
It is clear that An Ĳ Sn and for n ě 2, Sn{An – t˘1u so that |An| “ n!{2. This means that for small
n, An is already familiar to us. A1 and A2 are both trivial, while |A3| “ 3 so that A3 – Z{3Z. It is easy
to see that for n ě 4,An is nonabelian.

In general, there is a trend that for small n, the group Sn is the set of symmetries of a regular figure
in some small-dimensional Euclidean space, and the subgroup An is the set of rotations of the same
figure in that space. For instance, for n “ 2, this is true for a line segment in R1, for n “ 3, this is true
for a triangle in R2, for n “ 4, this is true for a tetrahedron in R3. Let’s show this for n “ 4.

Correction. This is not true for n “ 5 and the icosahedron in R3. While it is correct that the group of
rotations of an icosahedron is A5, the full symmetry group of the icosahedron is actually A5ˆZ2, which
is NOT isomorphic to S5, even though both have the same cardinality (120).

Theorem 16

The group A4 is the group of rotations of a regular tetrahedron in R3.

Proof. Recall that a tetrahedron has 4 vertices, 6 edges, and 4 faces, each of which is an equilateral
triangle. Label the vertices of the tetrahedron by 1, 2, 3, and 4. There are two types of axes of symmetry:
one that joins a vertex to the center of the opposite face, and the other that joins the midpoints of opposite
edges. The first one allows rotation by 2π{3 and 4π{3; for instance, about the axis through vertex 1,
the rotations by 2π{3 and 4π{3 correspond to the permutations p234q and p234q2 “ p243q of the vertices.
Similarly, we get the permutations p341q, p314q, p412q, p421q, p123q, p132q by such rotations. The second
kind (of which there are three) allows only rotation by π; for instance, rotation about π across the axis
joining the midpoints of edges 12 and 34 gives rise to the permutation p12qp34q. Similarly, we get the
permutations p13qp24q and p14qp23q. In all, we have 2 ˆ 4 ` 3 “ 11 nonindentity even permutations in
S4, so that along with the identity this gives us 12 even permutations. Since |A4| “

1
2 ¨ 4! “ 12, these

must be all. �
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Figure 1: Rotations of a Tetrahedron

Note that any rotation of the first type composed with any rotation of the second type can be
composed together to build the whole group. Therefore, the above discussion also tells us the nature of
all the subgroups of A4. They are precisely:

(a) Four 3-element subgroups generated by rotations of the first kind: xp234qy, xp341qy, xp412qy and
xp123qy.

(b) Three 2-element subgroups generated by rotations of the second kind: xp12qp34qy, xp13qp24qy and
xp14qp23qy.

(c) The unique 4-element subgroup generated by any two of the rotations of the second kind:

xp12qp34q, p13qp24qy “ te, p12qp34q, p13qp24q, p14qp23qu.

It is easy to see that this last subgroup of order 4 is isomorphic to K4, and that it is the only nontrivial
proper normal subgroup of A4. In particular, A4 is not simple. However, this is the only exception.

Theorem 17

For n “ 1, 2, 3 and n ě 5, An is a simple group.

We don’t (yet) have the tools to prove this, but we will. Let’s first look at something different: the
notion of a group acting on a set.
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5 Group Actions

One of the most fundamental notions and a unifying theme across mathematics is the notion of an
algebraic structure–a group, ring, or field–acting on another kind of structure–a set, an abelian group, a
topological space, etc. Usually when this happens, we are able to gain much understanding about both
of these structures. Let’s see how that works precisely.

5.1 Basic Definitions

Definition 52. A (left) group action of a group G on a set X is a map G ˆ X Ñ X written
pg, xq ÞÑ g ¨ x satisfying the following axioms:

(a) (Compatibility) @g, h P G,@x P X : g ¨ ph ¨ xq “ pghq ¨ x.
(b) (Identity) @x P X : eG ¨ x “ x.

Given a group action G ˆ X Ñ X, we then say that the group G acts on the set X, and write
G ýX.

Notice that we could have similarly defined the notion of a right group action. Often, when there is
no danger of confusion, we drop the central dot and denote a group action simply by gx. Sometimes,
instead of g ¨ x, group actions are denoted by xg; we will refrain from using this notation.

Observe that if a group G acts on a set X, then for each g P G we get a map ρg : X Ñ X
given by x ÞÑ g ¨ x. By properties (a) and (b), this has a two sided inverse ρg´1 , so that ρg P SX .
Further, the map ρ : G Ñ SX given by g ÞÑ ρg is a homomorphism. This homomorphism is called the
permutation representation associated to the group action. Observe that this process is reversible:
given a homomorphism ρ : GÑ SX , we get a natural action GˆX Ñ X given by pg, xq ÞÑ ρgpxq.

Note that when X is simply a set, this is the best we can do. However, if X has more structure than
simply that of a set, we can look at group actions compatible with the structure of X. For example, if
X is a group or ring or field, we can look at homomorphisms ρ : GÑ AutpXq, if it’s a topological space,
we can look at homomorphisms ρ : GÑ HomeopXq, etc.

Definition 53. Let ρ : GÑ SX be the permutation representation corresponding to a group action
GˆX Ñ X.

(a) The kernel ker ρ is called the kernel of the group action. It is the subgroup of G that fixes
every element of X.

(b) The group action is said to be trivial if ker ρ “ G and faithful if ker ρ “ teu. The condition
that a group action be trivial is that the all elements of the group induce the same (i.e.
identity) permutation; the condition that a group action be faithful is that distinct elements
of the group induce distinct permutations.

Let’s now look at some examples.

Example 59

Given any group G and any set X, G trivially acts on the set X by taking ρ : G Ñ SX to be the
null map.

Example 60

For any n P N0, the group Rˆ acts on the abelian group pRn,`q by s ¨ pv1, ¨ ¨ ¨ , vnq “ psv1, ¨ ¨ ¨ , svnq.
More generally, if V is any vector space over the scalar field F, then Fˆ acts on V by, well, scaling.

Example 61

For any set X, the set SX acts on X by σ ¨ x “ σpxq. The associated permuation representation is
the identity map ρ “ idSX : SX Ñ SX ; it is most certainly faithful. Also, Sn acts on any set with
n elements: if X “ tx1, ¨ ¨ ¨ , xnu, then Sn acts on X by σpxiq “ xσpiq.
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Example 62

For any n P N, Sn acts on the ring of polynomials Rrx1, ¨ ¨ ¨ , xns in such a way that is compatible
with their addition and multiplication. In other words, @σ P Sn,@p, q P Rrx1, ¨ ¨ ¨ , xns : σpp` qq “
σppq ` σpqq and σppqq “ σppqσpqq.

Example 63

The group A4 acts on the set of vertices, or the set of edges, or the set of faces of a regular
tetrahedron. The group S4 acts on the set of vertices, or the set of edges, or the set of faces, or the
set of diagonals etc., of a cube.

Note that while the action of S4 on the set of diagonals of a cube is faithful (in fact, the corresponding
permutation representation is an isomorphism), the action of S4 on the set of 3 opposite pairs of faces
of a cube is not faithful. In general, a a faithful action of a group G on a set X embeds ρ : G ãÑ SX .

Example 64

Let G be a group and set X “ G. Then G acts on X by left-multiplication (also called left-
translation). More precisely, consider the action G ˆX Ñ X given by g : x ÞÑ gx. This is called
the left regular action of a group G on itself. The cancellation property shows that this action is
faithful.

From this we immediately get:

Theorem 18 (Cayley’s Theorem)

Every group is isomorphic to a subgroup of some symmetric group. More precisely, the permutation
representation corresponding to the left regular action of G on itself is an embedding ρ : G ãÑ S|G|.

Historically, finite groups were not studied axiomatically the way we are doing, but rather as sub-
groups of the symmetric groups. Subgroups of the symmetric group are called permutation groups.
Cayley’s Theorem tells us that the approaches are equivalent. Another thing I want to point out is
that given any group action, we can work our cycle decompositions in this case too. If a group G acts
on a finite set X, then we get a map ρ : G Ñ SX and SX finite, so we may perform the same cycle
decomposition on ρg as before, and this can be done even without choosing a bijection θ : rns Ñ X.
Note that this does not require G to be finite.

5.2 Orbit-Stabilizer Theorem, Not-Burnside’s Lemma, Polyá Enumeration

One of the most fundamental theorem in the theory of group actions is the theorem connecting the size
of the orbit of an element to the size of its stabilizer.

Definition 54. Let G ýX.
(a) The relation „ on X given by x „ y ô Dg P G : x “ gy is an equivalence relation. The

equivalence class of any element x P X is called the orbit of x, and is denoted by Gx or Ox.
The set of equivalence classes is called the set of orbits of the action of G on X, and is denoted
by X{G.

(b) For any x P X, the subgroup Gx :“ tg P G : gx “ xu ď G is called the stabilizer of x. This
is sometimes denoted by stabpxq.

Because X{G is a partition of X, the following lemma is clear.

Lemma 9

If G ýX, then X “
š

OPX{GO. If X is finite, then |X| “
ř

OPX{G |O|.
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Example 65

Let Rˆ act on R by multiplication. Then R{Rˆ “ tt0u,Rˆu, i.e. there are two orbits: the orbit of
zero is simply t0u and the orbit of any nonzero element is Rˆ. The stabilizer

Rˆx “

#

Rˆ, if x “ 0,

t1u, if x ‰ 0.

Definition 55. A group action is called transitive if there is only one orbit. In other words, a group
action of group G on set X is transitive if @x, y P X : Dg P G : x “ gy.

Example 66

Consider the action of A4 on the set V of vertices of a tetrahedron. As usual, label the vertices of
the tetrahedron by 1, 2, 3, and 4. This is clearly transitive, so that the orbit of any vertex is the
whole set V . The stabilizer of any vertex is the 3-element subgroup of A4 generated by the rotation
through the axis of symmetry through that vertex. For instance, stabp1q “ xp234qy. Observe that
in this case, for any vertex v, |Ov| ¨ | stabpvq| “ 4ˆ 3 “ 12 “ |A4|. This is not a coincidence.

From these examples we see that the bigger the orbit of an element, the smaller its stabilizer. Let’s
make this precise.

Theorem 19 (Orbit-Stabilizer Theorem)

If G ýX, then for any x P X there is a bijection G{Gx Ñ
„ Gx. In particular, if G is finite, then

for any element x P X: |Gx| ¨ |Gx| “ |G|.

Proof. For fixed x P X, consider the map ϕx : G{Gx Ñ Gx by gGx ÞÑ gx. This is well-defined and
injective because gGx “ g1Gx ô g´1g1 P Gx ô pg´1g1qx “ x ô gx “ g1x. It is also surjective by
definition, so that it is a bijection. If G is finite, then |G{Gx| “ |G|{|Gx| “ |Gx|. �

Example 67

The above is precisely the statement of Lagrange’s Theorem if you take consider the natural action
by left multiplication of G on the set X “ G{H of left cosets of a subgroup H ď G.

From this, we prove the lemma that is usually (but incorrectly) attributed to mathematician William
Burnside, but which is originally due to Cauchy and Frobenius. First, we need some notation.

Definition 56. Let G ýX. For a particular g P G, let Xg :“ tx P X : gx “ xu. This is the set of
elements of X fixed by G; in other words Xg “ tx P X : g P Gxu.

Lemma 10 (The Lemma that is not Burnside’s/Cauchy-Frobenius Formula)

Let a finite group G act on a finite set X. Then

|X{G| “
1

|G|

ÿ

gPG

|Xg|.

In other words, the number of orbits is the average number of elements fixed by the elements of G.
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Proof. Notice first that
ř

gPG |X
g| “ |tpg, xq P G ˆ X : g ¨ x “ xu| “

ř

xPX |Gx|. Now, using the
Orbit-Stabilizer Theorem, we get that

ÿ

xPX

|Gx| “ |G|
ÿ

xPX

1

|Gx|
“ |G|

ÿ

OPX{G

ÿ

xPO

1

|O|
“ |G|

ÿ

OPX{G

1 “ |G| ¨ |X{G|.

�

This innocuous-looking statement has beautiful combinatorial consequences.

Example 68

In how many ways can we color the vertices of a regular tetrahedron with the colors red, green, and
blue? (Note that two colorings are the same if there is a rotation which gets from one to another.)

Solution. 15. Consider the set X of all possible colorings; this is just the set of functions t1, 2, 3, 4u Ñ
tR,G,Bu, so that it has size |X| “ 34 “ 81. The group A4 acts on X, and we are interested in the

number of orbits |X{A4|. By Lemma 10, |X{A4| “
1

12

ÿ

σPA4

|Xσ|.

(a) The identity e P A4 fixes everything, so that |X|e “ |X| “ 81.
(b) If σ “ p1qp234q, then to count the number of colorings fixed by σ, observe that it fixes vertex

1, so we can color it arbitrarily in 3 ways, and it cyclically permutes vertices 2, 3, 4, which
must therefore be the same color, which can be chosen independently in 3 ways, so that
|Xp234q| “ 3ˆ 3 “ 9. Similarly, for any rotation σ of the first kind, |Xσ| “ 9.

