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Preface

Based on Math 221 Fall 2020 by Popa. I make no originality claims. Much from Szamuely,
Lang, Cohn, Sam’s notes, Matsumura, Frölich-Taylor, Conrad’s notes, Poonen’s notes, Stacks
project. [TODO]

Conventions
• A ring is always taken to mean a commutative unitary ring, unless explicitly specified

otherwise (as will be in sections ...).
• We do not disallow the zero ring, although when we speak of proper ideals (including

prime or maximal ideals, which are always assumed to be proper), we implicitly assume
that the ring is nonzero. The zero ring is not considered to be a field.

• For a ring R, we denote the subset of units of R by R× ⊂ R, so that a nonzero ring R is a
field iff R× = R∖{0}.

• For subsets A,B of a set X , we take A ⊂ B to mean x ∈ A ⇒ x ∈ B; therefore, the case
A = B is not excluded. If we want to specifically exclude this case, we write A ⊊ B.

• The symbol N always refers to the set of all nonnegative integers, so that, in particular,
0 ∈ N.

• A monoid is always a commutative monoid written additively.
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Chapter 1. Fundamentals

1.1 Localization

Definition 1.1.1 (Localization). Let R be a ring.

(a) A subset S ⊂ R is called multiplicative if finite products of elements of S are in S.
(b) If S ⊂ R is a multiplicative system, the localization of R with respect to S is a ring S−1R

and a homomorphism η : R → S−1R such that η(S) ⊂ (S−1R)× and that (S−1R,η) is
initial with respect to this property. The homomorphism η is called the localization
homomorphism.

(c) In the above setting, if M is an R-module, then the localization of M with respect to S
is an S−1R-module S−1M with an R-module homomorphism1 η : M → S−1M such that
any R-module homomorphism from M to (the underlying R-module of) an S−1R-module
factors through η .

Remark 1.1.2.

(a) By the universal property, localization is unique up to unique isomorphism commuting
with the η’s–if it exists. We give three explicit constructions: one is to take simply
S−1R := R[{xs}]s∈S/(sxs − 1), and another is given by taking classes s−1x with s−1x =
t−1y iff there is a u∈ S such that u(sy−tx)= 0, defining addition and multiplication in the
usual way, and letting η : x 7→ 1−1x. The third construction first inverts a single element
s (or equivalently the subset S = {1,s,s2, . . .} of powers of s) by consider the colimit
R[s−1] of R s−→ R s−→ R · · · in the category of R-modules and equipping it with a suitable
R-algebra structure; the general case is handled by noting that S−1R = lim−→s∈S

R[s−1] as
R-algebras.2 Similarly, S−1M can be constructed in several ways; the most explicit is to
take classes s−1m as in the second construction.

(b) The universal property amounts to saying that the additive functor S−1 : R-Mod→ S−1R-Mod
is left-adjoint to the restriction of scalars functor η∗ : S−1R-Mod→ R-Mod.This tells us
that the localization of modules can be obtained only from localization of rings: there
is a natural isomorphism S−1R⊗R M → S−1M of R-modules and S−1R-modules for any
R,S,M as above.

(c) Algebraically, localization of a ring R (resp. an R-module M) at a subset S is the “freest”
way to make S invertible as elements of a ring to which R maps (resp. as endomorphisms
of an R-module to which M maps). Geometrically, we can think of the localization of a
ring R at a subset S as the operation of “throwing out (the vanishing locus of) S”; try to
interpret Examples 1.1.4, 1.1.6 and Corollary 1.1.12 this way.

Lemma 1.1.3. Let S ⊂ R be a multiplicative subset in a ring R and M be an R-module. Then
the localization map η : M → S−1M has kernel

AnnS(M) := {m ∈ M : um = 0 for some u ∈ S}.

In particular,

(a) The localization S−1R is zero iff 0 ∈ S.
(b) The localization homomorphism η : R → S−1R is injective iff S contains no zero divisors.

Proof. We have 1−10 = 1−1m iff there is a u ∈ S such that um = 0; (a) and (b) follow immedi-
ately. ■

1Here S−1M is considered an R-module by restriction of scalars via the map η : R → S−1R.
2Of course, in doing this, one should be familiar with arbitrary colimits of algebras.
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Chapter 1. Fundamentals

Example 1.1.4 (Inverting an Element). Given any ring R and x∈R, the subset S= {1,x,x2, . . .}
of powers of x in R is multiplicative. The localization S−1R ∼= R[y]/(xy− 1) is denoted by
R[x−1]. By the Lemma 1.1.3(a), this is zero iff x is nilpotent.

Example 1.1.5 (Total Quotient Ring). Given a ring R, the set S = R∖(R)⊂ R of nonzerodi-
visors of R is multiplicative. The localization S−1R =: QuotR is called the total quotient ring
of R. By Lemma 1.1.3, the map η : R → QuotR is injective. This is the largest localization of R
for which the localization map is injective: indeed, if S is another subset such that η : R→ S−1R
is injective, then S ⊂ R∖(R) and so by Exercise 1.1, the natural morphism S−1R → QuotR
is injective. The total quotient ring of R satisfies the following universal property: if ϕ : R → S
is a ring homomorphism such that ϕ(R∖(R))⊂ S∖(S) (i.e. ϕ takes nonzerodivisors in R
to nonzerodivisors in S), then ϕ extends to a homomorphism QuotR → QuotS.

Example 1.1.6 (Localization at a Prime). Let R be a ring and p⊂R an ideal. Then p is prime iff
its complement S := R∖p is multiplicative, in which case the ring S−1R = (R∖p)−1R is called
the localization of R at p and denoted Rp. Similarly, given an R-module M, the localization
S−1M =: Mp is called the localization of M at p.

Example 1.1.7 (Field of Fractions). When R is a domain, Example 1.1.5 is a special case of
Example 1.1.6: a ring R is a domain iff the ideal (0) is prime iff (R) = (0), in which case the
localization R(0) =QuotR= FracR is the field of fractions or fraction field of R. Again, the map
η : R → FracR is injective. The fraction field of an integral domain is universal with respect to
injective homomorphisms out of the domain to fields; in other words, the fraction field functor
from the category of integral domains and injective homomorphisms to the category of fields
and field homomorphisms is left adjoint to the forgetful functor. By Exercise 1.1, if R is an
integral domain, then all localizations of R can be embedded in FracR and are integral domains
themselves.

For an example of a total quotient ring of a ring that is not a domain, see Exercise 1.2.
One reason for the usefulness of this notion comes from the fact that many module-theoretic
properties can be checked locally. One instance of this phenomenon is

Lemma 1.1.8. Let R be a ring and M be an R-module. Then for any element x ∈ M, the
following are equivalent:

(a) x = 0,
(b) [x] = 0 ∈ S−1M for every multiplicative S ⊂ R,
(c) [x] = 0 ∈ Mp for every prime p, and
(d) [x] = 0 ∈ Mm for every maximal ideal m.

In particular, the following are equivalent:

(a) M = 0,
(b) S−1M = 0 for every multiplicative S ⊂ R.
(c) Mp = 0 for all p, and
(d) Mm = 0 for all m.

Proof. Clearly, (a) ⇒ (b) ⇒ (c) ⇒ (d). For (d) ⇒ (a), for 0 ̸= x ∈ M, the annihilator AnnR(x)⊂
R is a proper ideal, so there is an m⊂ R such that AnnR(x)⊂m; then 0 ̸= [x] ∈ Mm by Lemma
1.1.3. ■

Theorem 1.1.9 (Localization Is Exact). If C is a complex of R-modules and S ⊂ R is a multi-
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Chapter 1. Fundamentals

plicative subset, then the natural map S−1HC→ H(S−1C) given by functoriality is an isomor-
phism.

Proof. This map takes s−1[n] 7→ [s−1n]. For injectivity, if [s−1n] = 0, then there is a t−1m
such that s−1n = ∂ (t−1m) = t−1∂m. Then there is a u ∈ S such that u(s ·∂m− tn) = 0 so that
utn = ∂ (usm) and

s−1[n] = (uts)−1ut[n] = (uts)−1[utn] = (uts)−1[∂ (usm)] = (uts)−10 = 0.

For surjectivity, note that a class [s−1n] is given an element s−1n with ∂ (s−1n) = s−1∂n = 0, so
there is a u ∈ S such that 0 = u∂n = ∂ (un). Then (us)−1[un] 7→ [s−1n]. ■

Corollary 1.1.10. Let R be a ring and ϕ : M → N and ψ : N → P homomorphisms of R-
modules.

(i) The following are equivalent:
(a) M

ϕ−→ N
ψ−→ P is exact.

(b) S−1M
S−1ϕ−−−→ S−1N

S−1ψ−−−→ S−1P is exact for every multiplicative S ⊂ R.
(c) Mp

ϕp−→ Np
ψp−→ Pp is exact for all p.

(d) Mm
ϕm−−→ Nm

ψm−−→ Pm is exact for all m.
(ii) The following are equivalent:

(a) ϕ : M → N is injective (resp. surjective).
(b) S−1ϕ : S−1M → S−1N is injective (resp. surjective) for every multiplicative S ⊂ R.
(c) ϕp : Mp → Np is injective (resp. surjective) for all p.
(d) ϕm : Mm → Nm is injective (resp. surjective) for all m.

Proof. Part (i) follows from Lemma 1.1.8 and Theorem 1.1.9. Part (ii) follows by applying (i)
and choosing one of the M and P to be zero. ■

The above corollary (specifically (ii)(b)) says that if R is a ring and N ⊂ M an R-
submodule, then for any multiplicative system S ⊂ R, the natural map S−1N → S−1M is in-
jective, allowing us to think of S−1N as an S−1R-submodule of S−1M. We will implicitly use
this identification in all that follows. This perspective allows us to relate submodules of the
localization to submodules of the original module as in

Observation 1.1.11 (Submodules of Localization). Let R be a ring, S ⊂ R multiplicative, M an
R-module, and η : M → S−1M the localization map.

(a) If M is finitely generated over R, then so is S−1M over S−1R, by the images under η of
the generators.

(b) If N ⊂ M is a submodule, then N ⊂ η−1(S−1N).3 For any S−1R-submodule L ⊂ S−1M
we have L = S−1(η−1L).4

(c) Every S−1R-submodule of S−1M is of the form S−1N for some R-submodule N ⊂ M. In
particular, if M is Noetherian (resp. Artinian) as an R-module, then so is S−1M as an
S−1R-module.

(d) In particular, if R is a Noetherian (resp. Artinian) ring, then every localization S−1R is
also Noetherian (resp. Artinian), because every S−1R-module M is of the form S−1M′ for
some R-module M′, namely M′ = M itself.

3In general, equality need not hold; for instance, if S = R.
4The inclusion L ⊂ S−1η−1L follows from noting that s−1ℓ ∈ L ⇒ ℓ ∈ η−1L.
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Chapter 1. Fundamentals

Reinterpreting the above in the language of ideals gives us:

Corollary 1.1.12 (Ideals in Localization). Let R be a ring and S ⊂ R multiplicative and η : R→
S−1R the localization.

(a) If a ⊂ R is an ideal, then so is S−1a ⊂ S−1R; if a is finitely generated then so is S−1a.
Further, S−1a is proper iff a∩S = /0.

(b) If a⊂ R is an ideal, then a⊂ η−1(S−1a). If b⊂ S−1R is an ideal, then b= S−1(η−1b).
(c) If q ⊂ R is prime with q∩ S = /0, then in fact q = η−1(S−1q) and so S−1q is prime in

S−1R.
(d) The maps q 7→ S−1q and Q 7→ η−1Q give inverse bijections between primes q ⊂ R dis-

joint from S and primes Q⊂ S−1R.
(e) In particular, if S = R∖ p is the complement of a prime, then there is a bijective corre-

spondance between primes q⊂ R contained in p and primes of Rp. In particular, Rp has a
unique maximal ideal, namely pRp, so it is a local ring (see Proposition/Definition 1.2.7).

Therefore, SpecS−1R ⊂ SpecR can be thought of as the set of primes disjoint from
S. In particular, SpecRp is the set of primes contained in p: we have “localized” to look only at
primes contained in p. Finally, we present two neat results which will be helpful later.

Corollary 1.1.13 (Contractions). Let ϕ : R→ S be a ring homomorphism and p⊂R be a prime.
Then there is a prime q⊂ S such that p= ϕ−1q iff p= ϕ−1(ϕ(p)S).

Proof. By replacing R by R/kerϕ , we can assume that R ⊂ S; the statement then says that if
p⊂ R is a prime, then there is a prime q⊂ S lying over p (i.e. with q∩R = p) iff p= (pS)∩R.
If such a q exists, then p= q∩R ⊂ (q∩R)S∩R ⊂ q∩R = p. Conversely, if p= (pS)∩R, then
pS∩ (R∖ p) = /0, so that by Corollary 1.1.12(a), the ideal pSp ⊂ Sp := (R∖ p)−1S is proper
and so is contained in a maximal m ⊂ Sp. If q := η−1m where η : S → Sp is the localization
map, then q is prime, disjoint from R∖ p by Corollary 1.1.12(d), and contains pS. Therefore,
p= pS∩R ⊂ q∩R ⊂ p. ■

Corollary 1.1.14. Let R be a domain with fraction field K, so that all localizations to follow can
be considered as subsets of K. If a⊂ R is any ideal, then a=

⋂
p aRp =

⋂
m aRm. In particular,

if a,b⊂ R are ideals such that aRm = bRm for all maximal ideals m⊂ R, then a= b.

Proof. The inclusions a⊂
⋂
p aRp ⊂

⋂
m aRm are clear. Suppose x ∈

⋂
m aRm, and consider the

ideal (a :R x) := {y ∈ R : xy ∈ a}. If (a :R x) is a proper ideal, then there is a maximal ideal
m ⊂ R such that (a :R x) ⊂ m, which contradicts x ∈ aRm; this shows that 1 ∈ (a :R x), i.e.
x ∈ a. ■
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Chapter 1. Fundamentals

1.2 Some Affine Algebraic Geometry

1.2.1 Scheinnullstellensatz, Radicals, and Local Rings

For a ring R, we let SpecR denote the set of its prime ideals and call it the spectrum of R. For
any subset a⊂R, we define V(a) := {p : p⊃ a}⊂ SpecR, and for any subset X ⊂ SpecR, we let
I(X) :=

⋂
p∈X p. Clearly V(a) = V(⟨a⟩), where ⟨a⟩ ⊂ R is the ideal generated by a; therefore,

we can restrict ourselves to looking at ideals a. Then V and I give inclusion-reversing maps
between the set of ideals in R and subsets of SpecR; these are not inverse bijections, but rather
inverse Galois correspondences, and hence inverse bijections on appropriate subsets–namely
the set of subsets X ⊂ SpecR of the form X = V(a) for some a, and the set of ideals a ⊂ R of
the form a= I(X) for some X ⊂ SpecR.