(c) If σ “ p12qp34q, then σ switches vertices 1 and 2 and switches vertices 3 and 4. Therefore, 1
and 2 must be the same color, chosen in 3 ways, and 3 and 4 must be the same color, chosen
in another 3 ways. This means |Xp12qp34q| “ 3ˆ 3 “ 9.

Putting this all together, we see that |X{A4| “
1

12
p1 ˆ 81 ` 8 ˆ 9 ` 3 ˆ 9q “ 15, so there a

15 inequivalent colorings of the vertices of a tetrahedron by three colors. These are nothing but
tR4, R3G,R3B,R2G2, R2GB,R2B2, RG3, RG2B,RGB2, RB3, G4, G3B,G2B2, GB3, B4u.

From the previous example, the following theorem is clear.

Theorem 20 (Unweighted Polyá Enumeration)

Let G be a finite group and X,C finite sets and let |X| “ n. Observe that if G ýX, then G ýCX

simply by g ¨ f “ f ˝ ρg´1 . For each g P G, ρg P SX – Sn, so that we may define cpgq to be the
number of disjoint cycles in the cycle decomposition of ρg (including the 1-element cycles, i.e. fixed
points). Then:

|CX{G| “
1

|G|

ÿ

gPG

|C|cpgq

Intuitively, a map f : X Ñ C corresponds exactly to a coloring, and |C|cpgq measures precisely the
number of colorings invariant under g P G. Observe that, while this was true of Example 68, in general,
cpgq, which is the number of cycles in ρg, need NOT be the number of cycles in g itself. This is illustrated
by the following example:
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Example 69

In how many ways can we color the faces of a cube using n colors?

Solution. The number of distinct (rotationally inequivalent) colorings is
1

24
pn6`3n4`12n3`8n2q.

To see this, take X “ r6s and label the faces from 1 through 6 by F1-R2-Ba3-L4-T5-Bo6, take C to
be the set of n colors, and G to be the group of rotational symmetries of the cube (which we know is
isomorphic to S4, but that information is not needed for this problem). By the Polyá Enumeration
Theorem,

|CX{G| “
1

24

ÿ

σPG

ncpσq.

Enumerating as before,
(a) If σ “ e, then ρe “ p1qp2qp3qp4qp5qp6q, so that cpeq “ 6.
(b) For the 3ˆ 2 “ 6 rotations by π{2 and 3π{2 about the 3 short diagonals: for instance, if the

axis is through T ´ Bo and rotation counterclockwise, then ρσ “ p1234qp5qp6q. This gives us
cpσq “ 3.

(c) For the 3 ˆ 1 “ 3 rotations by π about the short diagonals: for the same axis, we get
ρσ “ p13qp24qp5qp6q. This gives us cpσq “ 4.

(d) For the 4 ˆ 2 “ 8 rotations by 2π{3 and 4π{3 about the long diagonals: for instance, about
one of them, we get ρσ “ p126qp453q. In this case, cpσq “ 2.

(e) For the 6ˆ1 “ 6 rotations by π about the medium diagonals: for instance, about one of them,
we get ρσ “ p13qp26qp45q. In this case, cpσq “ 3.

Putting all of this together, we get that the number of colorings is

1ˆ n6 ` 6ˆ n3 ` 3ˆ n4 ` 8ˆ n2 ` 6ˆ n3

24
“

1

24
pn6 ` 3n4 ` 12n3 ` 8n2q

as needed.

As you can see, this is a pretty powerful tool! For instance, we can now immediately say that then number
of cube face colorings with 25 colors is 10229375, without listing out a single one! Similar techniques can
be applied to necklaces (with X being the set of beads and G “ Z|X|) and to bracelets (with X being
the set of beads and G “ D2|X|) to obtain coloring formulae. One of these is on your HW. There is
another, more general or weighted Polyá Enumeration formula, which is slightly more complicated, but
significantly more powerful. We only mention the statement.

Theorem 21 (Weighted Polyá Enumeration/Redfield-Polyá Theorem)

Let G be a finite group, X a finite set with |X| “ n, but let the set C of colors be possibly infinite.
Suppose we have a function w : C Ñ N0 assigning to each color a weight. Let fptq “

ř8

r“0 |w
´1prq|tr

be the generating function for the number of colors of a given weight. Define the cycle index

ZGpx1, ¨ ¨ ¨ , xnq “
1

|G|

ÿ

gPG

n
ź

k“1

x
ckpgq
j ,

where ckpgq is the number of k-cycles in ρg. If we define the weight of a coloring φ : X Ñ C by
w̃pφq “

ř

xPX wpφpxqq, then the generating function for the number of colored arrangements by
weight is:

8
ÿ

r“0

|w̃´1prq|tr “ ZGpfptq, fpt
2q, ¨ ¨ ¨ , fptnqq.

We can recover the unweighted version by letting all colors have weight zero, so that fptq “ n. There
is an even more general theorem obtained by replacing t everywhere with t “ pt1, t2, ¨ ¨ ¨ q where the
weight of each color is an ordered tuple of nonnegative integers. Needless to say, we will not attempt
to prove any of these here; nonetheless, the core idea in the proof is the same principle as we’ve seen
before–by counting the number of fixed points. This formula has applications to to graph theory and
combinatorics, chemistry (counting the number of distinct acyclic molecules), computer science (counting
the number of rooted ternary trees), etc.
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5.3 Rotation Groups and Platonic Solids

In this section, we use group theory to classify all Platonic solids in R3. First we review some definitions.

Definition 57. In R3, a Platonic solid is a regular convex polyhedron. In other words, it is a
polyhedron with congruent regular polygonal faces with the same number of faces meeting at each
vertex.

Example 70

The tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron are all Platonic
solids. Note that the tetrahedron is self-dual, the cube and the octahedron form a dual pair, and
the dodecahedron and the icosahedron form a dual pair.

Platonic solids were studied extensively since antiquity, because they were considered the epitomes of
symmetry and geometrical beauty. They are named after the Greek philosopher Plato, who associated
them with the classical elements (earth, air, water, fire), and a new element he called the “aether.” He
also remarked the dodecahedron was what the gods used to “arrange constellations in heaven.”

We will show that these are, in fact, all. Any proof of the classification of all Platonic solids involves
two steps:

(a) Showing that there can’t be any more than those mentioned above.
(b) Showing that, in fact, the above solids do exist.

The second task is mechanical, and can be performed by explicitly writing out coordinates. The first
is more subtle. Euclid’s Elements contains an elementary proof of the first part. We will use group
theory to show that same.

Definition 58. The following should be familiar from linear algebra.
(a) Given any vectors v, w P Rn (written as column vectors), their dot product is given by

v ¨ w “ vJw.
(b) For any v P Rn, the length of v is given by ‖v‖ “

?
v ¨ v. For any v P Rn, ‖v‖ ě 0 with

equality iff v “ 0.
The Cauchy-Schwarz Inequality tells us that for any v, w P Rn, |v ¨w|2 ď ‖v‖2 ‖w‖2

. Therefore, the
following definition makes sense:

(c) For v, w ‰ 0 P Rn, the angle between v and w is the θ “ cos´1 v ¨ w

‖v‖ ¨ ‖w‖
P r0, πs.

(d) A linear map Q P GLnpRq is orthogonal if QQJ “ QJQ “ In.

An orthogonal linear map preserves dot products because Qv ¨Qw “ pQvqJQw “ vJQJQw “ vJIw “
vJw. In particular, it preserves lenghts and angles, so that it is an isometry of Rn that preserves the
origin. From QQJ “ I, it is clear that |Q|2 “ 1 so that |Q| “ ˘1. An orthogonal linear map preserves
orientations if |Q| “ 1, otherwise it reverses orientations.

Definition 59. Let n ě 1.
(a) The orthogonal group in dimension n over R is Opn,Rq “ tQ P GLnpRq : QQJ “ Inu ď

GLnpRq.
(b) The special orthogonal group in dimension n over R is SOpn,Rq “ Opn,Rq X SLnpRq. It

is the group of orientation-preserving isometries, i.e. rotations, of n-dimensional Euclidean
space.

Example 71

The group SOp2,Rq – S1. It is a fun easy exercise to prove that the only finite subgroups of SOp2,Rq
are the Zn for n ě 1.

Observe that a unit vector v P Rn is an eigenvector of a rotation Q P SOpn,Rq with eigenvalue 1 iff
Qv “ v. This means that Q fixes v, i.e. v is a unit vector along an axis of the rotation Q. In this case,
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v is called a pole of Q. Conversely, given a pole of rotation, it is clear that we get an eigenvector with
eigenvalue 1.

Example 72

If v is a pole of Q, then so is ´v.

Example 73

Every unit vector v is a pole of In.

To classify all Platonic solids, it suffices to classify all finite subgroups of SOp3,Rq. For that we will
need the following theorem:

Theorem 22 (Euler Axis Theorem)

If n is odd, then every element of Q P SOpn,Rq has a pole. In other words, in odd-dimensional
Euclidean space, every rotation must have an axis of rotation.

The more traditional language for this, and the case that Euler proved, is “in 3-dimensional space,
every displacement of a rigid body that leaves at least one point fixed must be a rotation about some
axis passing through the body.”

Observe that this is not the case for even dimensions. For instance, the rotation

ˆ

0 ´1
1 0

˙

P SOp2,Rq

has no axis in R2. Essentially, any proof of this theorem boils down to the fact that a polynomial of
odd degree over the reals must have a real root. We give a proof of which the connection to the above
statement needs some thought.

Proof. It suffices to show that for odd n, if Q P SOpn,Rq, then |Q´ I| “ 0. But that is simple:

|Q´ I| “ |pQ´ IqJ| “ |QJ ´ I| “ |Q´1 ´Q´1Q| “ |Q´1pI ´Qq| “ |Q´1| ¨ |I ´Q| “ p´1qn|Q´ I|.

�

The particular case we are interested in is n “ 3.

Corollary 22.1 — Every element of Q P SOp3,Rq has a pole. Every element of Q is, upto change of

basis, given by

¨

˝

cos θ ´ sin θ 0
sin θ cos θ 0

0 0 1

˛

‚ for some θ P r0, 2πq. Additionally, every nonidentity element

has exactly two antipodal poles.

How is that relevant? Well, here’s the promised proof:

Theorem 23

The only finite subgroups of SOp3,Rq are the cyclic groups Zn, the dihedral groups D2n, A4,S4

and A5.

Proof. Let G ď SOp3,Rq be finite, and let |G| “ N . Let X “ tp P R3 : ‖p‖ “ 1^ Dg ‰ e P G : gp “ pu.
The key observation is that G ýX: if p is a pole of g, then hp is a pole of the conjugate hgh´1.
For p P X, let rp :“ |Gp|; by definition, rp ě 2. Consider the incidence correspondence Σ “ tpg, pq P
pG r teuq ˆ X : gp “ pu. Consider π1 : Σ Ñ G r teu; as we’ve observed, this map is exactly 2 : 1,
so that |Σ| “ 2N ´ 2. But now, by π2 : Σ Ñ X, the same is simply |Σ| “

ř

pPXprp ´ 1q. By the
Orbit-Stabilizer Theorem, it is clear that rp depends only on Op. Therefore, say X{G “ tO1, ¨ ¨ ¨ ,Oku;

let ni :“ |Oi| and let ri :“ rp for any p P Oi. Then |Σ| “
ř

pPXprp´ 1q “
řk
i“1 nipri´ 1q. But, again by
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the Orbit-Stabilizer Theorem, niri “ N . This means that 2N ´ 2 “
k
ÿ

i“1

N

ˆ

1´
1

ri

˙

, so that

2´
2

N
“

k
ÿ

i“1

ˆ

1´
1

ri

˙

.

At this point, the problem is almost solved! This equation is the key. Observe that the number on the
left is ă 2 while each summand on the right is ě 1{2, so that this immediately tells us that k ď 3. In
fact, the case k “ 1 is not possible either, because the number on the left is ě 1, while a single number
on the right would be ă 1. Therefore, we are left with only two cases:

(a) Case k “ 2. This gives us
2

N
“

1

r1
`

1

r2
. But now, r1, r2 ď N , so the only possibility is r1 “ r2 “ N ,

so that n1 “ n2 “ 1. This tells us that there are exactly two poles, each stabilized by the whole
group, and they can’t be carried over to one another; this means that the entire group is a subgroup
of rotations around one fixed axis, which is a copy of SOp1,Rq “ S1. Any finite subgroup of this is
a cyclic group. Therefore, in this case, G – Zn for some n ě 1.

(b) Case k “ 3. This gives us the equation
1

r1
`

1

r2
`

1

r3
“ 1`

2

N
. WLOG, let r1 ď r2 ď r3. Observe

that if r1 ě 3, then the LHS ď 1, whereas the RHS ą 1. Therefore, r1 “ 2.

1. Subcase r2 “ 2. This implies N “ 2r3 so that n3 “ 2. Observe that this means that |O3| “ 2;
but then the two poles in O3 must be antipodal to one another, say p and ´p. Now |G{Gp| “ 2,
so that exactly half of the group of the group fixes p and ´p, and the other half of the group
switches them. This means that Gp must be a subgroup of rotations about one axis. Since
|Gp| “ N{2, this tells us precisely that Gp – ZN{2. In this case, it is not hard to see that
G – DN . (What poles are contained in the first two orbits?)

2. Subcase r2 ě 3. In this case, if r2 ą 3, then LHS ď 1; this means that r2 “ 3. This gives

us the equation
1

r3
“

1

6
`

2

N
, which tells us that 3 ď r3 ď 5. Therefore, three possibilities

remain:

i. ri “ 2, 3, 3, ni “ 6, 4, 4 and N “ 12

ii. ri “ 2, 3, 4, ni “ 12, 8, 6 and N “ 24.

iii. ri “ 2, 3, 5, ni “ 30, 20, 12 and N “ 60.

These are all the possibilities, and it is not hard to see that in fact all of these possibilities
do arise, as simply A4,S4 and A5 respectively. Observe that the ni are the number of edges,
faces, and vertices OR the number of edges, vertices and faces. These give us the three dual
pairs: the tetrahedron, the cube-octahedron pair, and the icosahedron-dodecahedron pair.

�

Of course, the last part of this proof is informal, and does not actually give a construction for these
groups inside of SOp3,Rq. To complete the proof, one has to prove that these possibilities indeed arise;
but that is not hard to do once we write down coordinates for the vertices of each of the above polyhedra,
which is left as an exercise for the reader. From the above, we have shown that:

Theorem 24

The only Platonic solids are the ones we already know.

5.4 Groups Acting on Themselves by Conjugation–The Class Equation

One of the most important group actions that tells us a lot about the group structure is conjugation. It
is helpful to think of conjugation always as a “change of variables” or “change of labelling.”

Definition 60. Any group G ýG by pg, hq ÞÑ ghg´1. In fact, the corresponding permutation
representation is the map conj : GÑ AutpGq.

In general, this action is not faithful, nor is it transitive.
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Example 74

The kernel of the above action is ZpGq. The orbit of any element of ZpGq consists only of itself.

Definition 61. Let G ýG by conjugation.
(a) The orbits of G acting on itself are called conjugacy classes.
(b) The stabilizer of any element g P G is called the centralizer of g in G, and is written as

either CGpgq or Zpgq.

Observe that the centralizer of any element in the group is the subgroup of elements that commute
with it. The following example is clear:

Example 75

For g P G,Zpgq “ Gô g P ZpGq. Similarly, ZpGq “
Ş

gPG Zpgq.

Proposition 9

Any two elements in the same conjugacy class have the same order.

Proof. Let x, y s.t. x “ gyg´1. The claim follows because xk “ pgyg´1qk “ gykg´1. �

Conjugation also induces an action G ý℘pGq. Similarly, it induces an action on the set SubpGq of
all subgroups of G.

Proposition 10

For any g P G and H ď G, conjg : H Ñ gHg´1 is an isomorphism. In particular, H – gHg´1.

Definition 62. Let G ý℘pGq by conjugation.
(a) Two subsets S, T P ℘pGq are said to be conjugate if they lie in the same orbit in ℘pGq{G,

i.e. if Dg P G : gSg´1 “ T .
(b) For any S Ď G, the stabilizer of S under the action G ý℘pGq by conjugation is called the

normalizer of S in G, and is written NGpSq. In other words, NGpSq “ tg P G : gSg´1 “ Su.
(c) Now observe that NGpSq ýS by conjugation. The kernel of this action is called the central-

izer of S in G, and is denoted by CGpSq or ZpSq. In other words, ZpSq “ tg P G : @s P S :
gsg´1 “ su. From the definition, it is clear that ZpSq ď NGpSq.

It is clear that for any H ď G,H Ĳ NGpHq, and that H Ĳ Gô NGpHq “ G. Let’s get to one of the
easy but striking consquences of this definition.

Theorem 25 (The Class Equation)

Let G be a finite group, and let C1, . . . , Cr be distinct conjugacy classes not contained in the center
ZpGq. Then

|G| “ |ZpGq| `
r
ÿ

i“1

|Ci|.

Further, @i P rrs : |Ci| ě 2 and |Ci| divides |G|.

Proof. The conjugacy classes are precisely the one-element tzju for zj P ZpGq and C1, ¨ ¨ ¨ , Cr. The proof
follows from Lemma 9 and the Orbit-Stabilizer Theorem. �

Note that the class equation is also written sometimes as |G| “ 1` 1` ¨ ¨ ¨ ` 1
loooooooomoooooooon

ZpGq times

`
řr
i“1 |Ci|.
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Example 76

The class equation for an abelian group gives us no new information because ZpGq, r “ 0, and each
conjugacy class has size 1.

Example 77

The conjugacy classes in S3 are tpqu, tp12q, p13q, p12qu and tp123q, p132qu. The class equation tells
us that 6 “ 1` 3` 2.

Example 78

The conjugacy classes in A4 are tpqu, tp12qp34q, p13qp24q, p14qp23qu, tp123q, p243q, p341q, p421qu and
tp132q, p234q, p314q, p412qu. The class equation tells us that 12 “ 1` 3` 4` 4. This also shows that
the only normal subgroup of A4 is xp12qp34q, p13qp24qy – K4.

The key idea behind the applications of the class equation is that if |G| is not divisible by a lot of
primes, then we can get a lot of information about the structure of the conjugacy classes by the size
restrictions. One example of the above is:

Proposition 11

Let G be a finite p-group, i.e. let |G| “ pn for some prime p and n ě 1. Then
(a) The center ZpGq is nontrivial.
(b) G contains an element (equivalently subgroup) of order p.
(c) G contains a subgroup of order pm for every 0 ď m ď n.

Proof. (a) By the class equation pn “ |G| “ |ZpGq| `
řr
i“1 |Ci|. Now |Ci| ě 2 and |Ci| | pn means that

@i : p | |Ci|. From this, we see that p | pn ´
řr
i“1 |Ci| “ |ZpGq|. But now, |ZpGq| ě 1, so that

|ZpGq| ě p.

(b) Let g ‰ e P G. Then |g| | pn so that |g| “ pj for some 1 ď j ď n. Then gp
j´1

P G has order p.
(c) We proceed by induction on n. The case n “ 1 is easily verified. Suppose |G| is a group with

|G| “ pn for some n ě 2, and we have verified the proposition for n ´ 1. The case m “ 0 is
trivial, so assume that 1 ď m ď n. Consider ZpGq: by part (a), it is nontrivial, so it is itself a
finite p-group; by part (b), it has a subgroup N ď ZpGq of order p. Since N ď ZpGq, N Ĳ G.
The quotient |G{N | has order pn´1 and 0 ď m´ 1 ď n´ 1, we apply the inductive hypothesis to
find a subgroup H̄ of G{N of order pm´1. Then the complete preimage H of H̄ under the natural
projection π : GÑ G{N is a subgroup of G of order pm.

�

This already has nice consequences:

Corollary 25.1 — There are only two (isomorphism classes) of groups of order p2: namely, Zp2
and Zp ˆ Zp. In particular, every group of order p2 is abelian.

Note how this generalizes our verification that the only groups of order 4 are Z4 and K4 to arbitrary
prime squares.

Proof. Let G be a group with |G| “ p2. Since |ZpGq| ‰ 1, |ZpGq| P tp, p2u so that |G{ZpGq| P tp, 1u.
This means that G{ZpGq is cyclic, and so by a HW problem, trivial. This means that G is abelian. If G
has an element of order p2, then G – Zp2 . Hence assume that all nonidentity elements of G have order
p. Let x ‰ e P G and y P Gr xxy. Then both x and y have order p, and so xxyˆxyy – ZpˆZp. Observe
that xxy X xyy “ teGu, so that the map xxy ˆ xyy Ñ G given by pxa, ybq ÞÑ xayb is injective. Since both
groups are finite of order p2, it must be bijective and so an isomorphism. �

This is an excellent resource for more on conjugacy classes.
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5.5 Some More Groups of Small Order

We are now ready to classify all groups of order 8.

Theorem 26

There are five groups of order 8: Z8, Z4 ˆ Z2, Z
3
2 , D8 and Q.

Proof. Let |G| “ 8. Let g P G r teu; then by Lagrange, |g| P t2, 4, 8u. If |g| “ 8, then G – Z8. Hence
assume that all elements of G have order 2 or 4. Again, if every element had order 2, then by a HW
problem, G – Z3

2 . If Da P G with |a| “ 4, then H “ xay ď G has index 2, so that H Ĳ G. Let b P GrH.
Then bab´1 P H; further bab´1 has the same order as a. This leaves us with two possibilities:

(a) If bab´1 “ a, then ra, bs “ teu. This means that a and b commute. Then b must have order 2,
which gives us G – xa, b|a4, b2, ra, bsy – Z4 ˆ Z2.

(b) The only case left is bab´1 “ a´1. Now |b| P t2, 4u. Accordingly we have the two presentations:

1. If |b| “ 2, then G “ xa, b|a4, b2, pbaq2y – D8.

2. If |b| “ 4, then G “ xa, b|a4, b4, bab´1ay. It is easy to see in this case that the map a ÞÑ i, b ÞÑ j
and ab ÞÑ k is an isomorphism of G with Q8.

�

Also, from the preceding section, the only two groups of order 9 are Z9 and Z3 ˆ Z3. Therefore, we
have succeed in classifying all groups of order ď 9.

5.6 Conjugacy in Sn and the Simplicity of A5

We now see what it means to be conjugate in Sn. By applying Claim to a permutation, a bijection
θ : Ω Ñ Ω, we get that for any set Ω, conjθ : Ω Ñ Ω is an automorphism. We already knew that! But
notice what this tells us: it tells us the conjugation by any element of the symmetric group is just a
relabelling of elements. The following makes this precise:

Lemma 11

Let σ, τ P Sn, and suppose σ has cycle decomposition

pa1, a2, ¨ ¨ ¨ , ak1qpb1, b2, ¨ ¨ ¨ , bk2q ¨ ¨ ¨ .

Then the conjugate τστ´1 has the cycle decomposition

pτpa1q, τpa2q, ¨ ¨ ¨ , τpak1qpτpb1q, τpb2q, ¨ ¨ ¨ , τpbk2q ¨ ¨ ¨ .

In other words, it is obtained by replacing every entry i in the cycle composition by τpiq.

Proof. Observe that σpiq “ j ô τστ´1pτpiqq “ τpjq. �

The notion of the above invariant cycle structure is made precise by the following definition:

Definition 63. If σ P Sn is the product of disjoint cycles (inlcluding length 1) of length n1, ¨ ¨ ¨ , nr,
then this multiset λ “ tn1, ¨ ¨ ¨ , nru is called the cycle type of σ.

Then the above lemma can be summarized by saying any two elements in the same conjugacy class
have the same cycle type. Conversely, it is clear that any two elements having the same cycle type are
in the same class. Since each cycle type λ is a partition of n, i.e. λ % n, we get the following really
beautiful theorem:

Theorem 27

The conjugacy classes in Sn are in bijection with the partitions of n. In particular, the number of
conjugacy classes in Sn is ppnq, the number of partitions of n.
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Example 79

If σ1 “ p1qp35qp2476q and σ2 “ p2qp57qp3164q, then we choosing τ “ p1235764q gives us τσ1τ
´1 “ σ2.

Example 80

For n “ 4, the following gives a table for the partitions of 4 and a representative of each conjugacy
class having the given cycle type:

λ % 4 Representative of Conjugacy Class
t1, 1, 1, 1u pq

t1, 1, 2u p12q
t1, 3u p123q
t2, 2u p12qp34q
t4u p1234q

This tells us that the class equation for S4 is 24 “ 1` 6` 8` 3` 6, something we already knew.

Suppose the partition λ consists of b1 1’s, b2 2’s, etc., so that n “ b1 ` 2b2 ` ¨ ¨ ¨ ` nbn. Then what is
the size of the conjugacy class corresponding to this partition? Well, the number of ways of dividing a
set of n elements into labelled subsets of sizes c1, ¨ ¨ ¨ , ck is the multinomial coefficient

ˆ

n

c1; ¨ ¨ ¨ ; ck

˙

“
n!

c1!c2! ¨ ¨ ¨ ck!
.

If the subsets are unlabelled, you also have to divide by the number of ways to permute the subsets of
the same size. This gives you:

n!

p1!qb1p2!qb2 ¨ ¨ ¨ pn!qbn
¨

1

b1!b2! ¨ ¨ ¨ bn!
“

n!
śn
i“1pi!q

bipbi!q
.

Now within each selected cycle of length i, we can cyclically permute the elements inside in pi´1q! ways,
so that gives a factor of pi´ 1q!bi in the numerator. The end result is that the conjugacy class has size:

n!
śn
i“1pi!q

bipbi!q
¨

n
ź

i“1

pi´ 1q!bi “
n!

śn
i“1 i

bi ¨ bi!
.