Observation 1.2.1. Given a ring R, we have:

(a) V(0) = SpecR and V(1) = /0,
(b) If (ai) is a family of ideals of R, then V(

⋃
i ai) = V(∑i ai) =

⋂
i V(ai).

(c) If a,b⊂ R are ideals, then V(a∩b) = V(ab) = V(a)∪V(b).

It follows from Observation 1.2.1 that the subsets of SpecR of the form V(a) for
a ⊂ R satisfy the axioms for closed sets of a topology on SpecR; this topology is called the
Zariski topology. It is easy to see that if X ⊂ SpecR is any subset, then V(I(X)) = X , where the
closure is with respect to the Zariski topology. Conversely, if a ⊂ R is any ideal, then I(V(a))
is given by

Theorem 1.2.2 (Scheinnullstellensatz). Let R be a ring and a ⊂ R an ideal. Then I(V(a)) =√
a.

Proof. Replace R by R/a to assume a= 0. To show the nontrivial inclusion, suppose that x ∈ R
is not nilpotent. Then R[x−1] is not the zero ring by Example 1.1.4, and therefore has a maximal
ideal m. If η : R → R[x−1] is the localization map, then the preimage η−1m⊂ R is a prime not
containing x. ■

Remark 1.2.3. Geometrically, Theorem 1.2.2 says that the any regular function that vanishes
at every point on the scheme SpecR is nilpotent, so the only regular function that vanishes that
every point on a reduced affine scheme is zero. In light of the above discussion, we conclude
from Theorem 1.2.2 that the maps V and I give inverse bijections between the set of closed
subsets of SpecR and radical ideals of R. In algebraic geometry, this statement says that every
closed subscheme of the affine scheme SpecR admits a unique reduced structure; this is true of
all schemes and not just affine schemes.

Definition 1.2.4. Given a ring R, we define its nilradical to be

Nil(R) :=
√

0 =
⋂
p⊂R

p.

The ring R is said to be reduced if Nil(R) = 0. The reduction of a ring R is defined to be the
quotient Rred := R/Nil(R); this is the largest reduced quotient ring of R.

Remark 1.2.5. Reduction is functorial, and the reduction of a reduced ring is itself; put another
way, R → Rred is initial with respect to homomorphisms out of R to reduced rings, i.e. if

9



Chapter 1. Fundamentals

ϕ : R → S is a homomorphism with S reduced, then ϕ factors as R → Rred ϕ̄−→ S for some
ϕ̄ : Rred → S. In fact, the full subcategory of Ring consisting of reduced rings is reflective
in the sense that the reduction functor is left adjoint to the inclusion; in particular, reduction
commutes with arbitrary colimits.

Given that the intersection of all primes of a ring is interesting, it makes sense to look
also at the intersection of all maximal ideals of a ring.

Proposition/Definition 1.2.6 (Jacobson Radical). Let R be a ring and x ∈ R be an element.
Then the folowing are equivalent:

(a) The element x lies in every maximal ideal of R.
(b) For any y ∈ R and unit u ∈ R×, we have u+ xy ∈ R×.
(c) For any y ∈ R, we have 1+ xy ∈ R×.

The ideal consisting of all such x ∈ R is called the Jacobson radical of R, and is denoted by

Jac(R) :=
⋂
m⊂R

m.

Proof.

(a) ⇒ (b) If x were to lie in every maximal ideal of R, but there were y ∈ R and u ∈ R× such
that u+ xy /∈ R×, then there would be a maximal m ⊂ R such that u+ xy ∈ m. Then
x,u+ xy ∈m⇒ u ∈m, a contradiction.

(b) ⇒ (c) Clear.
(c) ⇒ (a) If x were such but there were a maximal ideal m⊂ R such that x /∈m, then m+(x) = (1)

implies m− xy = 1 for some m ∈m,y ∈ R, giving m = 1+ xy ∈ R×∩m, a contradiction.

■

Proposition/Definition 1.2.7 (Local Rings). For a nonzero ring R, the folowing are equivalent:

(a) The set of nonunits R∖R× is an ideal.
(b) The ring R has a unique maximal ideal.
(c) For any maximal ideal m⊂ R, any element of 1+m is a unit.

A ring R is said to be local if it is nonzero and satisfies these equivalent conditions. Finally, if
R is a local ring, then for any proper ideal a⊂ R, so is the quotient R/a.

Proof.

(a) ⇒ (b) Every proper ideal of R is be contained in R∖R×, so if this subset is an ideal then it is
the unique maximal ideal.

(b) ⇒ (a) The unique maximal ideal contains every element of R∖R× and must also be contained
in R∖R×.

(b) ⇒ (c) This follows from Proposition/Definition 1.2.6.
(c) ⇒ (b) Let m be some maximal ideal in R5 and x ∈ m. By Proposition/Definition 1.2.6 again,

x ∈ Jac(R); this shows that m ⊂ Jac(R) ⊂ m, so that Jac(R) = m is the unique maximal
ideal.

The last statement is clear. ■
5This uses that R is nonzero.
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Local rings are usually denoted by the writing down the triple (R,m,k) where m⊂ R
is the maximal ideal and k := R/m is the residue field. Corollary 1.1.12(e) says that if R is any
ring and p⊂ R a prime, then (Rp,pRp,Frac(R/p)) is a local ring, where the identification of the
residue field is clear via a suitable universal property.

Remark 1.2.8. Since every maximal ideal is prime, it follows for any ring R that Nil(R) ⊂
Jac(R), but equality need not hold in general, as any local domain other than a field (e.g. Z(p)
or k[x](x)) shows.

One other notion we will have occasion to use is that of semilocal rings:

Definition 1.2.9. A nonzero ring R is called semilocal if it has only finitely many maximal
ideals.

In particular, any local ring is semilocal. An example of a non-local semilocal ring is
a finite product of fields, e.g. Q×Q. We shall meet more examples of semilocal rings in §1.3.

1.2.2 Minimal Primes and Prime Avoidance

Next up are a couple of other very useful geometrical results.

Lemma 1.2.10. Let R be a ring, and a⊂ R be a proper ideal. There is a minimal prime over a.
In fact, if we fix a prime p containing a, then there is a minimal prime over a which is contained
in p.

A prime of R minimal over a = (0) is simply called a minimal prime. The above
result shows, in particular, that any nonzero ring admits a minimal prime.

Proof. It suffices to show the latter result, since every proper ideal is contained in some max-
imal (and hence prime) ideal. Apply Zorn’s Lemma to V(a)∩ SpecRp ordered by reverse
inclusion: if (qα) is a chain then q :=

⋂
α qα is also a prime containing a, as follows. If xy ∈ q

but x,y /∈ q, then there are α,β such that x /∈ qα ,y /∈ qβ ; without loss of generality, if qα ⊂ qβ ,
then y /∈ qα and so xy ∈ qα but x,y /∈ qα , a contradiction to the primality of qα . ■

Remark 1.2.11. Geometrically, this lemma says that if X = V(a)⊂ SpecR is any closed sub-
scheme of an affine scheme, then X contains a maximal irreducible component. The second
part says that if we fix any point in X , then there is a maximal irreducible component of X
containing this given point. We will see in Corollary 3.2.10(a) below that in the Noetherian
setting there are only finitely many irreducible components.

Lemma 1.2.12 (Prime Avoidance). Let R be a ring, n a positive integer, and a1, . . . ,an ⊂ R
ideals.

(a) If p⊂ R is a prime with
⋂n

i=1 ai ⊂ p, then there is an i with 1 ≤ i ≤ n such that ai ⊂ p.
(b) If a⊂ R is an ideal with a⊂

⋃n
i=1 ai, and either R contains an infinite field or at most two

of the ai are not prime, then there is an i with 1 ≤ i ≤ n such that a⊂ ai.

Stated equivalently, (b) reads that if a1, . . . ,an ⊂ R are ideals such that either R con-
tains an infinite field or at most two of the ai are not prime, then if a ⊂ R is any ideal such

11
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that a ̸⊂ ai for all i = 1, . . . ,n, then a ̸⊂
⋃n

i=1 ai, i.e. there is an x ∈ a such that x /∈ ai for all
i = 1, . . . ,n.

Proof.

(a) Else, pick for each i an ai ∈ ai ∖p; then ∏i ai ∈
⋂

i ai ∖p using the primality of p.
(b) We leave the case of when R contains an infinite field to the reader (see Exercise 1.7). In

the second case, induct on n. When n = 2, there is no restriction on the ai; if the result is
false, then pick x1 ∈ a∖a2 ⊂ a1∖a2 and x2 ∈ a∖a1 ⊂ a2∖a1. Then x1+x2 ∈ a∖a1∪a2,
a contradiction. Suppose now that n ≥ 3 and a3, . . . ,an are prime. Inductively, we may
assume that a does not belong to unions of (n−1)’s of the ai’s, i.e. that for each i there
is an

xi ∈ a∖ (a1 ∪·· ·∪ âi ∪·· ·∪an)⊂ ai ∖ (a1 ∪·· ·∪ âi ∪·· ·∪an).

Then x1 · · ·xn−1 ⊂ a1 ∩ ·· · ∩ an−1 ∖ an by primality of an whereas xn ∈ an ∖ (a1 ∪ ·· · ∪
an−1), so if x := x1 · · ·xn−1 + xn, then x ∈ a∖

⋃
i ai, a contradiction.

■

Remark 1.2.13. Usually, only the statement in (b) is called the Prime Avoidance Lemma.
Geometrically, (a) says that if a point (or irreducible closed subscheme) of an affine scheme
is contained in a finite union of closed subschemes, then it must be contained in one of them.
Similarly, the statement in (b), or its contrapositive, can be stated geometrically in many ways;
here are two:

(i) If finitely many points (or irreducible closed subschemes) of an affine scheme are con-
tained in an open subset, then there is a smaller principal open subset containing all of
them.

(ii) If X1, . . . ,Xn are irreducible subvarieties of an affine variety X and f1, . . . , fm functions
on X such that for any Xi there is an f j such that f j doesn’t vanish identically on Xi, then
there is some linear combination of the f j’s that doesn’t vanish identically on any of the
Xi’s.

1.2.3 Krull Dimension

Let us end this section with one final important notion.

Definition 1.2.14. Let R be a ring.

(a) The Krull dimension of R, denoted dimR, is the supremum of the lengths of chains of
primes in R, i.e. it is the supremum of the set of integers n ≥ 0 such that there are primes
pi ⊂ R for i = 0, . . . ,n such that

p0 ⊋ p1 ⊋ · · ·⊋ pn.

By convention, we set dim0 :=−1.
(b) Let M be an R-module. Define the Krull dimension of M to be dimM := dimR/AnnM.
(c) Let p ⊂ R be a prime. The height of p is the supremum of lengths of chains of primes

contained in p, i.e. htp = dimRp, and the coheight of p is the supremum of lengths of
chains of primes containing p, i.e. cohtp := dimR/p.

Example 1.2.15.

12
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(a) For a ring R, we have dimR = 0 iff all primes of R are incomparable (e.g. if R has only
one prime). For a domain R, this happens iff R is a field.

(b) If (R,m,k) is a local ring then htm= dimR.
(c) If R is a PID that is not a field, then dimR = 1.
(d) If k is a field, then dimk[X1, . . . ,Xn]≥ n and k[[X1, . . . ,Xn]]≥ n. Also, dimk[X1,X2, . . . ] =

∞. In fact, equality holds in the first two, but this will have to wait (see [TO DO]).
(e) If R is a ring and p ⊂ R a prime, then htp+ cohtp ≤ dimR and equality holds for most

reasonable rings (e.g. coordinate rings of affine varieties, see [TO DO])), but not always!
See Example 10.5.2.

We will have much to say about dimension soon.
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1.3 Noetherian and Artinian Rings and Modules

Proposition/Definition 1.3.1. Let R be a ring.

i. An R-module M is Noetherian if it satisfies the following equivalent properties:
(a) The ascending chain condition (a.c.c.) on submodules of M: every increasing se-

quence M0 ⊂ M1 ⊂ M2 ⊂ ·· · of submodules of M eventually stabilizes.
(b) Every nonempty collection of submodules of M contains a maximal element.
(c) Every submodule of M is finitely generated.
(d) Given any sequence a of elements a1,a2, . . . in M, there is an integer m0 = m0(a)≥

1 such that for each m>m0, there are fmn ∈R for n= 1, . . . ,m0 with am =∑
m0
n=1 fmnan.

The ring R is Noetherian if it is Noetherian as a module over itself, or equivalently if
every ideal in R is finitely generated.

ii. An R-module M is Artinian if it satisfies any one of the following equivalent properties:
(a) The descending chain condition (d.c.c.) on submodules.
(b) Every nonempty collection of submodules contains a minimal element.

The ring R is Artinian if it is Artinian as a module over itself.

Example 1.3.2.

(a) If R = k is a field, then an R-module M is Noetherian iff it is Artinian iff it has finite
dimension.

(b) The Z-module Z is Noetherian but not Artinian. For any prime p, the Z-module Z[1/p]/Z
is Artinian but not Noetherian (see Exercise 1.9).

(c) Finite rings, finite products of fields, and finite-dimensional algebras over fields (for in-
stance, the rings k[X1, . . . ,Xn]/(X1, . . . ,Xn)

m for n,m ≥ 1) are both Noetherian and Ar-
tinian.6

(d) The rings Z,K and k[X1, . . . ,Xn] for fields k are Noetherian but not Artinian.
(e) Given any ring R, the polynomial ring R[X1,X2, . . . ] over R in countably many variables

is not Noetherian (nor Artinian7.)

Observation 1.3.3. Let R be a ring and M an R-module.

(a) Let M′ ⊂ M be a submodule. If N ⊂ N′ ⊂ M are submodules such that N ∩M′ = N′∩M′

and (N +M′)/M′ = (N′+M′)/M′, then N = N′.
(b) If 0 → M′ → M → M′′ → 0 is a short exact sequence of R-modules, then M is Noetherian

(resp. Artinian) iff both M′ and M′′ are.
(c) If M is Noetherian (resp. Artinian), then so is M⊕n for each n ≥ 1.
(d) If R is Noetherian (resp. Artinian) and M a finitely generated R-module, then M is

Noetherian (resp. Artinian).

Let’s start with one criterion relating length to the conditions of being Noetherian or
Artinian.

Lemma 1.3.4. A module has finite length iff it is both Noetherian and Artinian.

Proof. Let M be an R-module. If ℓR(M) < ∞, then for all submodules 0 ⊂ N ⊊ N′ ⊂ M we

6The phrase “both Noetherian and Artinian” is redundant for rings, where the apparent symmetry between the
definitions of the two conditions is misleading. See Theorem 1.3.10.

7See previous footnote.
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have
0 ≤ ℓR(N)< ℓR(N′)≤ ℓR(M),

so that M satisfies both the a.c.c. and the d.c.c. on submodules. If M is Noetherian, then
Lemma 10.1.2 allows us to produce a series of submodules

M = M0 ⊋ M1 ⊋ M2 ⊋ · · ·

with simple successive quotients. If M is also Artinian, this series must eventually terminate.
■

1.3.1 Noetherian Rings

Next up are some standard results on (identifying) Noetherian rings:

Theorem 1.3.5 (Generalized Hilbert Basis Theorem). If R is Noetherian, then so are R[X ] and
R[[X ]].