Therefore, the class equation for Sn in general reads:

n! “
ÿ

b

n!
śn
i“1 i

bi ¨ bi!
,

where the sum runs over all tuples b “ pb1, ¨ ¨ ¨ , bnq of nonnegative integers s.t.
řn
i“1 ibi “ n. This gives a

nice way to index partitions that will be useful later: for b “ pb1, ¨ ¨ ¨ , bnq a tuple of nonnegative integers
s.t.

řn
i“1 ibi “ n, denote the partition t1, ¨ ¨ ¨ , 1

looomooon

b1 times

, . . . , n, ¨ ¨ ¨ , n
looomooon

bn times

u by λb % n and the conjugacy class in Sn

by Cb.
It would be tempting to assume that the same statement (i.e. conjugate iff same cycle type) is true

for An too; however, that is NOT the case. The reason for that is that there may be elements of An
having the same cycle type may be related by conjugation by elements of Sn r An but not An; in that
case, said elements may not be conjugate in An. This does indeed happen. The following section is
devoted to making sense of when exactly that happens. First we prove a general fact:

Lemma 12

If group G ýX transitively, and H ď G with |G{H| “ 2, then the induced action H ýX has
either one or two orbits.
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Proof. First note the induced action corresponds the permutation representation ρ ˝ ι : H Ñ SX where
ι : H ãÑ G and ρ : G Ñ SX . Now let a P G r H; then G “ H Y Ha. This means that for fixed
x P X : S “ Gx “ HxYHax. If Hx “ Hax, then X “ Hx so that there is only on orbit; this happens
iff ex P Hax ô Db R H : bx “ x. If this is not the case, then there are two orbits, that of x and that of
ax. �

From the above proof, it is clear that there is one orbit iff Dx P X : Db R H : bx “ x ô @x P X :
Db R H : bx “ x. One direction of the iff is clear; for the other direction, let x P X and b R H be
given s.t. bx “ x, and let x1 be any other element. By transitivity of G, Dg P G : x1 “ gx. Then
gbg´1 R H : gbg´1x1 “ x1.

Proposition 12

If C Ď Sn is a conjugacy class, then there are three possibilities:
(a) C X An “ H. This happens iff C contains odd permutations.
(b) C Ď An is a conjugacy class in An. This happens iff some element of C commutes with an odd

permutation.
(c) C Ď An is the union of two conjugacy classes of An. This happens otherwise, and in this case

both the conjugacy classes that C breaks into have the same size.

Proof. Apply the above lemma to G “ Sn, H “ An, X “ C. The conjugacy class remains stable iff
Dσ P C, τ P Sn r An s.t. τστ´1 “ σ. For the last claim, assume that σ P C and τ P Sn r An then the
two orbits are the orbits of σ and τστ´1; but now conjτ is an bijection between them, so that they have
the same size. �

The following gives a handy criterion of determining whether the elements of a conjugacy class
commute with odd permutations:

Proposition 13

Given a tuple b “ pb1, ¨ ¨ ¨ , bnq, the conjugacy class Cb remains stable iff EITHER it contains a cycle
of even length OR it contains two cycles of the same length. Equivalently, a conjugacy class splits
iff @i : b2i “ 0 and b2i`1 ď 1.

Proof. If σ P Cb contains a cycle c of even length, then σ commutes with c P Sn rAn. If it contains two
distinct cycles pa1a2 ¨ ¨ ¨ a`q and pb1b2 ¨ ¨ ¨ b`q of odd lenght `, then it commutes with pa1b1qpa2b2q ¨ ¨ ¨ pa`b`q P
SnzAn. Conversely, assume that σ “ c1c2 ¨ ¨ ¨ cs is a product of distinct odd cycles. Suppose τ P Sn

commutes with σ; then τ must fix each of the cycles. This means that τ has the form τ “ ca11 ca22 ¨ ¨ ¨ cass
for ai P Z; this shows that τ P An. �

Example 81

The following gives the structure of conjugacy classes for n “ 5.

b λ Representative of Cb S5 A5

p5, 0, 0, 0, 0q t1, 1, 1, 1, 1u pq 1 1
p3, 1, 0, 0, 0q t1, 1, 1, 2u p12q 10 ´

p2, 0, 1, 0, 0q t1, 1, 3u p123q 20 20
p1, 0, 0, 1, 0q t1, 4u p1234q 30 ´

p0, 0, 0, 0, 1q t5u p12345q 24 12` 12
p1, 2, 0, 0, 0q t1, 2, 2u p12qp34q 15 15
p0, 1, 1, 0, 0q t2, 3u p12qp345q 20 ´

From this, we are ready to prove what we wanted.
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Theorem 28

A5 is simple.

Proof. From the above example, the class equation for A5 is 60 “ 1 ` 20 ` 12 ` 12 ` 15. Now observe
that any N Ĳ A5 must be a union of conjugacy classes that also happens to be a subgroup, but in the
above sum, there is no subsum containing 1 that is a divisor of 60. �

One proof of the general case n ě 5 (that can be found in DF) proceeds by induction, and the above
theorem is crucial to establishing the base case.

5.7 Sylow Theorems

The Sylow Theorems, named after Norwegian mathematician Peter Ludwig Sylow who proved them in
1873, provide a huge deal of information about the structure of subgroups of a given finite group. Let’s
first go ahead and state them.

Theorem 29 (Sylow Theorems)

Let G be a finite group and p be a prime.
1 If |G| “ pem for some p - m. Then G contains a subgroup of order pe. Such a subgroup

is called a Sylow p-subgroup of G, and the set of all Sylow p-subgroups of G is denoted by
SylppGq.

2 If K P SylppGq and H is any p-subgroup of G, then H is contained in some conjugate of K,
i.e. Dg P G : H Ď gKg´1. In particular, any two Sylow p-subgroups of G are conjugate in G.

3 If np :“ |SylppGq|, then np | m and np ” 1 pmod pq.

The whole power of the Sylow Theorems rests on the fact that the first one tells us that we can find
a Sylow p-subgroup K of G, the second one tells us that K Ĳ G iff np “ 1, and the third one imposes
powerful number-theoretic restrictions on np. These restrictions sometimes allow us to conclude that
np “ 1, and then lo! we have found a normal subgroup of G. Otherwise, we may try to interplay the
different Sylow p-subgroups against each other for values primes p, and sometimes that provides very
valuable information too.

Example 82

If p - |G|, then SylppGq “ tteuu, and all the statements are trivially true. If |G| “ pe, then
SylppGq “ tGu and all the statements are trivially true.

Example 83

Let’s verify the theorems for G “ A4 and p “ 2.
1. |G| “ 12 “ 223 so that e “ 2,m “ 3. We know that A4 has a unique subgroup of order 4,

namely H “ xp12qp34q, p13qp24qy – K4. Therefore, Syl2pA4q “ tHu.
2. It is clear that any 2-subgroup of A4 is contained in a conjugate (in fact, the conjugate by e)

of the above subgroup H. In fact, H Ĳ A4.
3. Here n2 “ 1, n2 | 3 and n2 ” 1 pmod 2q.
How about for G “ A4 and p “ 3?

1. 12 “ 3 ¨ 4 so that e “ 1,m “ 4. In this case, Syl3pA4q “ txp123qy, xp234qy, xp341qy, xp412qyu.
2. Since e “ 1, there are no nontrivial 3´subgroups other than the Sylow 3-subgroups.
3. Here n2 “ 4, n2 | 4 and n2 ” 1 pmod 3q.

Example 84

Suppose G “ S3 and p “ 3. Then n3 | 2 ^ n3 ” 1 pmod 3q ñ n3 “ 1; therefore, there is a unique
Sylow 3-subgroup of S3, which must be normal in S3. Therefore, Syl3pS3q “ tA3u.
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Example 85

Let’s see if starting with the Sylow Theorems, we can get some information about group structure.
Suppose G is a group of order 15. Then n3|5 ^ n3 ” 1 pmod 3q ñ n3 “ 1. Similarly, n5|3 and
n5 ” 1 pmod 5q ñ n5 “ 1. Therefore, D!H P Syl3pGq and D!K P Syl5pGq; we will see in the next
section on recognizing direct products that this is sufficient to conclude that G – H ˆK – Z15.

The proof of the Sylow Theorems needs two key lemmas:

Lemma 13

If n “ pem for some p - m, then p -
ˆ

n

pe

˙

.

Proof. The case e “ 0 is clear. For e ě 1, note that

ˆ

n

pe

˙

“

pe´1
ź

k“0

n´ k

pe ´ k
.

For k “ 0, n{pe “ m, which is not divisible by p. For 1 ď k ď pe ´ 1, if k “ pf l for p - f , then f ă e;
so that n ´ k “ pf ppe´fm ´ lq and pe ´ k “ pf ppe´f ´ lq and since e ´ f ě 1, p - pe´fm ´ l, pe´f ´ l;
therefore each term in product is indivisible by p. �

Lemma 14

Note that G ý℘pGq by left-multiplication. If U Ď G and H “ stabpUq, then |H| divides |U |.

Proof. Note that H acts faithfully on U by left-multiplication, and for h P H,Uh “

#

U, if h “ e,

H, otherwise.

This means that U “
š

OPU{H O where for each orbit, |O| “ |H|. Therefore, |U | “ |U{H| ¨ |H|. �

We are now in a position to prove the Sylow Theorems.

Main Proof. If e “ 0, then all theorems are trivial. Hence assume e ě 1.
1. Let S “ tU Ď G : |U | “ peu Ď ℘pGq be the set of subsets of G of order pe. Then G ýS

by left-multiplication. Now by Lemmas 9 and 13, p -
`

n
pe

˘

“
ř

OPS{G |O|; therefore, DU P S s.t.

p - |OU |. Let H “ stabpUq; by Lemma 14, |H| | |U | “ pe. By the Orbit-Stabilizer Theorem,
pe | pem “ |G| “ |H| ¨ |OU |, but since p - |OU |, this means that pe | |H|. This shows that |H| “ pe.

2. If H “ teu, the claim is trivial, hence assume |H| ě p. Note that G ýG{K by left-multiplication
and stabpeKq “ K. Restricting the action to H Ď G ýG{K gives us an action of a p-group H on
a set G{K with p - |G{K|; by HW5 Q3, DgK P G{K s.t. all of H fixes gK, i.e. H Ď stabpgKq “
g stabpeKqg´1 “ gKg´1.

3. Theorem 2 tells us that G ýSylppGq transitively by conjugation. For fixed K P SylppGq, stabpKq “
NGpKq ě K. so that pe “ |K| | NGpKq. By the Orbit-Stabilizer Theorem, pem “ |G| “
|OK | ¨ | stabpKq| “ np ¨ |NGpKq|, so that np | m.
Next, K ýSylppGq by conjugation; first we show that SylppGq

K “
Ş

kPK SylppGq
k “ tKu: suppose

that H P SylppGq is fixed under conjugation by every element of K, i.e. K ď NGpHq. But then
H,K P SylppNGpHqq with H Ĳ NGpHq so that Theorem 2 tells us that H “ K. Finally, Lemma 9
tells us that

np “ |SylppGq| “
ÿ

OPSylppGq{K

|O| “ 1`
ÿ

OPSylppGq{K

O‰tKu

|O|,

where for the orbits O other than tKu, 2 ď |O| - |K| “ pe, so that p | |O|. Therefore, reducing
mod p, we get the np ” 1 pmod pq.

�
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5.8 Recognizing Direct and Semidirect Products

Now that we have Sylow Theorems, we need some ways to recognize the structure of a group from the
structure of its subgroups. The following theorem is a step towards that:

Theorem 30 (Recognizing Direct Products)

Suppose G is a finite group. Suppose we know subgroups H,K ď G s.t.
(a) H,K Ĳ G.
(b) H XK “ teu.
(c) |H| ˆ |K| “ |G|.

Then G – H ˆK. Note in particular that the condition (b) can be replaced by p|H|, |K|q “ 1.

Proof. Let h P H, k P K. Consider the commutator rh, ks “ hkh´1k´1. Now H Ĳ G ñ rh, ks “
hpkh´1k´1q P H, and K Ĳ G ñ rh, ks “ phkh´1qk´1 P K, so that rh, ks P H X K “ teu. Therefore,
every element of H commutes with every element of K. Consider the map ϕ : HˆK Ñ G by ph, kq ÞÑ hk.
A priori this is only a set map, but because of the observation above, ϕpph1, k1q¨ph2, k2qq “ h1ph2k1qk2 “

h1pk1h2qk2 “ ϕph1, k1q ¨ ϕph2, k2q, so that this is in fact a homomorphism. By hypothesis (b), this map
is injective; since G and H ˆK are finite sets of the same cardinality, this is the required isomorphism.
The last statement is true because if g P H XK, then |g| | |H| ^ |g| | |K| ñ |g| | p|H|, |K|q “ 1. �

Example 86

This completes the proof started in Example 85 that there is only one group of order 15.

Let’s look at another example that will help us get intuition for what comes next.

Example 87

Suppose G is a group of order 21. Then n3 | 7^ n3 ” 1 pmod 3q ñ n3 P t1, 7u, and n7 | 3^ n7 ” 1
pmod 7q ñ n7 “ 1.