Proof. Let a⊂ R[X ] be an ideal. For each m ≥ 0, let am ⊂ R be the ideal consisting of leading
coefficients of polynomials in a of degree m. Since R is Noetherian, each am is finitely generated
and we may find an m0 ≥ 1 such that am0 = am0+1 = · · · . For each 0 ≤ m ≤ m0, let amn be
finitely many generators of am, and pick polynomials fmn ∈ a of degree m with these leading
coefficients. We claim that ( fmn) generate a. To show this, we proceed by induction on the
degree of f ∈ a to show that f ∈ ( fmn), with the case of negative degree (i.e. zero) being trivial.
Hence suppose that deg f = d ≥ 0, and let a be the leading coefficient of f . If d ≤ m0, then we
can write a = ∑n cnadn for some cn ∈ R, and then f −∑n cn fdn ∈ a has degree less than d. If
d ≥ m0 +1, then a = ∑n cnam0n for some cn ∈ R, and then f −∑n cnXd−m0 fm0n ∈ a has degree
less than d.

The proof for R[[X ]] is similar. Let a ⊂ R[[X ]], and for each m ≥ 0, let am ⊂ R be
the ideal of leading cofficients of power series in a∩ (Xm). Then let m0, amn and fmn ∈ a
be as before; again, we claim that the ( fmn) generate a. Given an f ∈ a, take an R-linear
combination f0 of the f0n so that f − f0 ∈ a∩ (X). Then take an R-linear combination f1 of the
f1n so that f − f0 − f1 ∈ a∩ (X2). Continue to produce f2, . . . , fm0 so that f − f0 − f1 −·· ·−
fm0 ∈ a∩ (Xm0+1b). Now since am0 = am0+1, take a linear combination fm0+1 of the X fm0n so
f − f0 − f1 −·· ·− fm0 − fm0+1 ∈ a∩ (Xm0+2). Similarly, produce fm0+2, fm0+3, . . . . For each
m ≥ m0, write fm = ∑n amnXm−m0 fm0n and for each n, let gn = ∑

∞
m=m0

amnXm−m0 ∈ R[[X ]]. Then
f = f0 + · · ·+ fm0−1 +∑n gn fm0n. ■

Theorem 1.3.6 (Cohen). Let R be a ring. Any ideal of R which is maximal (with respect to
inclusion) in the collection of ideals of R which are not finitely generated is prime. In particular,
if all prime ideals of R are finitely generated, then R is Noetherian.

Proof. Let a be this maximal element. If a is not prime, then there are x,y ∈ R such that x,y /∈ a
but xy∈ a. By maximality, a+(x) and (a : x)⊃ a+(y) are finitely generated, so pick generators
u1, . . . ,un,x of a+(x) with u j ∈ a and v1, . . . ,vm of (a : x). Then a= (u1, . . . ,un,v1x, . . . ,vmx),
which is a contradiction. ■

Theorem 1.3.7. Let R be a ring and M an R-module. If M is Noetherian (resp. finitely gener-
ated Artinian), then R/Ann(M) is a Noetherian (resp. Artinian) ring. In particular, if R admits
a faithful Noetherian module, then it is Noetherian.
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Proof. The submodules of M as an R-module and R/AnnM-module coincide, so we may re-
duce to the case AnnM = 0, i.e. when M is faithful. If M is generated by x1, . . . ,xn, then the
map R → M⊕n given by [r] 7→ (rx1, . . . ,rxn) is injective; now apply Observation 1.3.3(b). ■

Theorem 1.3.8 (Eakin-Nagata-Formanek). Let R be a ring.

(a) Let M be a finitely generated faithful R-module. If the set of submodules of M of the
form aM for ideals a⊂ R satisfies the ascending chain condition, then R is Noetherian.

(b) Let R ⊂ S be a ring extension. If S is Noetherian and a finitely generated R-module, then
R is Noetherian.

Proof. For (b), take M = S in (a). To show (a), by Theorem 1.3.7, it suffices to show that M is
a Noetherian R-module. Suppose not, so that the collection

A := {aM : a⊂ R ideal and M/aM is not Noetherian}

is nonempty. By assumption, this collection has a maximal element, say aM. Replacing M by
M/aM and R by R/Ann(M/aM), we can assume that M is non-Noetherian but for any nonzero
ideal a⊂ R, the quotient M/aM is Noetherian. Now let

B := {N ⊂ M : M/N is a faithful R-module}.

If M is generated by x1, . . . ,xn, then a submodule N ⊂ M is in B iff for all r ∈ R∖{0} we have
{rx1, . . . ,rxn} ̸⊂ N. Therefore, Zorn’s Lemma applies to B and produces a maximal element
N0 ∈B. If M/N0 is Noetherian, then by Theorem 1.3.7 the ring R is Noetherian and hence so
is M, which is a contradiction. Therefore, replacing M by M/N0 gives us an R-module M with
the following three properties:

(i) M is not a Noetherian R-module.
(ii) For any nonzero ideal a⊂ R, the quotient M/aM is Noetherian.

(iii) For any nonzero submodule N ⊂ M, the quotient M/N is not a faithful R-module.

Let N ⊂ M be any nonzero submodule. By (iii), there is a nonzero r ∈ R such that rM ⊂ N.
By (ii), the quotient M/rM is Noetherian, so that the submodule N/rM ⊂ M/rM is finitely
generated. Since M and hence rM is finitely generated as well, it follows that N is finitely
generated. Since this is true for every N ⊂ M, it follows that M is Noetherian, contradicting (i).

■

1.3.2 Artinian Rings

We end this section with a closer examination of Artinian rings.

Theorem 1.3.9. Let R be an Artinian ring.

(a) If R is a domain or a reduced local ring, then R is a field.
(b) Every prime ideal of R is maximal (i.e. dimR = 0).
(c) The radical Nil(R) = Jac(R) is nilpotent.
(d) R is semilocal.
(e) R is a finite direct product of Artinian local rings.

Proof.
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(a) Given a nonzero a ∈ R, applying the d.c.c. to (a)⊃ (a2)⊃ ·· · gives us an integer k ≥ 1
such that (ak) = (ak+1). By Exercise 1.10 applied to the case where R is a domain or a
local ring, there is a unit u ∈ R× such that ak+1 = uak, i.e. ak(a−u) = 0. If R is a domain,
then this implies that a = u, so we are done. If R is a local ring and a ̸∈ R×, then u ∈ R×

implies that a− u ∈ R× (Proposition/Definition 1.2.6 and 1.2.7), and so ak = 0. If R is
also reduced, it follows that a = 0, which is a contradiction. Therefore, we must have
a ∈ R×.

(b) If p⊂ R is a prime ideal, then R/p is an Artinian domain, so we are done by (a).
(c) Let n= Nil(R) = Jac(R). By the d.c.c. applied to n⊃ n2 ⊃ ·· · , there is a k ≥ 1 such that

nk = nk+1 = · · · . If nk ̸= 0, then the family of ideals A = {a⊂ R : ank ̸= 0} is nonempty
since n ∈A. Since R is Artinian, A contains a minimal element, say a. Now ank ̸= 0, so
there is an r ∈ a such that r ·nk ̸= 0; then by minimality a = (r). But now r ·n ⊂ (r) is
such that r ·n ·nk = r ·nk ̸= 0, so that by minimality r ·n= (r). Therefore, r = rs for some
s ∈ n, so that r = rsn for all n ≥ 1. But s ∈ n = Nil(R), so this means r = 0, contrary to
hypothesis. Therefore, nk = 0.

(d) Consider the collection of all finite intersections of maximal ideals of R, which is nonempty
as soon as R is not the zero ring. Since R is Artinian, this has a minimal element, say⋂n

i=1mi. We claim that m1, . . . ,mn are all the maximal ideals of R. Indeed, if m ⊂ R
is any other maximal ideal, then minimality gives us

⋂n
i=1mi = m∩

⋂n
i=1mi ⊂ m, so by

Lemma 1.2.12(a) there is an i such that mi ⊂m, whence mi =m by maximality.
(e) By (c) and (d), there is a k ≥ 1 such that nk = 0 where n=

⋂n
i=1mi = ∏

n
i=1mi. Since the

{mk
i }i are pairwise comaximal, the Chinese Remainder Theorem gives us that

R = R/
n

∏
i=1

mk
i
∼=

n

∏
i=1

R/mk
i .

Each quotient R/mk
i is Artinian (because it is a quotient of R), and local (thanks to Exer-

cise 1.8).

■

This result shows that Artinian local rings are nonreduced analogs of fields.

Theorem 1.3.10 (Akizuki-Hopkins). An Artinian ring is Noetherian.

Proof 1 of Theorem 1.3.10. Let R be an Artinian ring. We will show that if M is an Artinian
R-module, then M is finitely generated; this suffices, since every ideal of R is an Artinian
R-module by Observation 1.3.3(b). If M is not finitely generated, then the family A of sub-
modules of M that are not finitely generated is nonempty, so we may choose a minimal element
M0; replacing M by M0 we can assume that every proper submodule of M is finitely generated.
We claim that p = Ann(M) is a prime of R: pick a,b ∈ R such that ab ∈ p but a /∈ p. Then
M[a] := (0 :M a)⊊ M, so it is finitely generated. From the short exact sequence

0 → M[a]→ M ·a−→ aM → 0

we see that aM is not finitely generated, so that aM = M. Then 0 = b(aM) = bM implies
b ∈ p. But now R/p is a field, and M is an Artinian R/p module that is not finitely generated–a
contradiction. ■

Proof 2 of Theorem 1.3.10. We will show that a ring R is Artinian iff ℓR(R) < ∞. The “if”
direction, as well as the result of the theorem, follow then from Lemma 1.3.4. By (the proof
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of) Theorem 1.3.9(e), there are maximal ideals m1, . . . ,mN ⊂ R, not necessarily distinct, with
∏

N
i=1mi = 0. Consider the chain R ⊃ m1 ⊃ m1m2 ⊃ ·· · ⊃ m1 · · ·mN = 0, and consider the

subquotients Qi :=m1 · · ·mi−1/m1 · · ·mi. Each Qi is an Artinian R-module, and so an Artinian
ki :=R/mi-module, hence a Noetherian ki-module (Examples 1.3.2(a)), and hence a Noetherian
R-module. It follows then from Lemma 1.3.4 that each ℓR(Qi) < ∞. From the additivity of
length (Corollary 10.1.6), we conclude that

ℓR(R) =
N

∑
i=1

ℓR(Qi)< ∞.

■

We shall prove later (§3.3) that a Noetherian ring of dimension zero is Artinian.
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1.4 Unique Factorization I

In this section we study unique factorization of elements into irreducibles in domains.

Definition 1.4.1. A domain R is said to be atomic if every nonzero nonunit of R can be written
as a product of irreducible elements.

If a domain R satisfies the ascending chain condition on principal ideals (e.g. if R is
Noetherian), then R is atomic, although the converse does not hold (see [1]). We will need

Definition 1.4.2. Let R be a ring, and x,y ∈ R elements.

(a) An element ℓ ∈ R is said to be a least common multiple (l.c.m.) of x and y if x,y | ℓ and if
ℓ′ ∈ R is any other element such that x,y | ℓ′, then ℓ | ℓ′.

(b) An element g ∈ R is said to be a greatest common divisor (g.c.d.) of x and y if g | x,y and
if g′ ∈ R is any other element such that g′ | x,y, then g′ | g.

By Exercise 1.10, l.c.m.s and g.c.d.s are unique in strongly associate rings when they
exist.

Theorem/Definition 1.4.3 (Unique Factorization Domains). The following conditions on an
atomic domain are equivalent:

(a) The factorization of any nonzero element into irreducibles is unique up to reordering of
factors and multiplication by units.

(b) Every irreducible element is prime.
(c) The intersection of an arbitrary collection of principal ideals is principal.
(d) The intersection of any two principal ideals is principal.
(e) Any two elements have a least common multiple.
(f) Any two elements have a greatest common divisor.
(g) Any minimal nonzero prime (i.e. prime of height one) is principal.

An atomic domain satisfying these conditions is said to be a unique factorization domain
(UFD).

Proof.

(a) ⇔ (b) Standard and left to the reader (see Exercise 1.13).
(a) ⇒ (c) Factoring each xi = ui ∏α pvα,i

α with ui ∈R× and pα distinct primes gives
⋂

i(xi)=
(

∏α pmaxi vα,i
α

)
,

where the intersection is zero iff maxi vα,i does not exist (i.e. is ∞) for some α .
(c) ⇒ (d) Clear.
(d) ⇒ (e) Clear from the definition of the least common multiple.
(e) ⇒ (f) If R is any domain and x,y ∈ R elements which have a least common multiple, then x

and y have a greatest common divisor. Indeed, if (x)∩ (y) = (z), then there is a d ∈ R
with xy = zd. From ℓ ∈ (x) we get y ∈ (d), and similarly x ∈ (d), so that (x,y) ⊂ (d).
If d′ is some other element such that (x,y) ⊂ (d′), thne x = d′x0 and y = d′y0 whence
d′x0y0 ∈ (x)∩ (y) = (z) and hence zd = xy = (d′x0y0)d′ ∈ (zd′), and so (d)⊂ (d′).

(f) ⇒ (b) Let p be an irreducible element, and suppose x,y ∈ R are such that p | xy but p ∤ y. By
irreducibility of p, it is easy to see (check!) that gcd(x, p) = 1 and now p | gcd(xy, py) =
gcd(x, p)y = y.

(b) ⇒ (g) Let p be a minimal nonzero prime, and let 0 ̸= f ∈ p. Factor f into irreducibles and use
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the primality of p to conclude that p contains an irreducible element. Conclude from (b)
using the minimality of p that p is principal.

(g) ⇒ (b) This is harder. Let p be an irreducible element, and let p be a minimal prime over (p)
(Lemma 1.2.10). By Theorem 3.4.1, p has height one and hence is principal by hypoth-
esis; say p= (q) for some prime q ∈ R. Now p = qr for some r ∈ R, so by irreducibility
of p and primality of q we conclude that r is a unit, whence p= (p).

■

Corollary 1.4.4. A PID is a UFD.

Proof. A PID is Noetherian and hence atomic; we are done by Theorem/Definition 1.4.3(c),
say. ■

Corollary 1.4.5 (Nagata). Let R be a domain and S ⊂ R multiplicative. Consider the state-
ments:

(a) The ring R is a UFD.
(b) The localization S−1R is a UFD.

Then (a) ⇒ (b), and (b) ⇒ (a) if R satisfies the ascending chain condition on principal ideals
(e.g. if R is Noetherian) and S is generated by a set of prime elements.