(a) If n3 “ 1, then as before, G – Z3 ˆ Z7.
(b) The case n3 “ 7 is trickier. Note that in this case there are 7 Sylow 3-subgroups (all of which

be isomorphic to Z3) and a unique Sylow 7-subgroup, say H, which is normal and isomorphic
to Z7. Observe that any of the Sylow 3-subgroups must intersect only in the identity, and any
of the Sylow 3-subgroups interesects H only in the identity, so that tells us that these must
contain exactly 2ˆ 7` 6ˆ 1 “ 20 nonidentity elements; so these must be all.
Now let H “ xay and b P G rH; by the above discussion, |b| “ 3. Since H Ĳ G, bab´1 P H,

say bab´1 “ aj . Then a “ b3ab´3 “ aj
3

so that j3 ” 1 pmod 7q so that j P t1, 2, 4u.

1. Suppose j “ 1; then a and b commute. This tells us that G – xa, b|a7, b3, ra, bsy – Z3ˆZ7

for which n3 “ 1, which is not possible.

2. Suppose j “ 4; then by choosing c “ b2 instead of b would give us that cac´1 “ a42

“ a2.
This means that WLOG we can assume that j “ 2. This gives us the group presentation
xa, b|a7 “ b3 “ e, bab´1 “ a2y.

It is not hard to see that the subgroup of S7 generated by a “ p1234567q and y “ p235qp476q
has exactly this presentation, so that in fact, there is a unique nonabelian group of order 21.

An exactly analogous argument can be used to show that we are essentially done classifying groups
of order pq. We record the statement here, and the proof is left as an exercise to the reader. (It can also
be found in DF.)
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Theorem 31 (Classification of Groups of Order pq)

Let G be a group with |G| “ pq for primes p ă q. Then:
(a) If q ı 1 pmod pq, then G can only be Zp ˆ Zq
(b) If q ” 1 pmod pq, then either G – Zp ˆZq OR G is the unique nonabelian group of order pq.

Further, G can be realized a subgroup of Sq.

Essentially, what happened in the above example is that we found a subgroup H Ĳ G, and a subgroup
K ď G not necessarily normal, but with an action of K ýH by conjugation. This leads us naturally to
the definition of semidirect products.

Proposition 14

Suppose H and K are groups, and let ϕ : K Ñ AutpHq be any homomorphism. Let G “ tph, kq :
h P H, k P Ku with the following law of composition:

ph1, k1q ¨ ph2, k2q “ ph1 ϕk1ph2q, k1k2q.

Then this multiplication makes G into a group of order |H| ˆ |K|, and the subgroups tph, eKqu and
tpeH , kqu are copies of H and K as subgroups of G. Further,

(a) H Ĳ G.
(b) H XK “ teu.
(c) @h P H, k P K : khk´1 “ ϕkphq.

Proof Sketch. It is straightforward to verify that the given construction makes a group with identity
peG, eHq and inverse ph, kq´1 “ pϕk´1ph´1q, k´1q. The other propositions are similarly verified. The
reader is encouraged to fill in the details. �

Definition 64. In the notation of the above proposition, G is called the semidirect product of
H and K w.r.t ϕ, and is denoted by H ¸ϕ K. (If there is no danger of confusion, or if all such
semidirect products for nontrivial ϕ are isomorphic, then we denote it simply by H ¸K.)

The notation is there to remind us that H Ĳ H ¸K, but it is not necessarily true that K Ĳ H ¸K.

Example 88

Taking ϕ to be the null map recovers the direct product, i.e. H ¸e K “ H ˆK, and in this case
K Ĳ H ¸e K too.

Example 89

Taking H “ Zn “ xry, K “ Z2 “ xsy and ϕ : K Ñ AutpHq by ϕs “ inv recovers the dihedral group,
i.e. D2n – Zn¸ϕ Z2. In general, if H is any abelian group and K “ Z2 “ xsy, the ϕ : K Ñ AutpHq
by ϕs “ inv creates a semidirect product H ¸ Z2. The group Z8 ¸ϕ Z2 is sometimes denoted by
D8.

Example 90

Taking H “ Z7 “ xay,K “ Z3 “ xby and ϕ : K Ñ AutpHq by ϕbpaq “ a2 recovers the (unique)
nonabelian group of order 21, i.e. it is Z7¸Z3. Similarly, the (unique) nonabelian group of order pq
for p | q´1 can be denoted by Zq¸Zp. (Uniqueness can be shown by realizing that homomorphisms
Zp Ñ AutpZqq are equivalent in an appropriate sense.)

As before, we have a recognition theorem.
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Theorem 32 (Recognizing Semidirect Products)

Suppose G is a finite group with subgroups H and K such that:
(a) H Ĳ G.
(b) H XK “ teu.
(c) |H| ˆ |K| “ |G|.

Let ϕ : K Ñ AutpHq be the homomorphism k ÞÑ conjk. Then G – H ¸ϕ K.

Proof. As before, consider the map Φ : H ¸ϕ K Ñ G given by ph, kq ÞÑ hk. This is a homomorphism
because:

Φpph1, k1q¨ph2, k2qq “ Φph1ϕk1ph2q, k1k2q “ h1ϕk1ph2qk1k2 “ h1k1h2k
´1
1 k1k2 “ h1k1h2k2 “ Φph1, k1q¨Φph2, k2q.

By condition (b), this map is injective, so that by condition (c) it is an isomorphism. �

5.9 A Few More Groups of Small Order (Final)

Let’s now use the above theory to classify some more groups!

Theorem 33 (Classification of Groups of order 2p)

Let G be a group with |G| “ 2p for prime p. Then either G – Z2p or G – D2p.

Note that this is a special case of Theorem 31, but since we didn’t prove that, let’s at least prove this.

Proof. We’ve already done the case p “ 2; hence assume that p ě 3. Observe that np ” 1 pmod pq^np |
2 ñ np “ 1. Let H be the unique Sylow p-subgroup of G, and let K be any Sylow 2-subgroup. Then H
and K satisfy the conditions of Theorem 32, so this tells us that G – Zp¸ϕ Z2 for some homomorphism
ϕ : Z2 Ñ AutpZpq. If Z2 “ xsy and Zp “ xry, then ϕ : s ÞÑ pr ÞÑ rjq for some 1 ď j ď p ´ 1. For ϕs
to have order 2, we must have rj

2

“ ϕ2
sprq “ idHprq “ r so that j2 ” 1 pmod pq ñ j ” ˘1 pmod pq. If

j “ 1, we recover G – Zp ˆ Z2 – Z2p; if j “ ´1 we recover G – D2p. �

This means that we are done classifying groups of order ď 11. Let’s now do 12.

Theorem 34

There are five groups of order 12: these are Z4 ˆ Z3,K4 ˆ Z3,A4, D12 and a unique nontrivial
Z3 ¸ Z4.

Proof. Let G be a group s.t. |G| “ 12. Then n2|3 ^ n2 ” 1 pmod 2q ñ n2 P t1, 3u, and n3|4 ^ n3 ” 1
pmod 3q ñ n3 P t1, 4u.

(a) If n2 “ n3 “ 1, let H be the unique Sylow 2-subgroup and K be the unique Sylow 3-subgroup.
Then by Theorem 30, G – H ˆK. Since we have two choices for H, namely H “ Z4 and H “ K4,
and one choice for K, namely K “ Z3, this gives us the two (abelian) possibilities G – Z4 ˆ Z3

and G – K4 ˆ Z3 – Z2 ˆ Z2 ˆ Z3 – Z2 ˆ Z6.
(b) Now suppose that n2 “ 1 and n3 “ 4. Let Syl3pGq “ tK1, ¨ ¨ ¨ ,K4u. By Sylow Theorem 2,

G ýSyl3pGq transitively by conjugation, and this gives a permutation representation ρ : GÑ S4.
We show that G maps isomorphically to A4. Now for i P r4s, by the Orbit-Stabilizer Theorem,
the stabilizer stabpKiq “ NGpKiq has order 3, but it contains at least Ki, so that NGpKiq “ Ki.

Therefore, ker ρ “
Ş4
i“1 stabpKiq “ teu, so that the action is faithful, and ρ : G ãÑ S4. Then

im ρ Ĳ S4 is a subgroup of order 12 and index 2; but from the class equation of S4, which is
24 “ 1` 6` 8` 3` 6, the only subgroup of S4 of order 12 is A4. Therefore, in this case, G – A4.

(c) We show that the case n2 “ 3, n3 “ 4 is not possible. Suppose that there were 4 Sylow 3-
subgroups, then their pairwise intersections must be trivial, this gives us 4 ˆ 2 “ 8 nonidentity
elements, leaving the identity and three other nonidentity elements, which must then form the
unique Sylow 2-subgroup (because the intersection of any Slyow 2-subgroup and Sylow 3-subgroup
must be trivial.)
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(d) The only case left is n2 “ 3, n3 “ 1. In this case, if H is the unique Sylow 3-subgroup (so
H – Z3), and K is any Sylow 2-subgroup, then Theorem 32 tells us that G – Z3 ¸ϕ K for
some homomorphism ϕ : K Ñ AutpZ3q. Observe that we’ve seen before that AutpZ3q – Z2: if
Z3 “ te, b, b

2u, then the only nonidentity automorphism of Z3 swaps b and b2. There are only two
possibilities for K: K “ Z4 and K “ K4. Let’s treat these separately.

1. If K “ Z4 “ xay, then we want to classify all homomorphisms Z4 Ñ Z2; but it is clear that
there only two such homomorphisms, the null map corresponding to a ÞÑ e and the map that
sends a to the nonidentity element. The null map gives us the direct product Z3 ˆ Z4 for
which n2 “ 1, so that is not possible. The only other map left is the map Z4 Ñ AutpZ3q given
by ϕa “ inv. This gives us the unique nontrivial semidirect product Z3¸Z4 with presentation
xa, b|a4 “ b3 “ e, aba´1 “ b´1y. (We still need to show that there is no collapsing and that

such a group exists, but it is easy to see that a “

ˆ

0 ´1
1 0

˙

and b “

ˆ

e2πı{3 0

0 e4πı{3

˙

generate

a subgroup of SL2pCq with exactly these relations, so that such a group indeed exists.)

2. Suppose K “ K4, and we want to classify all nontrivial maps K Ñ AutpZ3q. Observe that
in this case, the stabilizer of b for the action K ýtb, b2u must have size 2, so that there is
u ‰ e P K : ubu “ b, and also v P K : vbv “ b2. Since K is abelian, uv “ vu, so this gives
a presentation Z3 ¸ K4 “ xu, v, b|u2 “ v2 “ b3 “ e, uv “ vu, ub “ bu, vb “ b2vy. This is
sufficient to determine the group table completely, so there is at most one such isomorphism
class. But the group D12 is missing from our discussion so far (i.e. it’s not isomorphic to any
of the ones we’ve found above), and we know it’s a group of order 12, so that this must be it.
(Exercise: find out the isomorphism explicitly.)

�

With this, we are done classifying groups of order ď 15. The following table summarizes our findings:
for n P N, let gpnq denote the number of (isomorphism classes of) groups of order n.

n gpnq Classes
1 1 Z1

2 1 Z2

3 1 Z3

4 2 Z4, Z
2
2

5 1 Z5

6 2 Z6,S3

7 1 Z7

8 5 Z8, Z4 ˆ Z2, Z
3
2 , D8, Q

9 2 Z9, Z
2
3

10 2 Z10, D10

11 1 Z11

12 5 Z12,K4 ˆ Z3,A4, D12, Z3 ¸ Z4

13 1 Z13

14 2 Z14, D14

15 1 Z15

Beyond this, there are already 14 groups of order 16. Needless to say, classifying them is beyond the
scope of this course. In general, as you’ve observed, it becomes harder and harder to classify groups as
their sizes increase. Nonetheless, it is a tremendous feat of modern mathematics that we have classified
all finite simple groups, and this classification was completed in 2012, with the help of powerful computer
machinery.

To conclude, we mention only a result that (probably) confirms your intuition about some abelian
groups.

55



5 Group Actions

Theorem 35 (Fundamental Theorem of Finitely Generated Abelian Groups)

If G is a finitely generated abelian group, then G can be written as G “ Zr ˆ
śk
i“1pZ{p

ai
i Zq for

some primes pi and exponents ai ě 1. Moreover, this decomposition into elementary divisors is
unique upto the order of factors. The part Zr is called the free part of G, r is called the rank of
G, and the remaining part is called the torsion subgroup of G, and is denoted by Gtors.

(Note that there is another form of this theorem that deals with the invariant factor decomposi-
tion.) In particular, G is finite ô G “ Gtors ô r “ 0. From this, it is clear that the isomorphism classes

of abelian groups of order n “
śk
i“1 p

ei
i and in bijective correspondence with the cartesian product of

all partitions of the ei’s. In particular, there are
śk
i“1 ppeiq such groups, where p denotes the partition

function.
The proof of this theorem is (just) beyond the reach of this course, and is usually part of the content

of a second course in abstract algebra. That concludes our journey of group classifications.