Proof. The implication (a) ⇒ (b) is clear; for (b) ⇒ (a) under the given conditions, we use
Theorem/Definition 1.4.3(g). Let Γ be a generating set for S and p ⊂ R be a prime of height
one. If p∩S ̸= /0, then p contains a p ∈ Γ, and then p= (p) by minimality. Else S−1p⊂ S−1R
is a prime of height one, so by hypothesis we have S−1p = xS−1R for some x ∈ p. Look at
the collection of ideals {(x)} that arise in this way; by Zorn’s lemma and the hypothesis on R,
this has a maximal element (p). By maximality, p is not divisible by any q ∈ S. If x ∈ p, then
sx = py for some s ∈ S and y ∈ R. If s = q1 · · ·qN with q j ∈ Γ, then p /∈ (q j) implies y ∈ (q j) for
each j. By induction on N, it follows that y ∈ (s), and so x ∈ (p). Thus p⊂ (p) as needed. ■

Let us now look at some important classes of examples of UFDs. The first of these
comes from PIDs, which often arise as Euclidean domains.

Definition 1.4.6. A domain R is said to be Euclidean if there is some function d : R∖ {0} →
Z>0 such that for all a,b ∈ R with b ̸= 0, there are q,r ∈ R such that

a = bq+ r

and either r = 0 or d(r)< d(b).

The function d, called the Euclidean function, is not part of the definition, only the
existence of such a d is; in general, a Euclidean domain admits many different Euclidean func-
tions. Briefly, a Euclidean domain is a domain in which you can perform Euclid’s algorithm.

Example 1.4.7.

(a) For R = K a field, the function d ≡ 1 is Euclidean.
(b) For R = Z, the function d(n) = |n| is Euclidean.
(c) For R = Z[i] or R = Z[ω], the norm function d(α) = N(α) is Euclidean.
(d) For R = K[X ], the polynomial ring over the field K, the function d( f ) = deg f is Eu-

clidean.
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(e) For R=K[[X ]], the d( f ) = ordX f taking a power series to the highest power of X dividing
it is Euclidean.

Corollary 1.4.8. A Euclidean domain is a PID and hence a UFD.

Proof. This is standard, so we only indicate a sketch, and that too only of the UFD part. If
R is Euclidean and d a Euclidean function, then the function d̃ : R∖ {0} → Z>0 defined by
d̃(x) = miny̸=0 d(xy) is also Euclidean with the additional property that d̃(x) | d̃(y) if x | y;
replace d by d̃ to assume this property. Show that if x,y ∈ R∖ {0}, then d(x) ≤ d(xy) with
equality iff y is a unit, and use this (and the well-ordering principle) to show that R satisfies the
ascending chain condition on principal ideals, and is hence atomic. Finally, perform Euclid’s
algorithm to find the greatest common divisor of any two elements and use Theorem/Definition
1.4.3(f). For details and a slightly different argument, see [2]. Proofs of this result can also be
found in any algebra textbook. ■

Remark 1.4.9. Note that there are PIDs which are not Euclidean. Two standard examples are
R = Z[(1+

√
−19)/2] and R = R[X ,Y ]/(X2 +Y 2 +1); see [2] for proofs of these claims.

We end by relating the unique factorization in a domain R to that in polynomial rings
over it.

Corollary 1.4.10. Let R be a ring. The following are equivalent:

(a) R is a UFD.
(b) R[X ] is a UFD.
(c) R[X1, . . . ,Xn] is UFD for any n ≥ 1.
(d) R[Xλ ]λ∈Λ is a UFD for any Λ.
(e) R[Xλ ]λ∈Λ is a UFD for some Λ.

Proof. In what follows, let K := FracR be the fraction field of R.

(a) ⇒ (b) We prove the result when R[X ] satisfies the ascending chain condition on principal ideals
(e.g. when R is Noetherian, using Theorem 1.3.5); then we can argue as follows.8 If
S ⊂ R[X ] is the set of all non-units in R, then S is a multiplicative subset generated by
primes in R, which are primes in R[X ] by Exercise 1.12. Since the localization S−1R[X ] =
K[X ] is a PID and hence UFD (Example 1.4.7(d) and Corollary 1.4.8), we are done by
Corollary 1.4.5.

(b) ⇒ (c) Follows from the previous implication by induction.
(c) ⇒ (d) Any element of R[Xλ ]λ∈Λ belongs to R[Xλ ]λ∈Λ′ for some finite Λ′ ⊂ Λ; in particular, any

nonzero nonunit in the former admits a factorization into primes in this finite polynomial
ring. Since these elements are still prime in R[Xλ ]λ∈Λ (Exercise 1.12(b)), we are done by
Exercise 1.13(b).

(d) ⇒ (e) Clear.
8In general, this result is usually proven with the help of Gauss’s Lemma. Here’s an outline; see Exercise 1.13

for a different proof. Let K = FracR. An f ∈ R[X ] is said to be primitive if α ∈ R and α | f implies α ∈ R×.
Firstly, any f ∈ K[X ] can be written as λ f0 for some λ ∈ K and primitive f0 ∈ R[X ]; if 0 ̸= f , then λ and f0
are determined uniquely up to units of R and are called the content and primitive part of f respectively. Then
content and primitive parts are both multiplicative functions (this is Gauss’s Lemma), from which it follows that
if f ,g ∈ R[X ] are nonzero such that f | g in K[X ] and f is primitive, then f | g in R[X ]. Finally, from this it follows
that a primitive f ∈ R[X ] that is prime in K[X ] is prime in R[X ]. Then we are done by Exercise 1.13(b); the unique
factorization of an f ∈ R[X ] comes from factoring the content in R and the primitive part into primitives in K[X ].
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(e) ⇒ (a) Note that R ⊂ R[Xλ ]λ∈Λ, so if the latter is domain, so is the former. Any nonzero nonunit
in R can be factored uniquely into primes in the latter, but this factorization cannot have
any elements of positive degree (thanks to Exercise 1.12(a)). Since primes of R[Xλ ]λ∈Λ

that lie in R are primes of R (Exercise 1.12(b)), we are done by Exercise 1.13(b).

■

It is not true in general that if R is a UFD, then so is R[[X ]]; see Example 10.5.1.
However, if R is a regular UFD, then so is R[[X ]] (this is Theorem 9.1.2), so that, in particular,
rings such as Z[[X1, . . . ,Xn]] and k[[X1, . . . ,Xn]] (where k denotes a field) are UFDs. We will have
much to say about unique factorization at the end of the course.
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1.5 Cayley-Hamilton Theorem, Nakayama’s Lemma, Krull
Intersection Theorem

Observation 1.5.1 (Cayley-Hamilton Theorem). Let R be a ring, M be a finitely generated R-
module, a⊂ R an ideal, and ϕ ∈ EndR(M) such that ϕM ⊂ aM. Suppose that M = ∑

n
i=1 Rxi and

write ϕ(x j) = ∑
n
i=1 ai jxi for some ai j ∈ a, and let A := [ai j]. Then multiplying on the left by the

adjoint of the matrix ϕIn−A∈Matn(K[ϕ]) shows that det(ϕIn −A)xi = 0 for all i. Therefore, ϕ

satisfies an equation of the form ϕn+a1ϕn−1+ · · ·+an = 0 ∈ EndR(M) for some some ai ∈ ai.

Corollary 1.5.2. Let R ⊂ S be a ring extension and M a finitely generated R-module. Suppose
for some s ∈ S we have that M is also a faithful R[s]-module (i.e. with AnnR[s]M = 0), and
suppose that a ⊂ R is an ideal with sM ⊂ aM. Then s ∈ S is the root of a monic polynomial
equation of the form sn +a1sn−1 + · · ·+an = 0, where the ai ∈ ai for each i.

Proof. By the observation, there are ai ∈ ai such that sn+a1sn−1+ · · ·+an ∈AnnR[s]M = 0. ■

Corollary 1.5.3 (Nakayama’s Lemma). Let R be a ring.

(a) If M is an R-module and a ⊂ R an ideal with M = aM, then there is an a ∈ a with
(1+a)M = 0.

(b) Let M be a finitely generated R-module and a⊂ Jac(R) with M = aM. Then M = 0.
(c) Let M be an R-module, and N ⊂ M a submodule such that M/N is finitely generated. If

for some a⊂ Jac(R) we have M = N +aM, then M = N.

Proof.

(a) Apply Corollary 1.5.2 to ϕ = 1.
(b) Apply (a) and use Proposition/Definition 1.2.6. Alternatively, if M ̸= 0, then use Lemma

10.1.2 to produce a surjection ϕ : M → R/m for some maximal ideal m⊂R. Since a⊂m,
we must have aM ⊂mM ⊂ kerϕ ⊊ M, a contradiction to hypothesis.

(c) Apply (b) to M/N.

■

Corollary 1.5.4. Let (R,m,k) be a local ring and M a finitely generated R-module. Then:

(a) Given x1, . . . ,xn ∈M, the set {x1, . . . ,xn} generates M over R iff {x1, . . . ,xn} spans M/mM
over k. In particular, M/mM is a finite-dimensional vector space over k.

(b) In the situation of (a), the former is a minimal set of generators of M over R iff the latter
is a k-basis of M/mM. In particular, any two minimal sets of generators for M over R
have the same size, namely dimk(M/mM).

(c) If m ̸= 0 is finitely generated, then m is principal iff dimk(m/m2) = 1.

Proof.

(a) If x1, . . . ,xn ∈ M generate M over R, then the images certainly span M/mM over k. Con-
versely, suppose x1, . . . ,xn ∈ M are such that {x1, . . . ,xn} is a k-basis for M/mM. Let
N := ∑

n
i=1 Rxi ⊂ M; by Corollary 1.5.3(c), we conclude that M = N, so M is generated

by the xi.
(b) If {x1, . . . ,xn} is not a minimal set of generators, then some proper subset of it generates

M and hence also the images of these span M/mM. Similarly, if there is a proper subset of
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{x1, . . . ,xn} whose images form a basis of M/mM, then applying the previous implication
would show that this proper subset would be a set of generators for M.

(c) Take M =m in (b).

■

Let us end this section with a few miscellaneous consequences.

Corollary 1.5.5 (Krull Intersection Theorem). Let R be a ring, a ⊂ R be an ideal, and Ka :=⋂
N≥0 a

N . If R is Noetherian, then Ka = aKa. If, in addition, 1+a is not a zero divisor for any
a ∈ a (e.g. if a⊂ Jac(R) or if R is a domain and a⊂ R a proper ideal), then Ka = 0.

The ideal Ka is the kernel of the completion map R → R̂a (see §??), so that if Ka = 0
then R embeds into its a-adic completion. This result gives us conditions for when this happens;
for instance, this always happens for a Noetherian local ring R with maximal ideal a=m.

Proof. The second statement follows immediately from the first and Corollary 1.5.3(a). For the
first statement, let a= (a1, . . . ,an) and let b ∈ Ka. For each N ≥ 1, there is a polynomial pN ∈
R[X1, . . . ,Xn] such that pN is homogeneous of degree N and b = pN(a1, . . . ,an) =: pN(a). Since
the ring R[X1, . . . ,Xn] is Noetherian (Theorem 1.3.5), there is an integer N ≥ 1 and polynomials
q1, . . . ,qN ∈ R[X1, . . . ,Xn] such that each q j is homogeneous of degree j and pN+1 = qN p1 +
· · ·+q1 pN . Then

b = pN+1(a) = (qN(a)+ · · ·+q1(a))b ∈ aKa.

■

This elementary proof is due to Perdry [3]. The hypothesis on I in the second half of
the statement cannot be easily strengthened: if R = Q×Q and I = Q×0, then R is Noetherian
(Example 1.3.2(c)) but I2 = I and so KI = I ̸= 0, and there is a non-Noetherian domain with
a proper ideal I ⊂ R such that KI ̸= 0 (Example 10.5.4). This result is also an immediate
consequence of the Artin-Rees Lemma (Lemma ??).

Corollary 1.5.6. Every surjective endomorphism of a finitely generated module is an isomor-
phism.

Proof. Specifying an endomorphism ϕ of an R-module M is the same as specifying a R[X ]-
module structure lifting the R-module structure on M (where X acts by ϕ). If ϕ is surjective,
then M = aM with a = (X) ⊂ R[X ]. By Nakayama’s Lemma (Corollary 1.5.3(a)), there is an
a ∈ a such that (1+ a)M = 0. Now if m ∈ M is such that ϕ(m) = 0, then 0 = (1+ a)m =
m+a(ϕ)(m) = m, where a(ϕ)(m) = 0 by a ∈ (X) and ϕ(m) = 0. ■

Counterexample 1.5.7. Corollary 1.5.6 is false if we replace “surjective” by “injective”: take
Z 2−→ Z. See also Exercise 1.11.

Corollary 1.5.8. Let R be a ring and M,N be a finitely generated R-modules. If M ⊗R N = 0,
then AnnR(M)+AnnR(N) = R. In particular, if R is local, then either M = 0 or N = 0.

Proof. First suppose that (R,m,k) is local and M ̸= 0 but M ⊗R N = 0. Then M/mM ̸= 0 by
Nakayama and so there is a surjection M/mM ↠ k. By right-exactness of the tensor product,
this means that 0 = M⊗R N surjects onto k⊗R N ∼= N/mN, and so again by Nakayama N = 0.
In general, if AnnR(M)+AnnR(N) is contained in some prime p, then 0 = (M⊗R N)⊗R Rp

∼=
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Mp ⊗Rp Np implies by the first part that either Mp = 0 or Np = 0. If, say, Mp = 0, then for
each of the finitely many generators xi of M, there is some ui ∈ R∖ p with uixi = 0. Then
u = ∏i ui ∈ AnnR(M)∖p, a contradiction. ■

Remark 1.5.9. Geometrically, Corollary 1.5.8 asserts that the support of the tensor product
 ⊗X  of two coherent X -modules  , on a locally Noetherian scheme X is exactly the
intersection of the supports of  and .
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1.6 Gradings, Filtrations and All That

Just as affine algebraic geometry deals with ideals in rings, projective algebraic geometry deals
with homogeneous ideals in graded rings.

Definition 1.6.1. Let I be a monoid.

(a) An I-graded ring S is a ring together with a family of additive subgroups Si indexed by
i ∈ I such that S =

⊕
i∈I Si and for all i, j ∈ I we have SiS j ⊂ Si+ j.

(b) If S is an I-graded ring, then a graded module over S is an S-module M with a family
of submodules Mi indexed by i ∈ I such that M =

⊕
i∈I Mi and for all i, j ∈ I we have

SiM j ⊂ Mi+ j.
(c) If S is an I-graded ring and M a graded S-module, then the twist of M by i ∈ I is the

graded S-module M(i) defined by M(i) j := Mi+ j.

Similarly, given a base ring k, it is easy to guess the definition of an I-graded k-
algebra. Given an I-graded ring S, the submodule S0 ⊂ S is a ring, each Si a module over S0,
and S is naturally a graded S0-algebra. Similarly, if M is a graded S-module, then each Mi is
an S0-submodule of M. Given an I-graded ring S and a graded S-module M, for each i ∈ I, a
nonzero element m ∈ Mi is said to be homogeneous of degree i. Every element m ∈ M can be
uniquely decomposed into its homogeneous components.

Proposition/Definition 1.6.2. Let I be a monoid, S an I-graded ring, and M a graded S-module.
The following conditions on an S-submodule N of M are equivalent:

(a) For an m ∈ M, we have m ∈ N iff each homogeneous component mi of m is in N.
(b) The submodule N is generated over S by homogeneous elements of M.
(c) The natural map

⊕
i∈I N ∩Mi → N is an isomorphism.

In this case, we say that N is a homogeneous submodule of M.

The proof of the equivalence of the above conditions is fairly clear; details are left
to the reader. In the above setting, if N ⊂ M is a homogeneous submodule, then N is itself a
graded S-module with grading Ni := N ∩Mi. In this case, the quotient M/n =

⊕
i∈I Mi/Ni is

also a graded S-module.

Example 1.6.3.

(a) If V be a finite-dimensional vector space over a field k, then the symmetric aglebra

Sym∗V∨ :=
⊕
d≥0

Symd V∨

is an N-graded k-algebra. If V has dimension n+1 ≥ 1, then choosing a basis for V gives
an isomorphism between Sym∗V∨ and the polynomial ring k[X0,X1, . . . ,Xn] which is also
clearly N-graded. If k is a field of characteristic two, then the exterior algebra Λ∗V∨ is
also an N-graded k-algebra.

(b) Given homogeneous polynomials F1, . . . ,Fr ∈ k[X0, . . . ,Xn], the quotient ring

S := k[X0, . . . ,Xn]/(F1, . . . ,Fr)

is an N-graded k-algebra; this is the homogeneous coordinate ring of the projective vari-
ety V defined by the vanishing of the Fi, i.e. V = V(F1, . . . ,Fr)⊂ Pn

k .
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Example 1.6.4. Let R be a ring and a⊂ R be an ideal.

(a) The Rees algebra or blowup of R along a is the graded R-algebra Bla(R) :=
⊕

n≥0 a
n.

(b) The associated graded ring to R and a is defined to be gra(R) :=
⊕

n≥0 a
n/an+1. If

a= (a1, . . . ,ar), then a1, . . . ,ar ∈ a/a2 = gra(R)1 generate gra(R) over gra(R)0 = R/a.
(c) If M is an R-module, then the associated graded module to M and a is defined by

gra(M) :=
⊕

n≥0 a
nM/an+1M. This is a graded gra(R)-module.

Note that if R is a Noetherian ring, then for any ideal a⊂ R, the blowup Bla(R) is a Noetherian
ring; this follows from the next lemma.

Lemma 1.6.5. The following conditions on an N-graded ring S are equivalent:

(a) S is a Noetherian ring.
(b) S0 is a Noetherian ring and the ideal S+ :=

⊕
i≥1 Si ⊂ S is a finitely generated.

(c) S0 is a Noetherian ring and S is a finitely generated S0-algebra.

Proof. ■

1.6.1 Hilbert Functions and Polynomials

Definition 1.6.6. Let R,S be rings and f : R → S a function. For each k ≥ 1, we recursively
define the kth finite difference function of f denoted ∆[k] f : R → S by

∆
[1] f (r) := f (r+1)− f (r) and ∆

[k] f := ∆
[1](∆[k−1] f ) for k ≥ 2.

It is inductively clear that for any k≥ 1 we have ∆[k]( f )(r) :=∑
k
i=0(−1)i−1(k

i

)
f (r+ i).

If R i

1.6.2 Completion and the Artin-Rees Lemma
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1.7 Exercises

Exercise 1.1. Let R be a ring and S,T ⊂ R be multiplicative subsets such that S ⊂ T . The uni-
versal property of localizations gives us homomorphisms S−1R → T−1R and S−1M → T−1M
for any module M. Show that the kernel of S−1R → T−1R is

{s−1r ∈ S−1R : tr = 0 for some t ∈ T}.

Exercise 1.2. Show that if R and S are rings, then Quot(R×S)∼=Quot(R)×Quot(S). Conclude
that Quot(Z×Z) ∼= Q×Q. Does the same result also hold for arbitrary (possibly infinite)
products of rings?

Exercise 1.3. Show that the following conditions on a ring R are equivalent.

(a) The underlying abelian group of R is torsion-free. In other words, if ε ∈ R is such that
for some n ∈ Z≥1, we have nε = 0, then ε = 0.

(b) The natural map R → Q⊗Z R is injective.
(c) There is a Q-algebra K and a ring monomorphism R → K.

A ring satisfying these equivalent conditions is called torsion-free.

Exercise 1.4. Let R be a ring and S ⊂ R a multiplicative subset. Show that if M is an R-module
and N ⊂ M an R-submodule, then for any x ∈ M, the following are equivalent.

(a) x ∈ N.
(b) [x] ∈ S−1N for every multiplicative S ⊂ R.
(c) [x] ∈ Np for all p.
(d) [x] ∈ Nm for all m.

Exercise 1.5. Let a,b⊂ R be two ideals of the ring R. Consider the following conditions:

(a) Every prime containing a also contains b, i.e. V(a)⊂ V(b).
(b) We have b⊂

√
a.

(c) There is an N ≫ 1 such that bN ⊂ a.

Show that (a) and (b) are equivalent and implied by (c), and that (c) is equivalent to (a) and (b)
if b is finitely generated (e.g. if R is Noetherian).

Exercise 1.6. Let R be a ring. Show that:

(a) If S ⊂ R a multiplicative subset, then Nil(S−1R) = S−1 Nil(R) = Nil(R) ·S−1R.
(b) The following are equivalent:

(i) R is reduced.
(ii) S−1R is reduced for each multiplicative S ⊂ R.

(iii) Rp is reduced for each p.
(iv) Rm is reduced for each m.

Exercise 1.7.

(a) Suppose that k is an infinite field, V a k-vector space, n a positive integer, and U,V1, . . . ,Vn ⊂
V subspaces. Show that if U ⊂

⋃n
i=1Vi, then there is an i with 1 ≤ i ≤ n such that U ⊂Vi.

In particular, a vector space over k cannot be a finite union of proper subspaces.
(b) Show by example that the statement in (a) is false if we do not require k to be infinite.

Exercise 1.8. Show that if R is a ring and m⊂ R a maximal ideal, then for each integer n ≥ 1,
the quotient ring R/mn is a local ring. What is the unique maximal ideal of R/mn?
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Exercise 1.9. For any natural number N, let Z⟨1/N⟩ := {q ∈ Q : Nq ∈ Z} ⊂ Q be the abelian
subgroup of Q generated by 1/N, so that for any natural number n, we have a chain of additive
subgroups

Z ⊂ Z⟨1/n⟩ ⊂ Z⟨1/n2⟩ ⊂ · · · ⊂ Z[1/n]⊂ Q.

Show that if n = p is prime, then these are all the subgroups of (the underlying additive sub-
group of) the ring Z[1/n] which contain Z. Conclude that the Z-module Z[1/p]/Z is Artinian
but not Noetherian. What happens when n is not prime?

Exercise 1.10. A ring R is said to be strongly associate if the following holds: if r,s ∈ R are
such that (r) = (s) (i.e. the principal ideals generated by r and s are the same), then there is a
unit u ∈ R× such that r = us. Show that domains, local rings, principal ideal rings, and Artinian
rings are strongly associate. Find a ring that is not strongly associate.

Exercise 1.11.

(a) ([4, Exercise 6.1]) Let M be a Noetherian (resp. Artinian) module, and ϕ : M → M an
endomorphism. Show that if ϕ is surjective (resp. injective), then ϕ is an isomorphism.

(b) (Ross) Prove or disprove and salvage if possible: if R is a ring, then R ̸∼= R[X ] as rings.

Exercise 1.12. Let R be a ring.

(a) Show that R is a domain iff the polynomial ring R[X ] is, and in this case (and only
in this case) the degree function deg : R[X ] → Z≥0 ∪ {−∞} is additive (i.e., satisfies
deg( f g) = deg( f )+deg(g) for f ,g ∈ R[X ]).

(b) Show that given a p ∈ R, this p is a prime element in R iff it is a prime element in R[X ].

Generalize to an arbitrary number of variables.

Exercise 1.13. Show that the following conditions on a domain are equivalent:

(a) The domain is a UFD.
(b) Every nonzero nonunit is a finite product of prime elements.
(c) (Kaplansky) Every nonzero prime ideal contains a prime element.

Use Kaplansky’s criterion (c) to give alternative proofs of Corollary 1.4.5 and Corollary 1.4.10.

Exercise 1.14.

(a) Prove or disprove and salvage if possible: If R is a UFD and a⊂ R an ideal, then R/a is a
UFD. Do the same for when R = K[X1, . . . ,Xn] for some field K and a= ( f ) is principal.

(b) (Klein-Nagata) Fix an n ≥ 1 and let R := C[X1, . . . ,Xn] and f := X2
1 + · · ·+X2

n . Then
R/( f ) is a UFD if n ≥ 5. What happens when 1 ≤ n ≤ 4?

(c) (Samuel) Let K be any field, R = K[X ,Y,Z] and f = X2+Y 3+Z7. Then R/( f ) is a UFD.
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2.1 Derivations and Kähler Differentials

Definition 2.1.1. Suppose R is a ring, S an R-algebra, and M an S-module. An R-linear deriva-
tion (or simply an R-derivation) from S to M is an R-module homomorphism D : S → M that
satisfies the Liebniz Rule that for all f ,g ∈ S we have

D( f g) = f ·Dg+g ·D f .

The set of all R-linear derivations from S to M is naturally an S-module denoted by DerR(S,M).

Remark 2.1.2.

(a) Every ring S is a Z-algebra. A Z-derivation is simply called a derivation, and in that case
the module of derivations is written Der(S,M) := DerZ(S,M).

(b) If φ : M → M′ is an S-module homomorphism and D : S → M an R-derivation, then
it is immediate that the map φ ◦D : S → M′ is also an R-derivation. This gives an S-
module homomorphism φ∗ : DerR(S,M) → DerR(S,M′). It is immediate to check that
this construction is functorial, so that taking R-derivations gives a covariant functor

DerR(S,−) : S-Mod→ S-Mod.

We shall see momentarily that this functor is representable.
(c) The case M = S deserves special attention: we define DerR(S) := DerR(S,S). If D,D′ ∈

DerR(S) then we can compose them to get another map DD′ : S → S which is not in
general a derivation. However, the bracket [D,D′] = DD′−D′D is indeed a derivation,
and this turns DerR(S) into a Lie algebra over R.

Lemma 2.1.3 (Basic Properties of Derivations).

(a) If e ∈ S is an idempotent, then D(e) = 0 for any R-derivation D ∈ DerR(S,M). In partic-
ular, D(1) = 0 for any R-derivation D ∈ DerR(S,M).

(b) If i : R → S denotes the canonical map, then a derivation D ∈ Der(S,M) is R-linear iff
D ◦ i = 0. In this sense, DerR(S,M) ⊂ Der(S,M) is the submodule of derivations that
vanish on R.

(c) For any f ,g ∈ S, R-derivation D ∈ DerR(S,M) and integer n ≥ 1 we have that

D( f n) = n f n−1D f .

If, M = S, then we also have

Dn( f g) =
n

∑
i=0

(
n
i

)
Di f ·Dn−ig.

(d) If n = 0 ∈ S for some n ≥ 1, then for any element f ∈ S and D ∈ DerR(S,M) we have
D( f n) = 0. If n = p is prime, then if D ∈ DerR(S) then Dp ∈ DerR(S) too.

Proof.

(a) This follows from D(e)=D(e2)= 2e·D(e)⇒ (2e−1)D(e)= 0⇒D(e)= (2e−1)2D(e)=
0.

(b) If D is R-linear, then D(r) =D(r ·1) = r ·D(1) = 0; the converse follows from the Liebniz
Rule.
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(c) Clear by induction on n.
(c) Clear from (d).

■

Example 2.1.4. If S = R[Xλ ]λ∈Λ is the polynomial ring, then a derivation D ∈ DerR(S,M) is
completely determined by the family D(X)λ ∈ M, since by the Leibniz rule we have for F ∈ S
that

DF = ∑
λ

∂F
∂Xλ

DXλ ,

where ∂F/∂Xλ is the usual formal derivative of F with respect to Xλ . In particular, we have
DerR(S) ∼=

⊕
λ S⟨dXλ ⟩ is the free S-module on the symbols dXλ for λ ∈ Λ, and DerR(S,M) ∼=

DerR(S)⊗S M for any S-module M.

Theorem 2.1.5 (Kähler Differentials). The functor DerR(S,−) : S-Mod → S-Mod is repre-
sentable. In other words, there is an S-module ΩS/R, called the module of Kähler differentials
of S over R, and a derivation d : S → ΩS/R, called the universal derivation, such that if M is
any S-module and D ∈ DerR(S,M) any R-derivation, then there is a unique S-module homo-
morphism D̃ : ΩS/R → M such that D = D̃◦d; in other words, such that the following diagram
commutes:

S ΩS/R

M

d

D
∃! D̃

From this it follows that we have a natural isomorphism of functors

DerR(S,−)∼= HomS(ΩS/R,−) : S-Mod→ S-Mod.

Proof. The universal property determines ΩS/R upto unique isomorphism preserving d; there-
fore, it suffices to show existence. We give two constructions:

(a) Consider the quotient of the free S-module generated by all symbols of the form {d f :
f ∈ S} by the relations

−d( f g)+ f dg+gd f and −d(r f + sg)+ r d f + sdg,

for all f ,g∈ S and r,s∈ R. The quotient ΩS/R along with the map d : S →ΩS/R : f 7→ [d f ]
satisfies the universal property.

(b) Firstly, define µ : S⊗R S → S by µ( f ⊗g) := f g; then µ is an R-algebra homomorphism.
Set I := ker µ and ΩS/R := I/I2, with the map d : S → ΩS/R given by f 7→ 1⊗ f − f ⊗1
(mod I2).1 Now given an R-derivation D : S → M, we get an R-module homomorphism
δ : S⊗R S → M given on pure tensors by f ⊗g 7→ f ·Dg. This satisfies the property that
for x,y ∈ S⊗R S we have

δ (xy) = µ(x)δ (y)+µ(y)δ (x),

1Note that S⊗R S/I ∼= S and the S-module structure on ΩS/R comes from noting that it (being a quotient of I) is
an S⊗R S-module annihilated by I, and hence an S⊗R S/I ∼= S-module; equivalently, S-module structure on ΩS/R
given by multiplication on either the right or the left is the same.
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and so vanishes on I2. From this we get the map D̃ : ΩS/R → M, which is easily seen
to be an S-module homomorphism with D̃◦d = D. Finally, since for f ⊗g ∈ S⊗R S we
have

f ⊗g = ( f ⊗1)(1⊗g−g⊗1)+ f g⊗1,

it follows that if x = ∑i fi ⊗gi ∈ I then x ≡ ∑i fidgi (mod I2), so that ΩS/R is generated
as an S-module by the ds, showing uniqueness of D̃.