56



6 A First Encounter with Category Theory

6 A First Encounter with Category Theory

Now that we’ve talked a lot about groups, let’s briefly talk about some other structures from abstract
algebra.

6.1 Rings and Fields

Definition 65. A ring is an ordered triple pR,`,ˆq where R is a set and `,ˆ : R ˆ R Ñ R are
binary operations satisfying the following axioms:

(a) (Additive Structure) pR,`q is an abelian group.
(b) (Multiplicative Structure) pR,ˆq is a semigroup, i.e. ˆ is associative.
(c) (Distributive Laws) @a, b, c P R : aˆ pb` cq “ aˆ b` aˆ c and pa` bq ˆ c “ aˆ c` bˆ c.

Further,
(d) If ˆ is commutative, the R is said to be a commutative ring.
(e) If pR,ˆq is a monoid, i.e. it has an identity (usually denoted by 1), then R is said to be

unitary ring, or a ring with unit.

We shall usually simply write ab in stead of a ˆ b; 0 is taken to be the identity of pR,`q and ´a
the additive inverse. The conditions all seem fairly natural and general, except possibly the requirement
that pR,`q be an abelian group: that is actually forced upon us by distributivity, i.e. even if we assume
R to be unitary but pR,`q not necessarily abelian, the distributive laws tell us that

a` a` b` b “ p1` 1qa` p1` 1qb “ p1` 1qpa` bq “ 1pa` bq ` 1pa` bq “ a` b` a` b,

from which a` b “ b` a.

Example 91

The zero ring t0u is the unique ring of size 1. Only in this ring, 1 “ 0.

Example 92

The prototypical example of a ring is the ring of Zahlen, i.e. integers, Z.

Example 93

For any n P N0, we have the ring Z{nZ. This is an example of a more general construction called a
quotient ring.

Example 94

The ring of even integers, 2Z, is a commutative nonunitary ring.

Example 95

For n P N, the ring of nˆ n matrices with real (resp. complex) entries is denoted by MnpRq (resp.
MnpCqq. For n ě 2, this is a noncommutative unitary ring.

Some authors like to reserve the word ring for commutative unitary rings (or cr1ngs), and specifiy
explicitly if their rings are noncommutative or unitary; we will not follow that convention here.

The following are elementary consequences of the definitions:
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Proposition 15

Let R be a ring. Then for all a, b P R:
(a) 0a “ a0 “ 0.
(b) p´aqb “ ap´bq “ ´pabq.
(c) p´aqp´bq “ ab.
(d) If 1 P R, then it is unique and ´a “ p´1qa.

Proof. These follow immediately from the axioms. Details can be found in Proposition 1 of DF 7.1. �

We make two basic definitions:

Definition 66. If R and S are rings and R Ď S, then R is called a subring of S.

We have the usual handy characterization: to check that R is a subring of S, it suffices to check that
it is nonempty and closed unders subtraction and multiplication. Some authors also require that 1S P R;
that will usually be clear from context.

Definition 67. An element u P R is said to be a unit if Du1 P R : uu1 “ 1. The set of units of R
form a group under multiplication, and this is denoted by Rˆ.

Example 96

Zˆ “ t˘1u – Z2.

Example 97

pZ{nZqˆ “ tā : pa, nq “ 1u.

Example 98

The ring of Gaussian integers, defined to be Zrıs :“ ta` bı : a, b P Zu is a subring of C. It is not
hard to show that Zrısˆ “ t˘1,˘ıu.

Example 99

Consider the set R of functions f : r0, 1s Ñ R. This is ring under pointwise addition and multipli-
cation, i.e. pf ` gqpxq “ fpxq ` gpxq and pfgqpxq “ fpxqgpxq. Now f P Rˆ ô fpr0, 1sq S 0. The
subset of continuous functions f : r0, 1s Ñ R forms a subring of R.

Example 100

For any ring nontrivial R, we may create the polynomial ring Rrxs. Then R is a subring of Rrxs.
Similarly, we may create the polynomial ring in finitely many varibales Rrx1, ¨ ¨ ¨ , xns; then we have
a chain of proper subrings t0u Ĺ R Ĺ Rrx1s Ĺ ¨ ¨ ¨ Ĺ Rrx1, ¨ ¨ ¨ , xns.

Example 101

If R is a ring, then we denote by Rrrxss the ring of formal power series in x with coefficients
in R. In other words, Rrrxss :“ t

ř8

n“0 anx
n : an P Ru with coefficient-wise addition and usual

multiplication
`
ř8

n“0 anx
n
˘ `

ř8

n“0 bnx
n
˘

“
ř8

n“0 cnx
n where cn “

řn
r“0 arbn´r. (Note that we’re

only taking finite sums, so that this is well-defined irrespective of convergence issues.)
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Example 102

Let p be a fixed prime. The set Zppq “ ta{b P Q : pa, bq “ 1^ p - bu is called the localization of Z
at ppq. It is a subring of Q. Note that Zˆ

ppq “ ta{b P Q : pa, bq “ 1 ^ p - b ^ p - au. For example,

2{3 P Zˆ
p5q.

Definition 68. Let R be a cr1ng. Then define GLnpRq :“ MnpRq
ˆ; in other words, GLnpRq is

the set of nˆn matrices A with entries in R s.t. detA P Rˆ. Similary, define SLnpRq to be the set
of nˆ n matrices A with entries in R s.t. detA “ 1.

Example 103

Observe that with our previous definitions, GLnpZq “ SL˘n pZq.

Observe that for R “ Q,R,C, we have Rˆ “ Rr t0u, i.e. all nonzero elements are invertible. Such rings
are given a special name:

Definition 69. A commutative unitary ring R with 1 ‰ 0 s.t. Rˆ “ Rr t0u is called a field.

We immediately get the following usual properties:

Proposition 16

If F is a field, then:
(a) If x ‰ 0, then xy “ xz ñ y “ z.
(b) If x, y ‰ 0, then xy ‰ 0.

Can you guess what a subfield is?

Example 104

We have a tower of subfields Q Ĺ R Ĺ C.

Example 105

For any field F , the group GL1pF q – Fˆ.

Example 106

Given any field F , we can form the field of rational functions in variable x with coefficients in
F . In other words, F pxq :“ tppxq{qpxq : ppxq, qpxq P F rxs, q ı 0u.

Example 107

Let D be a rational number that is not a perfect square in Q. Then the set Qr
?
Ds :“ ta` b

?
D :

a, b P Qu is a quadratic subfield of C. If D ě 0, then it is a subfield of R. These are special
examples of number fields, objects of study in algebraic number theory.
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Example 108

Observe that for any prime p, the ring Z{pZ is actually a field! This is called the finite field of
order p, and is denoted by Fp.

We now talk about relationships and maps between rings:

Definition 70. Let R and S be rings. A map ϕ : RÑ S is called a ring homomorphism if:
(a) (Additive Structure) ϕ : pR,`q Ñ pS,`q is a group homorphism, i.e. @a, b P R : ϕpa ` bq “

ϕpaq ` ϕpbq.
(b) (Multiplicative Structure) ϕ : pR,ˆq Ñ pS,ˆq is a homomorphism of semigroups, i.e. @a, b P

R : ϕpabq “ ϕpaqϕpbq.
Note that some authors also require that ϕp1Rq “ 1S . The set of ring homomorphism R Ñ S is
denoted by HompR,Sq.

Similarly, if E,F are fields, then a map ϕ : E Ñ F is called a field homomorphism if it respects
both the additive structure and multiplicative structure of E and F . Some authors require also that
ϕp1Eq “ 1F to avoid trivial homomorphisms like ϕ ” 0. We have the following usual definitions:

Definition 71. Let ϕ : RÑ S be a ring homomorphism. The kernel of ϕ is the fiber over 0S , i.e.,
it is the kernel of the additive homomorphism ϕ : pR,`q Ñ pS,`q.

Definition 72. A ring homomorphism ϕ : RÑ S is said to be an isomorphism if there is a ring
homomorphism ψ : S Ñ R s.t. ψ ˝ ϕ “ idR and ϕ ˝ ψ “ idS . In this case, we write R – S.

Example 109

The reduction-mod-n map ϕ : ZÑ Z{nZ is a ring homomorphism.

Example 110

Let R be a ring. For fixed α P R, consider the map ¨
∣∣
α

: Rrxs Ñ R given by ppxq ÞÑ ppαq. This is a
ring homomorphism. It is surjective by definition, but it is not, in general, injective.

The following is the analog of the corresponding theorem for groups:

Theorem 36

Let R and S be rings, and let ϕ : RÑ S be a homomorphism.
(a) The image ϕpRq is a subring of S.
(b) The kernel kerϕ is closed under addition and multiplication by elements of R.

Nonempty subsets I Ď R that satisfy a, b P I ñ a´ b P I and r P R, a P I ñ ra P I are called ideals
of R. Part (b) of the above theorem says that kerϕ is an ideal of R. These are the analogs of normal
subgroups.

We also have the following definitions:

Definition 73. Let R be a ring. Then a ring homomorphism ϕ : R Ñ R is called an endomor-
phism of R. The set of endomorphisms of R forms a ring under pointwise addition and composition,
denoted by EndpRq, and called the endomorphism ring of R. Its group of units is called the
automorphism group of R, i.e. AutpRq :“ EndpRqˆ.
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6.2 Modules and Vector Spaces

We are now ready to make precise the notions of ring and field actions.

Definition 74. Let R be a ring. A left R-module is an abelian group pM,`q along with a left-
action of R, i.e. a map ˆ : R ˆ M Ñ M denoted by pr,mq ÞÑ rm that satisfies the following
axioms:

(a) (Compatibility with Multiplication) @r, s P R,m PM : rpsmq “ prsqm.
(b) (Distributive Laws) @r, s P R and m P M : pr ` sqm “ rm ` sm AND @r P R,m, n P M :

rpm` nq “ rm` rn.
Further, if 1 P R, then we require that @m PM : 1m “ m.

The last condition is to avoid pathologies like rm “ 0 for all r,m. Note that again the distributive
laws tell us immediately that 0Rm “ 0M for every m PM .

We also have the natural definition:

Definition 75. Let R be a ring and M a left R-module. A left R-submodule of M is a subgroup
pN,`q ď pM,`q s.t. ˆ|RˆN : RˆN Ñ N , i.e. @r P R,n P N : rn P N .

Note that we may similarly define right R-modules. Note that for commutative rings R, we may
define simply R-modules. Unless otherwise specified, we take R-modules to mean left R-modules.

Example 111

Let M be any R-module. Then M has two obvious submodules: t0u and M itself. The former is
called the trivial submodule of M .

Example 112

Let R be any ring. Then R can be considered a module over itself. The submodules of R as a
module over itself are precisely the ideals I Ď R.

Example 113

Let R be a cr1ng, and n P N. Define Rn to be the set of n-tuples of elements of R. Then Rn is an
R-module, called the free module of rank n over R.

We now are ready to talk about relationships between R-modules.

Definition 76. Let R be a ring and M,N be R-modules. A map ϕ : M Ñ N is called an R-module
homomorphism (or simply R-linear) if it respects their R-module structures, i.e.:

(a) (Compatibility with Additive Structure) ϕ : pM,`q Ñ pN,`q is a homomorphism of abelian
groups, i.e. @m,m1 PM : ϕpm`m1q “ ϕpmq ` ϕpm1q.

(b) (Compatibility with Action of R) @r P R,m PM : ϕprmq “ rϕpmq.
We denote the set of all R-module homomorphisms M Ñ N by HomRpM,Nq.

Note that something special has happened here:

Proposition 17

Let R be a cr1ng, and let M,N be R-modules. Then the set HomRpM,Nq is an abelian group
under pointwise addition, and under the action prϕqpmq “ rϕpmq forms an R-module itself.
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Definition 77. With addition as above and multiplication by function composition, EndRpMq :“
HomRpM,Mq is a ring itself, and is called the endomorphism ring of M . The group AutRpMq :“
EndRpMq

ˆ is called the automorphism group of M .

We now look at some special kinds of modules.

Example 114

The set of all continuous functions f : r0, 1s Ñ C forms a C-module.

In fact, you’ve seen C-modules before.

Definition 78. If F is a field, then an F -module V is called a vector space over F . If V,W
are vector spaces over F , then the elements of HomF pV,W q are called linear maps or linear
transformations of vector spaces.

Example 115

For any field F , the vector space Fn is said to be the n-dimensional vector space over F . (It
is unique upto isomorphism.)

Example 116

For any field F , the space V “ F rxs is an F -vector space.

Example 117

The set of continuous (resp. differentiable) functions f : RÑ R is an R-vector space.

Example 118

The collections of solutions of a linear, homogenous, constant coefficient differential equation (e.g.
y2 ´ 2y1 ` 2y “ 0) form an R (resp. C) vector space.

Example 119

Let L{K be a field extension (i.e. K Ď L is a subfield). Then L is a K-vector space. Then the
group AutKpLq is the group of K-linear automorphisms of L, i.e. the automorphisms σ : L Ñ L
s.t. σ|K “ idK . This group is also denoted by AutpL{Kq. If the extension L{K is Galois (which
we don’t have the tools to define here), then the group AutpL{Kq is denoted by GalpL{Kq, and is
called the Galois group of L{K.