■

Remark 2.1.6. For i ≥ 0, define Ωi
S/R := ΛiΩS/R; then the derivation d : S = Ω0

S/R → Ω1
S/R =

ΩS/R is the first step in a complex of R-modules

Ω
•
S/R : 0 → Ω

0
S/R

d=d0
−−−→ Ω

1
S/R

d1
−→ ·· · → Ω

i
S/R

di
−→ Ω

i+1
S/R → ··· ,

where the map di : Ωi
S/R → Ω

i+1
S/R satisfies

di( f dη1 ∧·· ·∧dηi) = d f ∧dη1 ∧·· ·∧dηi.

The complex Ω•
S/R is called the de Rham complex of S relative to R, and its cohomology

H•
dR(S;R) is called the de Rham cohomology of S relative to R.

To define it we simply set d′(b/s) = (1/s)db− (1/s2)bds. To see that this is well-
defined, note that if b/s = b′/s′ in S−1B, then there is a t ∈ S such that t(s′b−b′s) = 0. Differ-
entiating t2(s′b− b′s) = 0 and using the Leibniz Rule then yields that t2(s′db+ bds′− b′ds−
sdb′) = 0. Therefore,

t2 (s2(s′db′−b′ds′)− (s′)2(sdb−bds)
)

= t2 (ss′(sdb′− s′db)− (s2b′ds′− (s′)2bds)
)

= t2 (ss′(bds′−b′ds)− (s2b′ds′− (s′)2bds)
)

= t2(s′b−b′s)(s′ds′+ s′ds) = 0,

whence d′(b/s) = d′(b′/s′). The linearity of d′ and the Leibniz Rule follow immediately from
it being well-defined and the corresponding properties of d. Finally, d′ evidently vanishes on A
because d does, and hence defines an A-derivation, finishing the proof.
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2.2 Fundamental Exact Sequences
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2.3 Smoothness
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Chapter 3

Primary Decomposition

In this chapter, we discuss the fundamentals of associated primes and primary decomposition in
the Noetherian setting. We prove the Lasker-Noether Theorem, and end with a few applications
to Artinian rings and to Krull’s Hauptidealsatz.
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3.1 Associated Primes

Definition 3.1.1. Let R be a ring and M an R-module.

(a) A prime p ⊂ R of R is said to be associated to M if the following equivalent conditions
hold:

(i) There is a nonzero m ∈ M such that p= Ann(m).
(ii) There is an injection of R-modules R/p ↪→ M.

The set of all primes associated to M is denoted by AssR(M).

(b) The minimal elements of AssR(M) are called isolated, and the others are called embedded
primes.

(c) A p⊂ R is said to be associated to an ideal a⊂ R if it is associated to the R-module R/a.

Note that the only prime associated to a prime ideal p⊂R is p itself, i.e. AssR(R/p) =
{p}. We let Z(M) :=

⋃
0 ̸=m∈R Ann(m) be the set of zero-divisors of M in R; then clearly⋃

AssR(M)⊂Z(M). Here are some generalities on associated primes.

Lemma 3.1.2. Let R be a ring and M an R-module.

(a) If A is the collection of ideals of R of the form Ann(m) for nonzero m ∈ M, then any
maximal element of A is prime.

(b) There is an inclusion AssR(M)⊂ Supp(M)⊂ V(AnnM), and equality holds in the latter
if M is finitely generated.1

(c) If S ⊂ R is a multiplicative subset, then AssS−1R(S
−1M)⊃ AssR(M)∩SpecS−1R.

(d) If 0 → M′ → M → M′′ → 0 is a short exact sequence, then

AssR(M′)⊂ AssR(M)⊂ AssR(M′)∪AssR(M′′).

Proof.

(a) Suppose a = Ann(m) ∈A is maximal and x,y ∈ R are such that xy ∈ a but y ̸∈ a. Then
ym ̸= 0 and Ann(m) ⊂ Ann(ym), so by maximality Ann(ym) = Ann(m) = a, whence
xym = 0 implies x ∈ a.

(b) If p = Ann(m) for some nonzero m ∈ M, then [m] ∈ Mp is nonzero. Equivalently, since
R/p ↪→ M and Rp is flat over R, we have κ(p) = Rp⊗R R/p ↪→ Rp⊗R M = Mp, and κ(p)
is a field. For the second part, the inclusion Supp(M)⊂ V(AnnM) is clear; for the other,
suppose that M is finitely generated and p ∈ V(AnnM) but Mp = 0. Then for each of
the finitely many generators mi of M, there is an si ∈ R∖ p such that simi = 0, and then
∏i si ∈ Ann(M)∖p is a contradiction.

(c) We show that if p= Ann(m) for some 0 ̸= m ∈ M and p∩S = /0, then S−1p= Ann([m])
for 0 ̸= [m] ∈ S−1M. The inclusion S−1p⊂ Ann([m]) is clear. For the converse, suppose
that (s−1x)[m] = 0 for some s ∈ S and x ∈ R; then txm = 0 for some t ∈ S. Since t /∈ p but
tx ∈ p, we must have x ∈ p.

(d) The first inclusion is clear. For the second, if p ∈ AssR(M)∖AssR(M′), then there is an
m∈M∖M′ such that p=Ann(m), and then we claim that p=Ann([m]) for 0 ̸= [m]∈M′′.
The inclusion p ⊂ Ann([m]) is clear; conversely, if x ∈ Ann([m])∖p, then xm ∈ M′ and
p= Ann(xm) ∈ AssR(M′), a contradiction to hypothesis.

1Recall that Supp(M) is the set of primes p ⊂ R such that Mp ̸= 0. Equivalently, Supp(M) ⊂ SpecR is the
support of the quasicoherent sheaf M̃ on the affine scheme SpecR.
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■

In (c), we are of course identifying SpecS−1R with a subset of SpecR via Corollary
1.1.12(d).

Remark 3.1.3. In Lemma 3.1.2(b), the hypothesis of finite generation is necessary for equality
to hold in the second inclusion. A simple counterexample otherwise is given by taking R =
Z and M =

⊕
p Z/p, where the sum is over all primes p ∈ Z. Then AnnM = 0 and (0) ∈

V(AnnM)∖Supp(M) because E(0) = E ⊗Z Q = 0.

The notion of associated primes behaves best in the Noetherian setting.

Theorem 3.1.4. Let R be a Noetherian ring and M a nonzero finitely generated R-module.

(a) The set AssR(M) is nonempty and finite.
(b) The map M → ∏p∈AssR(M)Mp is injective.
(c) We have

⋃
AssR(M) =Z(M). In particular, if a⊂ R is any ideal, then either a contains

a nonzerodivisor of M, or a⊂ Ann(m) for some 0 ̸= m ∈ M.
(d) Equality holds in Lemma 3.1.2(c).
(e) The sets of minimal elements of AssR(M) and Supp(M) = V(AnnM) coincide.

Part (e) says that the isolated primes associated to M are exactly the minimal elements
in (e.g. irreducible components in) the support of M. If R is not Noetherian, then it is possible
that AssR(M) is empty for nonzero M; see Example 10.5.6.

Proof.

(a) That AssR(M) is nonempty is immediate from Lemma 3.1.2(a) and the Noetherian hy-
pothesis. For the finiteness, we show that there is an integer n ≥ 1 and sequence of
submodules 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mn = M with each successive quotient of the form
Mi/Mi−1 ∼= R/pi for some prime pi ⊂ R; then by Lemma 3.1.2(d), it would follow that
AssR(M) ⊂ {p1, . . . ,pn}. To show this, note that since AssR(M) is nonempty, there is a
prime p1 and an injection R/p1 ↪→ M. Take M1 to be the image of this map. If M1 = M
we are done; else apply this procedure to M/M1 and continue recursively. Since M is
Noetherian, this procedure must eventually terminate.

(b) If the kernel is nonzero, then by (a) it has an associated prime, which is then associated
to M as well (by Lemma 3.1.2(d)). This gives us an element 0 ̸= m ∈ M with p= Ann(m)
but [m] = 0 ∈ Mp, which can’t happen.

(c) As noted above, the inclusion
⋃

AssR(M) ⊂Z(M) holds unconditionally. Conversely,
if r ∈ Z(M) then r ∈ Ann(m) for some 0 ̸= m ∈ M. Then the submodule Rm ⊂ M is
nonzero, so in the Noetherian case it has an associated prime p by (a), i.e. there is an
s ∈ R such that p= Ann(sm). Then p is also associated to M (Lemma 3.1.2(d)) and

r ∈ Ann(m)⊂ Ann(sm) = p⊂
⋃

AssR(M).

The second statement follows from the first along with (a) and prime avoidance (Lemma
1.2.12(b)).

(d) Let p ∈ AssS−1R(S
−1M) ⊂ SpecS−1R ⊂ SpecR, so there are s ∈ S,m ∈ M with S−1p =

Ann(s−1m). Clearly, Ann(m) ⊂ p and for each x ∈ p, there is a t ∈ S such that tx ∈
Ann(m). By the Noetherian hypothesis, if x1, . . . ,xn are generators for p and t1, . . . , tn as
mentioned, then it is easy to see that p= Ann(tm) for t = ∏

n
i=1 ti.
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(e) For any prime p⊂ R, by (d), the set AssRp(Mp) = AssR(M)∩SpecRp consists of primes
q∈AssR(M)⊂ Supp(M) contained in p. Therefore, if p∈ Supp(M) is a minimal element,
then either AssRp(Mp) = /0 or AssRp(Mp) = {p}, and the former cannot hold thanks to (a).

■
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3.2 Primary Decomposition, Lasker-Noether Theorem

Proposition/Definition 3.2.1 (Primary Submodules). Let R be a ring, M an R-module and
N ⊊ M a proper submodule. Consider the following conditions.

(a) For all x ∈ R and m ∈ M if xm ∈ N then either m ∈ N or there is an n ≥ 1 such that
xnM ⊂ N.

(b) We have Z(M/N)⊂
√

Ann(M/N).
(c) The ideal

√
Ann(M/N) is prime and either AssR(M/N)= /0 or AssR(M/N)= {

√
Ann(M/N)}.

(d) There is a unique prime associated to M/N.

Then (a) ⇔ (b) ⇒ (c). Further, if R is Noetherian and M finitely generated, then all conditions
are equivalent. A submodule N ⊂ M is said to be primary if it is proper and satisfies the
equivalent conditions (a) and (b). If p :=

√
Ann(M/N), then we say that N is primary to prime

p or simply p-primary.

Proof.

(a) ⇔ (b) Clear.
(b) ⇒ (c) Let x,y ∈ R and n ≥ 1 be such that (xy)n ∈ Ann(M/N). If y /∈

√
Ann(M/N), then there

is an m ∈ M such that ynm /∈ N. By (a) we conclude that xn ∈
√

Ann(M/N), whence
x ∈
√

Ann(M/N). Now suppose p ∈ AssR(M/N); then by Lemma 3.1.2(b) we have√
Ann(M/N)⊂ p⊂

⋃
AssR(M/N)⊂Z(M/N)⊂

√
Ann(M/N).

Now suppose that R is Noetherian and M finitely generated.

(c) ⇒ (d) Clear from Theorem 3.1.4(a).
(d) ⇒ (b) Suppose AssR(M/N) = {p}. By Theorem 3.1.4(c) we have Z(M/N) = p. By Theorem

1.2.2, it suffices to show that if q is a prime containing Ann(M/N), then q ⊃ p. By
Lemma 1.2.10, q contains a minimal prime over Ann(M/N), but by Theorem 3.1.4(e),
this minimal prime is p.

■

Note that the above proof shows that if N ⊂M is a primary submodule and AssR(M/N)
is nonempty (e.g. if R is Noetherian and M finitely generated), then Z(M/N) =

√
Ann(M/N).

In the special case of M = R, primary ideals are the primary objects of study.

Lemma 3.2.2 (Primary Ideals). Let R be a ring.

(a) A proper ideal a ⊂ R is primary iff every zero divisor in R/a is nilpotent, so primes are
primary.

(b) If a ⊂ R is primary then
√
a is the unique minimal prime containing a and a is

√
a-

primary.
(c) If a⊂ R is an ideal such that

√
a=m⊂ R is maximal, then a is m-primary.

Proof. The statement in (a) is clear and (b) follows from Theorem 1.2.2. For (c), suppose
xy ∈ a but y /∈

√
a = m. Then m+(y) = (1) so m+ ry = 1 for some m ∈ m and r ∈ R. Since

m ∈
√
a, there is an n ≥ 1 such that mn ∈ a. Then 1 = 1n = (m+ ry)n = mn+ sy for some s ∈ R,

so x = xmn + sxy ∈ a. ■

Example 3.2.3.
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(a) If R is a PID, then the primary ideals of R are (0) and (pr) for p prime and r ≥ 1 (Exercise
3.1).

(b) In general, if R is a ring, p ⊂ R a prime, and r ≥ 1, then pr need not be p-primary
(Exercise 3.2), although condition always holds when p is maximal (Lemma 3.2.2(c)).
For instance, if R = k[X ,Y ], then the ideal a = (X ,Y 2) is a primary ideal that is not a
prime power.

(c) The best replacement in (b) are the symbolic powers. Namely, if R is a ring and p ⊂ R
a prime ideal, then for each integer n ≥ 1, we define the nth symbolic power of p to be
p(n) :=η−1(pnRp)= {x∈R : sx∈ pn for some s /∈ p}, where η : R→Rp is the localization
map. Then pn ⊂ p(n) ⊂ p for each n, we have p = p(1) ⊃ p(2) ⊃ ·· · , and each p(n) is p-
primary.

The goal now is a primary decomposition of an arbitrary submodule N ⊂ M.

Definition 3.2.4. Let R be a ring and M an R-module. Let N ⊊ M be a submodule.

(a) A primary decomposition of N is an expression of the form

N = N1 ∩N2 ∩·· ·∩Nr

where r ≥ 1 is an integer and N1, . . . ,Nr are primary submodules of M.
(b) For i = 1, . . . ,r, let pi :=

√
Ann(M/Ni), so that each Ni is pi-primary. The above primary

decomposition is said to be reduced if the pi are pairwise distinct and N is not the inter-
section of any proper collection of {N1, . . . ,Nr}; in this case, we call the Ni the primary
components of N.

The existence and uniqueness of a primary decomposition is best achieved in the
Noetherian setting. This is convenient, as the following lemma shows.

Lemma 3.2.5. Let R be a Noetherian ring and M a finitely generated R-module.

(a) Suppose that p ⊂ R is a prime, r ≥ 1 an integer, and N1, . . . ,Nr ⊂ M submodules which
are p-primary. Then the intersection N1 ∩·· ·∩Nr is also p-primary.

(b) If N ⊊ M is a submodule that admits a primary decomposition, then it admits a reduced
primary decomposition. In fact, any primary decomposition of N gives rise to a reduced
primary decomposition.

Proof.