Example 120

Given a vector space V over a field F , the group AutF pV q is denoted simply by GLpV q, and is called
the general linear group of V . Can you see why GLnpF q “ GLpFnq and also what the definition
of SLpV q might be?
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6.3 Introduction to Categories

6.3.1 Basic Definitions

We’ve seen a lot of instances where we have a collection of “things” and certain “maps” between those
things. Seeing collections of this sort pop up all over math, and considering relationshipships between
these collections, algebraic topologists Eilenberg and Mac Lane introduced the notion of categories in
1942-45. It is a fundamental language for many areas of modern mathematical research, e.g. in algebraic
geometry.

Definition 79. A category C consists of the following information:
(a) A collection ObpC q of objects in C .
(b) For each pair of objects A,B P ObpC q, a collection MorC pA,Bq of morphisms or arrows

between A and B. These are written f : AÑ B.
(c) For every ordered triple of objects A,B,C P ObpC q, a law of composition of morphisms:

MorC pB,Cq ˆMorC pA,Bq Ñ MorC pA,Cq

denoted by pg, fq ÞÑ g ˝ f .
The objects and morphisms are required to satisfy the following axioms:

(a) The collections MorC pA,Bq and MorC pC,Dq are disjoint unless A “ C and B “ D.
(b) (Associativity of Composition) For every ordered quadruple of objects A,B,C,D and triple of

morphisms ph, g, fq P MorC pC,DqˆMorC pB,CqˆMorC pA,Bq we have ph˝gq˝f “ h˝pg˝fq.
(c) (Existence of Identity) @A P ObpC q, D idA P MorC pA,Aq : @B P ObpC q we have that f ˝ idA “

f for every f P MorC pA,Bq and idA ˝g “ g for every g P MorC pB,Aq.

Note that:
(a) It is an easy exercise that any identity morphism must be unique.
(b) MorC pA,Bq is sometimes also denoted by HomC pA,Bq, but we will avoid that notation because

nowadays HomC pA,Bq is usually reserved for abelian categories.
(c) In writing MorC pA,Bq, the subscript C is usually dropped if the category is clear from context.
(d) We are necessarily vague about “collections” of objects in stead of sets. This is to circumvent

foundational issues, e.g. to avoid talking about “sets of sets” and running into Russell’s paradox
etc. This is because this is not a graduate course on advanced mathematical logic.

The following are examples of categories you have seen before:
(a) pSetq: sets and functions.
(b) pGrpq: groups and group homomorphisms.
(c) pAbq: abelian groups and group homomorphisms.
(d) pRngq: rings are ring homomorphisms.
(e) pCRngq: commutative rings and ring homomorphisms.
(f) pCR1ngq: commutative unitary rings and ring homomorphisms.
(g) pModRq: R-modules and R-module homomorphisms; e.g. pModZq, pModF rxsq, etc.
(h) pVecF q: F -vector spaces and F -linear maps; e.g. pVecRq, pVecCq, pVecFpq, etc.
(i) pFDVecF q: finite dimensional F -vector spaces and F -linear maps; e.g. pFDVecRq, pFDVecFpq, etc.
The following are examples of categories that you may not have seen so far, and but you will see at

least once in your mathematics courses at college.
(a) pTopq: Topological spaces and continuous maps.
(b) pTop˚q: Pointed topological spaces pX, pq with continuous maps respecting the distinguished point,

i.e. f : pX, pq Ñ pY, qq s.t. fppq “ q.
(c) pTopGrpq: Topological groups and continous homomorphisms.
(d) pManq: Topological manifolds and continuous maps.
(e) pSManq: Smooth manifolds and smooth maps.
(f) pLieq: Lie groups and smooth homomorphisms.
(g) pCWq: CW complexes and continuous maps.
(h) pVarF q: Varieties over the field F and morphisms of varieties.
(i) pAbVarF q: Abelian varieties over the field F with morphisms of varieties that are also abelian group

homomorphisms.
(j) pEllF q: Elliptic curves over the field F and isogenies.
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The following are examples of examples of objects that you may have seen before, but may not have
thought of as categories:

(a) Let pI,ĺq be a partially ordered set. Then we can form a category pIq whose objects are the
elements of I and s.t. for x, y P I there is a unique morphism xÑ y if x ĺ y and none otherwise.
(See why this is a category?) Similarly, we can form the “dual” category with a single morphism
xÑ y if x ľ y and none otherwise.

(b) Let X be any set. Then we can form a category of the poset p℘pXq,Ďq.
(c) Let X be a topological space. Then we can form a category of the poset pT pXq,Ďq.

The last three categories are example of small categories, which are categories C s.t. ObpC q is a
set. We can also define locally small categories, which are categories C s.t. for each A,B P ObpC q,
MorC pA,Bq is a set. Can you identify which of the above categories are small or locally small?

We can similarly define notions of subcategories:

Definition 80. A subcategory A of a category B is a category whose objects are some of the
objects of B and whose morphisms are some of the morphisms of B s.t. they include the identity
morphism for each of the objects and are closed under composition.

A subcategory A of B is called full if it contains all of MorBpA,Bq for each A,B P ObpA q Ď ObpBq.

Example 121

pAbq is a full subcategory of pGrpq.

Example 122

We have a chain of subcategories pCR1ngq in pCRngq in pRngq. Whether these subcategories are full
depends on your definition of ring homomorphisms.

Example 123

pFDVecF q is a full subcategory of pVecF q for each field F .

Example 124

pSManq is a subcategory of pManq, but it is not full.

Now that we have notions of morphisms, we better talk about isomorphisms, endomorphisms, auto-
morphisms, etc.

Definition 81. Let C be any category.
(a) Let A,B P ObpC q. A morphism f : AÑ B is called an isomorphism if there is a–necessarily

unique–morphism g : B Ñ A s.t.g ˝ f “ idA and f ˝ g “ idB . In this case, we write A – B.
(b) For any object A P ObpC q, any morphism f : AÑ A is called an endomorphism of A. The

collection of endomorphisms is EndC pAq :“ MorC pA,Aq.
(c) An endomorphism which is also an isomorphism is called an automorphism. The collection

of automorphisms from an object A P ObpC q to itself, denoted by AutC pAq or simply AutpAq.

If there is a unique isomorphism f : A Ñ B, then we call it a canonical isomorphism, and we
sometimes write A “ B. Note that if C is a locally small category, then in fact each AutpAq has the
natural structure of a group.

6.3.2 Functors

Now that we have morphisms within a category, we’d now like to talk about relations between categories.
This is where we actually see how powerful category theory is.
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Definition 82. Let C and D be categories. A covariant functor F : C Ñ D is the following
information:

(a) A map of collections F : ObpC q Ñ ObpDq, i.e. to each object A P ObpC q, it assigns an object
F pAq P ObpDq.

(b) For each A,B P ObpC q, a map of collections F : MorC pA,Bq Ñ MorDpF pAq,F pBqq, i.e. to
each morphism f : AÑ B, it assigns a morphism F pfq : F pAq Ñ F pBq.

These mappings are required to respect composition and identites:

(a) If A
f
ÝÑ B

g
ÝÑ C, then F pAq

Fpfq
ÝÝÝÑ F pBq

Fpgq
ÝÝÝÑ F pCq s.t. F pg ˝ fq “ F pgq ˝F pfq.

(b) For each A P ObpC q, F pidAq “ idFpAq.

In many cases, when the covariant functor is understood, it is common to denote F pfq by f˚, and
to call it the pushforward of f .

Example 125

For any category C , identity functor idC is a covariant functor idC : C Ñ C .

Example 126

For any subcategory A of B, we have an inclusion functor ι : A Ñ B.

Example 127

For C “ pGrpq, pTopq, etc., we have the forgetful functor F : C Ñ pSetq that remembers only the
set-theoretic structure of the underlying objects.

Example 128

The abelianizing functor ab : pGrpq Ñ pAbq associates to each group G its abelianization Gab,
and to each homomorphism ϕ : G Ñ H associates the corresponding induced homomorphism
ϕab : Gab Ñ Hab defined as follows: let πH denote the quotient πH : H Ñ H{xrH,Hsy “: Hab,
and consider the composition πH ˝ ϕ : G Ñ Hab; by the universal property of abelianization, this
induces a unique homomorphism from Gab Ñ Hab, call this ϕab. In other words, this is defined so
that ϕab ˝ πG “ πH ˝ ϕ, i.e. so that the following diagram commutes:

G H

Gab Hab

ϕ

πG πH

ϕab

Example 129

(This example was what motivated Eilenberg and Mac Lane to come up with categories.) The
fundamental group functor π1 : pTop˚q Ñ pGrpq assigns to each pointed topological space
pX, pq a group π1pX, pq and to each continuous map f : pX, pq Ñ pY, qq the induced pushforward
f˚ : π1pX, pq Ñ π1pY, qq given by f˚prγsq “ rf ˝ γs.

Sometimes, it is necessary to deal with functors that take morphisms to morphisms in the opposite
direction. These are naturally called contravariant functors.
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Definition 83. Let C and D be categories. A contravariant functor F : C Ñ D is the following
information:

(a) A map of collections F : ObpC q Ñ ObpDq.
(b) For each A,B P ObpC q, a map of collections F : MorC pA,Bq Ñ MorDpF pBq,F pAqq, i.e. to

each morphism f : AÑ B, it assigns a moprhism F pfq : F pBq Ñ F pAq.
These mappings are required to respect composition and identities:

(a) If A
f
ÝÑ B

g
ÝÑ C, then F pAq

Fpfq
ÐÝÝÝ F pBq

Fpgq
ÐÝÝÝ F pCq s.t. F pg ˝ fq “ F pfq ˝F pgq.

(b) For each A P ObpC q, F pidAq “ idFpAq.

Again, when the contravariant functor is understood, it is common to denote F pfq by f˚, and to
call it the pullback of f .

Example 130

Perhaps the most familiar example of this is the dual space functor: for any field F , the functor
_ : pVecF q Ñ pVecF q assigns to each vector space V {F its dual V _ :“ HomF pV, F

1q, i.e. the
vector space of linear maps from V to F , and to each linear map ϕ : V Ñ W its transpose
ϕ_ “ ϕJ : W_ Ñ V _ given by precomposition: l ÞÑ l ˝ ϕ, i.e. such that the following diagram
commutes:

V W F
ϕ

ϕ_plq

l

Example 131

The functor C p´,Rq : pTopq Ñ pCR1ngq that assigns to a topological space X the ring of continuous
functions f : X Ñ R, and to each continuous map ϕ : X Ñ Y the precomposition ϕ˚ : C pY,Rq Ñ
C pX,Rq by rg : Y Ñ Rs ÞÑ rϕ˚pgq “ g ˝ ϕ : X Ñ Rs.

Example 132

Observe that if A and B are abelian groups, then HompA,Bq can be given the structure of an abelian
group by pointwise composition, i.e. if ξ, ψ P HompA,Bq, then define ξψ by pξψqpaq :“ ξpaqψpaq
(or if written additively by pξ ` ψqpaq :“ ξpaq ` ψpaq). Now suppose that Z is a fixed abelian
group. Then we may define a contravariant functor Homp´, Zq : pAbq Ñ pAbq by A ÞÑ HompA,Zq
and ϕ : A Ñ B going to ϕ˚ : HompB,Zq Ñ HompA,Zq taking rξ : B Ñ Zs ÞÑ rξ ˝ ϕ : A Ñ Zs.
When Z “ S1, we call the functor Homp´,S1q the dual functor or character functor in the
category of abelian groups. (The reason for this nomenclature will become evident when you study
representation theory.)

The next objects of study in category theory are natural transformations of functors, which
are maps between functors, when two functors are isomorphic, etc. This allows us to the study the
equivalence of categories, i.e. when two categories carry essentially the same information. We will
not be able to get into the specifics here. However, you will show on your homework that the categories
pAbq and pModZq are equivalent.

6.4 Universal Constructions

(Disclaimer: Some of the following section is adapted from Prof. Ravi Vakil’s The Rising Sea.)
One of the most beautiful aspects of category theory is the notion of the universal constructions.

These seem artifical and pretty hard to understand, but once you become familiar with these you will
realize that these sometimes give us the most beautiful and elegant proofs of theorems. There’s a way
to formalize the notion of universal objects and universal arrows, but we’ll instead talk about them
a bit informally.
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6.4.1 Products

As a motivating question, consider the product of two sets X and Y . One way to define this is using
ordered pairs: you define X ˆ Y to be the set of all ordered pairs px, yq for x P X and y P Y . Now
suppose you met some aliens, and they described to you a construction, where given two sets X and Y
you look at the set of all elements of the form x

y for x P X and y P Y . Ha! You recognize that this is the
same thing as what you’ve been calling the “Cartesian product.” Better yet, there’s a bijection between
them that preserves their essential structures–that they carry information about pairs of elements of X
and Y . Therefore, a better way to capture the essential information carried by the product is not to
define it in terms of ordered pairs, but to define it in a way that captures the notion you want it to
embody:

Definition 84. Given two sets X and Y , their product P is a set with functions πX : P Ñ X and
πY : P Ñ Y s.t. given any other set T with functions fX : T Ñ X and fY : T Ñ Y , there is a
unique function f : T Ñ P s.t. fX “ πX ˝ f and fY “ πY ˝ f . In other words, D!f s.t. the following
diagram commutes:

T

X P Y

fX
D!f

fY

πX πY

Clearly, both our definition and the aliens’ definition satisfy this property. The great thing is: this
property is enough to tell us that any two objects satisfying it must be “the same.”