(a) By Lemma 3.1.2(d) and Theorem 3.1.4(a), we have

/0 ⊊ AssR

(
M/

⋂
i

Ni

)
⊂ AssR

(⊕
i

M/Ni

)
⊂
⋃

i

AssR(M/Ni) = {p}.

(b) Consider the primary decomposition of N which involves the least number r of factors;
by (a), this must be reduced. More constructively, given a primary decomposition, we
may discard redundant Ni and use (a) to intersect all the remaining Ni that are primary
to the same prime; iterating this procedure finitely many times yields a reduced primary
decomposition.

■

We are ready for the main existence theorem.
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Theorem 3.2.6 (Primary Decomposition: Existence). Let R be a Noetherian ring and M a
finitely generated R-module. Every propery submodule of M admits a reduced primary decom-
position.

Proof. We say that a submodule N ⊂ M is irreducible if it is proper and it cannot be written
as N = N1 ∩N2 for some submodules N1,N2 ⊂ M with N ⊊ N1 and N ⊊ N2. From Noetherian
induction, it is clear that every proper submodule of N can be written as an intersection of
irreducible submodules; therefore, we will finish by showing that every irreducible N ⊂ M is
primary. For this suppose that N ⊂ M is a proper submodule that is not primary; we have to
show that N is not irreducible. Replacing M by M/N, we may assume N = 0. To say that
0 is not primary implies by Proposition/Definition 3.2.1(d) that there are two distinct primes
p1,p2 associated to M, so that there are elements x1,x2 ∈ M with R/pi ∼= Rxi ↪→ M for i = 1,2.
It remains to check (do!) that if yi ∈ Rxi is any nonzero element, then Ann(yi) = pi; then it
follows that Rx1 ∩Rx2 = (0), so that (0) is reducible. ■

Applying this to M = R immediately yields

Corollary 3.2.7 (Lasker-Noether). Every proper ideal of a Noetherian ring admits a reduced
primary decomposition.

Finally, we turn to uniqueness; here the picture cannot be too nice, as evidenced by
the following example.

Example 3.2.8.

(a) (Line with Embedded Point) Let k be a field, R = k[X ,Y ] and a= (X2,XY ). Then
√
a=

(X), and so XY ∈ a but X /∈ a and Y /∈
√
a shows that a is not primary. Indeed, two

reduced primary decompositions of a are seen to be

a= (X ,Y )2 ∩ (X) = (X2,Y )∩ (X),

where in each case the first ideal is (X ,Y )-primary (embedded) and the second is (X)-
primary (isolated).

(b) (Quadric Cone) Let k be a field, R= k[x,y,z] := k[X ,Y,Z]/(XY −Z2) and p= (x,z). Then
even though

√
p2 = p, the ideal p2 is not primary (Exercise 3.2(a)), and indeed we have

p2 = (x)∩ (x,y,z)2,

where the first ideal is p-primary, and the second ideal is (x,y,z)-primary. In particular,
in the primary decomposition of the ideal p2, we have the “embedded point” (x,y,z)
showing up.

Nonetheless, we do have a couple of uniqueness statements.

Theorem 3.2.9 (Primary Decomposition: Uniqueness I). Let R be a Noetherian ring, M a
finitely generated R-module and N ⊂M a proper submodule. If r ≥ 1 and submodules N1, . . . ,Nr ⊂
M are such that N = N1∩·· ·∩Nr is a reduced primary decomposition with pi :=

√
Ann(M/Ni)

for i = 1, . . . ,r, then
Ass(M/N) = {p1, · · · ,pr}.

In particular, the prime ideals occuring in a reduced primary decomposition of N are uniquely
determined by N.
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Proof. Replacing M by M/N, we may assume N = 0. First suppose that p ∈ Ass(M), so there
is a 0 ̸= m ∈ M with p = Ann(m). By relabelling if needed, pick a j with 1 ≤ j ≤ r such that
m ∈ (N j+1∩·· ·∩Nr)∖ (N1∪·· ·∪N j). By the Noetherian hypothesis, there is an integer k ≫ 1
such that pk

i ·M ⊂ Ni for all i = 1, . . . ,r, so that
⋂ j

i=1 p
k
i ⊂ Ann(m) = p. By Lemma 1.2.12(a),

there is an i with 1 ≤ i ≤ j such that pi ⊂ p. We claim that equality must hold; indeed, if x ∈ p,
then xm = 0 but m /∈ Ni implies that x ∈ pi by the primary hypothesis.

For the other direction, we’ll show p1 ∈ Ass(M). Since the decomposition of N is
reduced, there is an m ∈

⋂r
i=2 Ni∖N1. Let k ≥ 1 be the smallest integer such that pk

1 · (m)⊂ N1,
and pick a n ∈ pk−1

1 (m)∖N1. The claim is p1 = Ann(n). Indeed, p1 ⊂ Ann(n) follows from⋂r
i=1 Ni = 0, and if x ∈ Ann(n), then xn = 0 but n /∈ N1 implies by the primary hypothesis that

x ∈ p1. ■

Corollary 3.2.10. Let R be a Noetherian ring and a⊂ R be a proper ideal.

(a) The following conditions on a prime p⊂ R are equivalent:
(i) The prime p contains a.

(ii) The prime p contains a prime associated to a.
(iii) The prime p contains an isolated prime of a.
In other words, the minimal primes containing a are exactly the isolated primes of a, and
in particular there are only finitely many of these.

(b) The radical
√
a is the intersection of all the associated primes of a, and hence all the

isolated primes of a. In particular, a is radical iff the primary components of any reduced
primary decomposition of a are all prime ideals. In this case, there are no embedded
primes and the primary decomposition is unique.

(c) There is an integer n ≥ 1 and not necessarily distinct primes p1, . . . ,pn ⊂ R such that
p1 · · ·pn ⊂ a.

Proof.

(a) The implications (iii) ⇔ (ii) ⇒ (i) are clear (using Theorem 3.1.4(a), (e) and 3.1.2(b)).
For (i) ⇒ (ii), by Corollary 3.2.7, a has a reduced primary decomposition, say of the form
a= q1 ∩·· ·∩qr for some r ≥ 1 with each qi a pi-primary ideal for some prime pi =

√
qi,

with each pi ∈ Ass(R/a) by Theorem 3.2.9. Then a⊂ p implies by Lemma 1.2.12(a) that
there is an i with 1 ≤ i ≤ r such that qi ⊂ p, whence pi =

√
qi ⊂

√
p= p.

(b) In the notation of (a), we have
√
a =

√
q1 ∩ ·· ·∩√

qr = p1 ∩ ·· ·∩pr, so we are done by
Theorem 3.2.9. If the primary components of some reduced primary decomposition of a
are primes, then a is certainly radical; conversely, if a is radical, then it is the intersection
of its associated primes: say a = p1 ∩ ·· · ∩ pr. We claim that this expression is the only
reduced primary decomposition of a (upto rearrangement). Indeed, the integer r in this
decomposition is uniquely determined as #Ass(R/a) from Theorem 3.2.9, whence a does
not admit a primary decomposition with fewer than r primes; from this reducedness
of this decomposition follows, as well as the fact that there are no embedded primes
associated to a. Finally, if a= q1 ∩ ·· ·∩qs is any other reduced primary decomposition,
then again by Theorem 3.2.9 we have s = r, and after rearranging if needed we can
assume

√
qi = pi for each i= 1, . . . ,r. By reducedness, for each i, there is an x∈

⋂
j ̸=i p j∖

pi; then if y ∈ pi, then xy ∈ a⊂ qi and x /∈ pi with qi being pi-primary implies that y ∈ qi,
showing that in fact qi = pi.

(c) Since R is Noetherian, there is an integer m ≥ 1 such that (
√
a)m ⊂ a, so we are done by

(b).
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■

We should note also that Corollary 3.2.10(c) can be deduced very directly by Noethe-
rian induction (Exercise 3.6). Finally, we turn to the final version of uniqueness. For this, we
will need some more preparation on how primary components interact with localization.

Theorem 3.2.11 (Primary Decomposition: Uniqueness II).
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3.3 Artinian Rings Revisited

Let us discuss some applications of primary decomposition here. The first one is to finish our
discussion on Artinian rings. For this, we’ll need one more piece of terminology: if R is a ring,
we will denote by mSpecR its maximal spectrum, i.e. the set of its maximal ideals. The first
result then is

Theorem 3.3.1. Let R be a Noetherian ring and M be a finitely generated R-module. The
following conditions are equivalent:

(a) M is Artinian.
(b) The length ℓR(M) of M is finite.
(c) AssR(M)⊂ mSpecR, i.e. every prime associated to M is maximal.
(d) Supp(M)⊂ mSpecR, i.e. M is supported on maximal ideals.

In this case, AssR(M) = Supp(M).

Proof. Since M is Noetherian, (a) ⇔ (b) is the content of Lemma 1.3.4, (d) ⇒ (c) follows from
Lemma 3.1.2(b) and (c) ⇒ (d) follows from Theorem 3.1.4(e). For the rest, we choose, using
the proof of Theorem 3.1.4(a), an integer n ≥ 1 and a sequence of submodules 0 = M0 ⊊ M1 ⊊
· · · ⊊ Mn = M with each successive quotient of the form Mi/Mi−1 ∼= R/pi for some prime pi.
We claim that

AssR(M)⊂ {p1, . . . ,pn} ⊂ Supp(M).

The first of these inclusions was shown in the proof of Theorem 3.1.4(a); for the second one,
note that for each i = 1, . . . ,n, we have

0 ̸= Frac(R/pi)∼= (R/pi)pi
∼= (Mi/Mi−1)pi

∼= (Mi)pi/(Mi−1)pi,

whence (Mi)pi ⊂ Mpi is nonzero. Finally, by the additivity of length (Corollary 10.1.6) ℓR(M)
is finite iff for each i = 1, . . . ,n, the length ℓR(R/pi) = ℓR/pi(R/pi) is finite, which happens iff
pi is maximal (by Lemma 1.3.4 and Theorem 1.3.9(a)); this proves both (b) ⇒ (c) and (d) ⇒
(b). Then Theorem 3.1.4(e) implies in this case that AssR(M) = Supp(M). ■

In particular, if R is an Artinian ring and M a finitely generated R-module, then
ℓR(M) < ∞, so that M is also Noetherian (using Lemma 1.3.4). This gives another proof of
Theorem 1.3.10. Finally, from this result we immediately obtain the required characterization
of Artinian rings.

Corollary 3.3.2. For a ring R, the following are equivalent:

(a) R is Artinian.
(b) ℓR(R) = 0.
(c) R is Noetherian of dimension zero, i.e. SpecR = mSpecR.
(d) R is Noetherian and AssR(R)⊂ mSpecR.

Proof.

(a) ⇒ (b) This is Theorem 1.3.9(b).
(b) ⇒ (c) By Lemma 1.3.4, R is Noetherian and Artinian. From Theorem 3.3.1(d) we conclude

that SpecR = SuppR ⊂ mSpecR, so dimR = 0.
(c) ⇒ (d) This follows from the implication (d) ⇒ (c) in Theorem 3.3.1.
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(d) ⇒ (a) This follows from the implication (c) ⇒ (a) in Theorem 3.3.1.

■
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3.4 Krull’s Hauptidealsatz

We are now ready to use this machinery about Artinian rings to prove one very important and
classical result from commutative algebra.

Theorem 3.4.1 (Generalized Krull’s Hauptidealsatz). For an integer n ≥ 0, a prime ideal in
a Noetherian ring has height at most n iff it is minimal over an ideal generated by at most n
elements.

Geometrically, this statement says that a subvariety of codimension n in affine or
projective space is (a component of) a subvariety cut out by at most n equations; conversely,
any irreducible component of a variety cut out by at most n equations has codimension at most
n. For instance, an affine or projective hypersurface can be cut out by one global equation, and
any irreducible component of a subvariety cut out by one equation is a hypersurface (i.e. has
codimension 1).

Proof. We induct on n. For n = 0, that htp = 0 iff p is minimal follows from htp = dimRp.
Hence suppose n ≥ 1, and that we have shown the result for n−1.

First suppose that R is a Noetherian ring with a prime p ⊂ R of height n. Using Ob-
servation 1.1.11(d), Corollary 1.1.12(e), and Corollary 3.2.10(a) on Rp, there are only finitely
many minimal primes of R contained in p. By Prime Avoidance (Lemma 1.2.12(b)) and the
fact that p is not minimal, p is not contained in the union of these; so pick an element x ∈ p
not contained in any minimal prime contained in p. It follows that in the quotient R/(x), we
have htp/(x)≤ n−1. By induction, p/(x) is minimal over an ideal generated by at most n−1
elements; by taking preimages and appending x shows that p is minimal over a prime generated
by at most n elements.

Conversely, suppose R is a Noetherian ring with prime p that is minimal over an ideal
generated by n elements. By localizing at p, we may assume that (R,p) is local. First suppose
n = 1, so p is minimal over (x) for some x ∈ R; we have to show that if q ⊊ p is any prime,
then htq = 0. Now the ring R/(x) has only one prime, namely p/(x), so that dimR/(x) = 0.
From Corollary 3.3.2, it follows that R/(x) is Artinian. Therefore, if q⊊ p is any prime, then the
sequence (q(n)+(x))/(x) of symbolic powers of q ( Example 3.2.3(c)) taken in R/(x) eventually
stabilizes. In particular, there is an integer n ≥ 1 such that q(n)+(x) = q(n+1)+(x). ■
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3.5 Exercises

Exercise 3.1. Show that in a PID, nonzero primary ideals are exactly the powers of prime
ideals.

Exercise 3.2. Let k be a field, R = k[x,y,z] := k[X ,Y,Z]/(XY −Z2), and p= (x,z).

(a) Show that R is a domain and p⊂ R a prime ideal such that p2 is not a primary ideal.
(b) For each integer n ≥ 1, describe the nth symbolic power p(n).

Exercise 3.3. Consider the following conditions on a ring R.

(a) R has a unique minimal prime ideal.
(b) The nilradical Nil(R) is prime.
(c) Every zero-divisor of R is nilpotent.
(d) R is nonzero, and the ideal (0)⊊ R is primary.
(e) There is a unique prime associated to the zero ideal (0)⊂ R.

Show that (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇒ (e), and if R is Noetherian, then all conditions are equiva-
lent. A ring satisfying equivalent conditions (a)-(d) is said to be primary or irreducible.2 Check
that a ring R is an integral domain iff it is reduced and irreducible.

Exercise 3.4. Let R be a primary ring such that AssR(R) is nonempty (e.g. if R is Noetherian).
Show that Z(R) =Nil(R), i.e. the zero-divisors of R are precisely the nilpotent elements. Show
that the hypothesis on AssR(R) is necessary.

Exercise 3.5. Let R be a primary ring and S ⊂ R a multiplicative subset. Show that the local-
ization S−1R, if not zero, is primary. Does the converse hold in general?

Exercise 3.6. Let R be a Noetherian ring and a ⊂ R a proper ideal. Show directly (i.e. using
Noetherian induction and without using primary decomposition) that there is an integer n ≥ 1
and not necessarily distinct primes p1 · · ·pn ⊂ R such that p1 · · ·pn ⊂ a.