Theorem 37

A product of two sets X and Y , if it exists, is unique upto a unique isomorphism that preserves
projections, so that we may call it the product and denote it unambiguosly by X ˆ Y .

Proof. Suppose pQ, πX , πY q and pQ1, π1X , π
1
Y q satisfy the universal property for the product of sets X and

Y . Substituting P “ Q and T “ Q1 in the above definition, we get that D!Φ : Q1 Ñ Q s.t. π1X “ πX ˝ Φ
and π1Y “ πY ˝ Φ, i.e. s.t. the following commutes:

Q1

X Q Y

π1X
D!Φ

π1Y

πX πY

Now, using the same diagram but with P “ Q1 and T “ Q tells us that D!Ψ : QÑ Q1 s.t. πX “ π1X ˝Ψ
and πY “ π1Y ˝Ψ. Observe that the map Φ ˝Ψ : QÑ Q is s.t. πX “ πX ˝ Φ ˝Ψ and πY “ πY ˝ Φ ˝Ψ.
Now apply the diagram to P “ Q and T “ Q.

Q

X Q Y

πX
D!Θ

πY

πX πY

This tells us that D!Θ : Q Ñ Q s.t. πX “ πX ˝ Θ and πY “ πY ˝ Θ. But now, I can give you two such
Θ! Both of Θ “ idQ and Θ “ Φ ˝ Ψ work. By uniqueness, this means that idQ “ Θ “ Φ ˝ Ψ. The
analogous argument with P “ T “ Q1 tells us that idQ1 “ Ψ ˝ Φ. Therefore, Φ and Ψ are the required
unique isomorphisms preserving the projections. �

It is clear that this theorem, and indeed the definition, only tell us that if such an object were to
exist, then it must be essentially unique–we cannot use this to conclude that such a construction exists!
Indeed, to show such a thing exists is when we have to resort to talking about ordered pairs px, yq or
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when the aliens have to resort to talking about their stacks x
y. Of course, everything we’ve done here

generalizes to arbitrary categories.

Definition 85. Let C be any category, and let X,Y P ObpC q be any objects. Then the product
XˆY is an object of C along with morphisms πX : XˆY Ñ X and πB : AˆB Ñ B s.t. given any
other object T P ObpC q and morphisms fX : T Ñ X and fY : T Ñ Y , there is a unique morphism
f : T Ñ X ˆ Y s.t. fX “ πX ˝ f and fY “ πY ˝ f . In other words, D!f s.t. the following diagram
commutes:

T

X X ˆ Y Y

fX
D!f

fY

πX πY

By the standard universal property argument, such an object, if it exists, must be unique upto
unique isomorphism preserving projections, so that we may call it the product.

In fact, what’s stopping us from looking at products of more than two things?

Definition 86. Let C be any category, and let tXiuiPI be any collection of objects of C indexed
by the set I. The product X “

ś

iPI Xi is an object of C with morphisms πi : X Ñ Xi for each
i P I s.t. given any other object T P ObpC q and morphisms fi : T Ñ Xi for each i P I, there is a
unique morphism f : T Ñ X s.t. fi “ πi ˝ f for each i P I. In other words, D!f s.t. the following
diagram commutes for each i P I:

X

Xi T

πi

fi

D!f

By the standard universal property argument, such an object, it if exists, must be unique upto
unique isomorphism preserving projections, so that we may call it the product.

Note that the phrase “preserving projections” is essential, e.g. there are many isomorphisms ϕ :
Z{2Z ˆ Z{2Z (e.g. the involution swapping the factors is one), but there’s only one isomorphism that
preserves the projections onto the first and second factors.

Example 133

Definition 11 (and a little verification) tells us that the product exists in the category pSetq.

Example 134

Theorem 9 tells us that the product exists in the category pGrpq. From this it is also clear that the
same construction works in the category pAbq.

A word of caution: not all categories admit products. However, these are significantly hard to come
by (one example would be pEllCq). In fact, the product exists in almost all of the categories you’ve met
so far, though it might look different than you imagine. Here’s a fun exercise to test your understanding.
Suppose X is any set. Consider the category of the poset p℘pXq,Ďq, i.e. the category whose objects are
subsets U Ď X, with a single morphism U Ñ V if U Ď V and none otherwise. What is the product in
this category? (Hint: Your answer should be one word.)

68



6 A First Encounter with Category Theory

6.4.2 Coproducts

Essentially for every construction is category theory, there is a “dual” or an opposite construct, which
consists of the same definitions, except with all the arrows flipped. Here we have what is called the
coproduct.

Definition 87. Let C be any category, and let tXiuiPI be any collection of objects of C indexed
by the set I. The coproduct X “

š

iPI Xi is an object of C with morphisms ιi : Xi Ñ X for each
i P I s.t. given any other object T P ObpC q and morphisms fi : Xi Ñ T for each i, there is a unique
morphisms f : X Ñ T s.t. f “ fi ˝ ιi for each i P I. In other words, D!f s.t. the following diagram
commutes for each i P I:

X

Xi T

D!f

fi

ιi

By the standard universal property argument, such an object, if it exists, must be unique upto
unique isomorphism preserving inclusions, so that we may call it the coproduct.

Example 135

Theorem 10 tells us that the disjoint union is the coproduct in the category of sets.

Example 136

Theorem 11 tells us that the free product is the coproduct in the category of sets.

Again, the coproduct might look a bit different than these: if we return to our category p℘pXq,Ďq,
what is the coproduct here? (Hint: It’s the other one word.)

6.4.3 Universal Arrows

We are now ready to talk about slightly more general universal constructions.

Definition 88. Let C and D be categories, and let F : C Ñ D be a covariant functor. Let
X P ObpDq. A universal arrow from X to F is a pair pUpXq, ιq where UpXq P ObpC q and
ι P MorDpX,FUpXqq s.t. for any T P ObpC q and ϕ P MorDpX,F pT qq, D!Φ P MorC pUpXq, T q s.t.
ϕ “ F pΦq ˝ ι, i.e. such that the following diagram commutes:

FUpXq

X F pT q

FpΦq
ι

ϕ

The functor F is then called right-adjoint. This fits into the more general idea of adjoint functors,
which you’ll learn when you take an actual course that talks about category theory. As before, we first
prove that this universal object UpXq is essentially unique.

Theorem 38

For any fixed X P ObpC q, there is a unique UpXq upto isomorphism preserving ι.
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Proof Sketch. Suppose pUpXq, ιq and pU 1pXq, ι1q are two such universal arrows. Then we get that D!Φ P
MorC pUpXq, U

1pXqq s.t. F pΦq takes ι to ι1 and D!Ψ P MorC pU
1pXq, UpXqq s.t. F pΨq takes ι1 to ι.

Applying the universal construction one more time tells us that Ψ ˝Φ “ idUpXq and Φ ˝Ψ “ idU 1pXq. �

The most common example of this kind is the kind you get when you have relatively concrete cate-
gories.

Definition 89. Let C and D be categories, and let F : C Ñ D be a covariant functor. Then the
pair pC ,F q is called a relatively concrete category over the base category D if the functor
F is faithful, i.e. if for each A,B P ObpC q, the map F : MorC pA,Bq Ñ MorDpF pAq,F pBqq is
injective.
A relatively concrete category over D “ pSetq is said to be an absolutely concrete category, or
simply a concrete category.

Example 137

Take C “ pAbq, D “ pGrpq, and F “ ι : pAbq Ñ pGrpq the inclusion functor. Then ppAbq, ιq is a
concrete category over pGrpq. For G P ObpGrpq, the pair pGab, πGq (where πG : G Ñ G{xrG,Gsy “
Gab is the natural projection) is a universal arrow from G to ι. This tells us that the abelianization
Gab must be unique upto unique isomorphism.

Example 138

(Free Objects) Let pC ,F q be a concrete category. (Usually we take C to consist of some kind of
“decorated” sets, i.e. groups, abelian groups, rings, modules, vector spaces, etc.) For a set S, a
free object on S in C is a universal arrow from S to the forgetful functor F : C Ñ pSetq. For
example, we’ve see free objects on sets in the C “ pGrpq in Theorem 12 in C “ pAbq in Definition
44.

Example 139

If you’ve studied topology (or perhaps if you’re returning to these notes after having studied topol-
ogy), can you guess what the free objects on sets in C “ pTopq are?

Therefore, most of our constructions from Chapter II are actually special cases of universal con-
structions! The beauty of category theory is that we now needn’t prove uniqueness for each separately.

That’s about how far we will go with category theory. If you want to learn more, Steve Awodey’s
Category Theory is a great starting point. The standard, but much more difficult, resource is Categories
for the Working Mathematician by Mac Lane himself.

6.5 What Next?

There are lot of directions one can go to that are natural successor courses. The following are suggestive
examples:

(a) Linear Algebra: Linear algebra is the study of vector spaces and linear maps between them,
especially as matrices. It has a wide range of applications in physics, computer science, data
science, economics, etc.

(b) Representation Theory: This branch of mathematics tries to study groups via their actions. A
representation of a group G is a homomorphism ρ : GÑ GLpV q, or equivalently, a linear action
G ýV . The representations of a group (or continuous representations of topological groups) often
contain a lot of information about both G and V .

(c) Elementary Number Theory from an Algebraic Perspective: Some of the most basic questions are
the questions involving the integers Z. These are part of study of a branch of mathematics called
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number theory. While number theory has been around for millenia, a fresh perspective on number
theory using abstract algebra can often help simplify many concepts and proofs.

(d) Abstract Algebra: Another natural successor course would be a second course in abstract algebra,
dealing with rings, fields, modules, field extensions, Galois Theory, etc. From that, you can branch
off to:

(1) Algebraic Number Theory: This branch of number theory uses advanced algebra to study
properties number fields, which are subextensions C{K{Q s.t. dimQpKq is finite. These
provide really beautiful insights into the working of integers. From here, you can go on and
study category theory.

(2) Algebraic Geometry: This branch of mathematics studies objects known as varieties, which
are generalizations of curves to higher dimensions.

(3) Algebraic Topology: This branch of topology studies topological spaces through their invari-
ants like their homotopy groups, homology and cohomology groups, etc.

(e) Algebraic Combinatorics/Discrete Mathematics: This branch of mathematics tries to understand
how to count various things.2 We’ve seen some applications of group theory to combinatorics
including Burnside’s Lemma and Polyá enumeration. Another object of study in algebraic combi-
natorics is the representation theory of the symmetric group Sn.

(f) Mathematical Logic and/or Mathematical Philosophy: This branch of mathematics is a formal
treatment of the foundations of mathematics. This can then lead you to works by Russell, Wittgen-
stein, Gödel, and many more.

(g) Algorithms/Coding Theory/Complexity Theory: This branch is at the intersection of theoreti-
cal computer science and mathematics. It studies how we can efficiently use computers to solve
mathematics problems.

If instead you’d like a more well-rounded college mathematics education, I would also recommend check-
ing out:

(a) Real and Complex Analysis: This branch of mathematics rigorously treats topics like differentiation,
integration, power series, etc. This can then lead to:

(1) Analytic Number Theory: This branch of number theory uses complex analysis to study the
properties of numbers. A famous example of an object of study here is the Riemann zeta
function ζpsq.

(b) Topology: This branch of mathematics studies topological spaces and continuous maps between
them. This can then naturally lead to differential topology, the study of smooth manifolds and
maps between them. This can further lead to the study of Lie Groups.

Of course, this is not meant to be a comprehensive survey of the branches of mathematics, and, as
you can guess, some of these paths are not trees. For instance:

(a) You need both topology and algebra to study algebraic topology.
(b) You need both differential topology and algebraic topology to understand the beautiful connection

between them (as outlined, for example, in Bott and Tu’s Differential Forms in Algebraic Topology).
(c) Dirichlet’s theorem on the infinitude of primes in arithmetic progressions uses tools from both

algebraic and analytic number theory.
(d) You need algebraic number theory, algebraic geometry, and analytic number theory to study the

various aspects of the theory elliptic curves.
Further, there are many interconnections across the various branches mentioned here. For example,
Andrew Wiles’s proof of Fermat’s Last Theorem relies on heavy machinery from representation theory,
algebraic number theory, algebraic geometry, analytic number theory, the theory of elliptic curves, and
much more.

In conclusion, math is amazing! Go ahead and study as much as you can!

2This is a tremendous oversimplification, but let’s roll with it for now.
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