2This latter terminology is due to the fact that, geometrically, this corresponds to the affine scheme SpecR
being irreducible. We will use both interchangeably.
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4.1 Fundamentals of Integrality

Definition 4.1.1. Let R ⊂ S be a ring extension. We say that an element s ∈ S is

(a) algebraic over R if there is an integer n ≥ 1 and a0, . . . ,an ∈ R with a0 ̸= 0 such that

a0sn +a1sn−1 + · · ·+an = 0,

(b) integral over R if it is algebraic and in the above we can take a0 = 1, and more generally
(c) integral over an ideal a ⊂ R if it is algebraic and in the above we can take a0 = 1 and

a1, . . . ,an ∈ a.

If R is a field, then the notions of algebraicity and integrality over R coincide.

Definition 4.1.2 (Integral Closure/Normalization).

(a) If R ⊂ S is a ring extension, then the subset of elements of S that are integral over R is
called the relative integral closure or the relative normalization of R in S. We denote it
by ClS(R).

(b) On the one hand, the subring R is said to be integrally closed or relatively normal in S if
R = ClS(R). On the other hand, we say that the extension S ⊂ R is integral iff ClS(R) = S.

(c) If R is an integral domain, then the normalization ClFrac(R)(R) of R in its fraction field is
called the absolute integral closure or absolute normalization of R.

(d) A domain R is said to be integrally closed or normal if R = ClFrac(R)(R).

Theorem 4.1.3 (Robust Characterizations of Integrality). Let R ⊂ S be a ring extension and
s ∈ S an element. Then the following are equivalent:

(a) The element s is integral over R.
(b) The subring R[s] of S generated over R by s is a finitely generated R-module.
(c) The subring R[s] of S is contained in a subring R′ ⊂ S which is a finitely generated R-

module.
(d) There is a faithful R[s]-module M that is finitely generated as an R-module.

Proof. It is clear that (a) ⇒ (b) ⇒ (c) ⇒ (d). For (d) ⇒ (a), apply Corollary 1.5.2 with
a= (1). ■

Corollary 4.1.4 (Properties of Integral Extensions). Let R ⊂ S ⊂ T be ring extensions.

(a) If s1, . . . ,sn ∈ S are any elements over R, then the subalgebra R[s1, . . . ,sn]⊂ S is a finitely
generated R-module iff all the si are integral over R.

(b) The normalization ClS(R) is a subring of S containing R.
(c) (Transitivity) If T/S and S/R are integral, then so is T/R.
(d) (Idempotence) We have ClS(ClS R) = ClS R, i.e. ClS R is integrally closed in S.

Proof.

(a) The “only if” direction follows from Theorem 4.1.3(c). For the “if”, proceed by in-
duction on n; when n = 1, this follows from Theorem 4.1.3(b). When n ≥ 2, define
R′ := R[s1, . . . ,sn−1]; by induction, this is a finitely generated R-module. Since sn is in-
tegral over R, it is also integral over R′ and so by the n = 1, we have R′[sn] is a finitely
generated R′-module. By transitivity of module-finiteness, we conclude that R[s1, . . . ,sn]
is a finitely generated R-module.
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(b) If s, t ∈ S are integral, then R[s, t] is a finitely generated R-module by (a), and so the
inclusions R[s− t],R[st]⊂ R[s, t] imply by Theorem 4.1.3(c) that s− t,st ∈ ClS(R).

(c) Suppose that t ∈ T satisfies tn+s1tn−1+ · · ·+sn = 0 with si ∈ S. By (a), S′ :=R[s1, . . . ,sn]
is a finitely generated R-module. Since t is integral over S′, we conclude that S′[t] is a
finitely generated S′-module. Again, by transitivity of module finiteness, we conclude
that S′[t] is a finitely generated R-module, so Theorem 4.1.3(c) shows that t is integral
over R.

(d) This immediately from (c) because ClS(R)/R is integral by definition.

■

Example 4.1.5. The Rational Root Theorem asserts that a UFD is normal.

Example 4.1.6 (Algebraic Integers). Let K/Q be any field extension (e.g. a number field).
Then the integral closure ClK(Z) =: K of Z in K is called the ring of algebraic integers in K.
It is easy to see that if K/Q is algebraic, then K = (Z∖{0})−1K = FracK . By idempotence,
K is normal but in general is not a UFD (e.g. for K :=Q[

√
−23]). When K is any algebraically

closed field, this construction returns the ring Q of all algebraic integers.

Example 4.1.7 (Plane Cuspidal Cubic). The coordinate ring of a planar cuspidal curve is a
domain that is not normal. Let k be a field and look at R := k[X ,Y ]/(Y 2−X3). Since Y 2−X3 ∈
k[X ,Y ] is irreducible and k[X ,Y ] is a PID, R is an integral domain; let K := FracR. Let x
and y denote the classes of X and Y respectively in R, so y2 = x3. Then 0 ̸= x,y ∈ R and so
we may look at the element t := y/x ∈ K. Then t2 − x = 0, so t ∈ ClK(R), but t /∈ R: else
Y = FX +G(Y 2 −X3) for some F,G ∈ k[X ,Y ], which is impossible. In fact, it is easy to see
that K = k(t)∼= k(P1) and ClK(R) = k[t].

Lemma 4.1.8. Let R ⊂ S be an integral ring extension.

(a) If b⊂ S is an ideal and a := b∩R, then S/b is integral over R/a.
(b) If U ⊂ R is a multiplicative system, then U−1S is integral over U−1R.
(c) If S is a domain, then R is a field iff S is.
(d) If p⊂ R and q⊂ S are primes such that q∩R = p, then p is maximal iff q is.

Proof. The statements in (a) and (b) are clear, and (d) follows from (a) and (c) applied to
R/p ⊂ S/q. For (c), first assume that R is a field and let 0 ̸= s ∈ S. There is an n ≥ 1 and
ai ∈ R such that sn + a1sn−1 + · · ·+ an = 0. Since S is a domain, we can assume that an ̸= 0,
so since R is a field a−1

n ∈ R. Then −a−1
n (sn−1 + a1sn−2 + · · ·+ an−1) ∈ S is a multiplicative

inverse for s. Conversely, if S is a field and 0 ̸= r ∈ R, then there is an r−1 ∈ S and so there
is an n ≥ 1 and ai ∈ R such that r−n + a1r−n+1 + · · ·+ an = 0. Multiplying by rn−1 gives us
r−1 =−(a1 +a2r+ · · ·+anrn−1) ∈ R. ■

Note that part (c) of Lemma 4.1.8 needs S to be a domain; consider k ⊂ k[x]/(x2).

Lemma 4.1.9. Let R be an integral domain with K := FracR. Then:

(a) If S ⊂ R is any multiplicative subset, then ClK(S−1R) = S−1 ClK(R).
(b) The following are equivalent:

(i) R is normal.
(ii) S−1R is normal for every multiplicative S ⊂ R.

(iii) Rp is normal for all p.
(iv) Rm is normal for all m.
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Proof.

(a) By Lemma 4.1.8(b) we have S−1 ClK(R) ⊂ ClK(S−1R). Conversely, if x ∈ ClK(S−1R),
then there is an integer n ≥ 1 and elements ai ∈ R,si ∈ S such that xn+ s−1

1 a1xn−1+ · · ·+
s−1

n an = 0. Define s := s1 . . .sn ∈ S, and multiply throughout by sn to get that sx∈ClK(R),
i.e. that x ∈ S−1 ClK(R).

(b) The implication (i) ⇒ (ii) follows from (b). The implications (ii) ⇒ (iii) ⇒ (iv) are clear.
For (iv) ⇒ (i), if an element of K is integral over R, then it is integral over Rm for all m
and hence it belongs to

⋂
mRm = R, where in the last step we have used Corollary 1.1.14.

■

Finally, we briefly discuss integrality over an ideal.

Lemma 4.1.10. Let R ⊂ S be a ring extension, and let a⊂ R be an ideal.

(a) The collection ClS(a) of elements of S integral over a is
√

aClS(R).
(b) Suppose that S is a domain, and let K := FracR. Given an s ∈ ClS(a), if the minimal

polynomial of s over K is µs(X) = Xn + a1Xn−1 + · · ·+ an ∈ K[X ], then for each i we
have ai ∈ ClK(a). In particular, if R is normal, then the coefficients ai ∈

√
a.

Proof.

(a) If x is integral over a and n ≥ 1,ai ∈ a are such that xn + a1xn−1 + · · ·+ an = 0, then
xn ∈ aClS(R) so x ∈

√
aClS(R). Conversely, if x ∈

√
aClS(R), then xn = ∑ j α jx j for

some n ≥ 1 and elements α j ∈ a,x j ∈ ClS(R). Since each x j is integral over R, the ring
M := R[x j] j is a finitely generated R-module and xnM ⊂ aM. By Observation 1.5.1, we
have that xn + a1xn−1 + · · ·+ an = 0 ∈ EndR(M) for some ai ∈ a, but since 1 ∈ M, we
have this identity in S.

(b) Let L := FracS and look at the roots s j of µs in some extension of L. These also satisfy
the same equation of integral dependence and so belong to ClS(a); since the coefficients
ai are polynomials in the si, they belong to ClS(a) as well. Therefore, they belong to
ClS(a)∩K = ClK(a). If R is normal, then by (a) we have ClK(a) =

√
aClK(R), so that

if R is normal, i.e. R = ClK(R), then this is just
√
a.

■

Corollary 4.1.11. Let R be a normal domain, K = FracR be its fraction field, L/K an algebraic
extension and S = ClL(R). An α ∈ L is in S iff the minimal polynomial µα(X) ∈ K[X ] of α

over K is in R[X ].

This corollary reduces the check of integrality to that of identifying the minimal poly-
nomial; some applications of this can be found in Exercises 4.1 and 4.2.

Proof. The “if” implication is clear; for the “only if”, take a= R in Lemma 4.1.10(b). ■
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4.2 Cohen-Seidenberg Theory

In this section, we develop the basic Cohen-Seidenberg theory of primes in integral extensions,
which allow us to relate the Krull dimensions of two rings in an integral extension.

Theorem 4.2.1. Let R ⊂ S be an integral extension and p⊂ R be a prime.

(a) (Lying Over) There is a prime q⊂ S such that q∩R = p.
(b) (Incomparability) There are no inclusions between distinct primes q of S lying over p.

Proof. For (a), by Corollary 1.1.13, it suffices to show that pS∩R ⊂ p. If x ∈ pS∩R, then
x ∈

√
pS, so by Lemma 4.1.10(a), we have x ∈ ClS(p) and so xn ∈ p for some n ≥ 1, from

which we get x ∈√
p= p. For an alternative proof which also shows (b), localize both sides at

U := R∖p and use Lemma 4.1.8(b) to conclude that Sp := (R∖p)−1S is integral over Rp. Then
prime ideals of S lying over p are in canonical bijection with prime ideals of Sp lying over pRp,
and so we reduce to the case that R is local with p=m the maximal ideal. For (a), note that if
n ⊂ S is any maximal ideal, then n∩R is maximal by Lemma 4.1.8(d) and so n∩R = m and
n lies over m. Conversely, if n ⊂ S is a prime that satisfies n∩R = m, then again by Lemma
4.1.8(d), n is maximal; in particular, there are no inclusions between distinct n. ■

Remark 4.2.2. Geometrically, Theorem 4.2.1 is saying that if ϕ : R → S is an injective inte-
gral morphism, then Specϕ is surjective and that a point of a given fiber of this map is not a
specialization of another one in the same fiber.

Example 4.2.3. Let K/Q be a number field, and K = ClK(Z) its ring of integers. Given
any prime p ⊂ K , there is a prime P ⊂ Q in the ring of all algebraic integers such that
P∩K = p, and no two such primes P,P′ are comparable. Can you locate the hidden use of
Zorn’s Lemma in this proof?

Definition 4.2.4. A ring extension R ⊂ S satisfies

(a) the going up property if given any n ≥ 1 and chain p1 ⊂ ·· · ⊂ pn of primes in R and q1 ⊂
·· · ⊂ qm in S for some 1 ≤ m < n such that qi∩R = pi for 1 ≤ i ≤ m, the ascending chain
of ideals can be completed: there are primes qm+1 ⊂ ·· · ⊂ qn in S such that qi ∩R = pi
for all i; and

(b) the going down property if given any n ≥ 1 and chain p1 ⊃ ·· · ⊃ pn of primes in R
and q1 ⊃ ·· · ⊃ qm in S for some 1 ≤ m < n such that qi ∩R = pi for 1 ≤ i ≤ m, the
descending chain of ideals can be completed: there are primes qm+1 ⊃ ·· · ⊃ qn in S such
that qi ∩R = pi for all i.

Theorem 4.2.5 (Cohen-Seidenberg).

(a) (Going Up) If R ⊂ S is integral, then R ⊂ S satisfies the going up.
(b) (Going Down) If R ⊂ S is integral with S a domain and R normal, then R ⊂ S satisfies

going down.

Proof. By Lying Over (Theorem 4.2.1(a)) and induction, we are reduced to the case n = 2,m =
1.

(a) By Lemma 4.1.8(a), S/q1 is integral over R/p1, so by Lying Over (Theorem 4.2.1(a)),
there is a prime q2 of S/q1 lying over p2/p1. Lifting to S, we get a prime q2 of S lying
over p2.
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(b) It suffices to show using Corollary 1.1.12(d) and Corollary 1.1.13 that p2Sq1 ∩R ⊂ p2. If
x ∈ p2Sq1 , then sx = y for some s ∈ S∖ q1 and y ∈ p2S. If the minimal polynomial of y
over K := FracR is µy(X) = Xn +a1Xn−1 + · · ·+an ∈ K[X ] then each ai ∈ ClK(p2) = p2
by Lemma 4.1.10(b). If x ∈ p2Sq1 ∩R∖ 0, then s = yx−1 with x−1 ∈ K, so the minimal
polynomial of s over K is given by µs(X) = Xn + b1Xn−1 + · · ·+ bn ∈ K[X ] with bi =
x−iai. But s is integral over R, so by Corollary 4.1.11 with a = (1) we have bi ∈ R for
each i. If x /∈ p2, then xibi = ai ∈ p2 ⇒ bi ∈ p2 for all i so that sn ∈ p2S ⊂ p1S ⊂ q1, which
is a contradiction to s /∈ q1.

■

For a different proof of Going Down using a little Galois Theory, see [5, Theorem
13.9]. Cohen and Seidenberg’s very readable original paper [6] treats the slightly more general
case where R is assumed to be a normal domain and no zero-divisors of S lie in R. Then
also give counterexamples to show that the hypotheses cannot be easily weakened. A reader
interested in this aspect of the theory is highly encouraged to read this paper. Finally, we
note that Going Down also holds under the assumption that the extension R ⊂ S is flat; see [5,
Lemma 10.11]. This (along with Chevalley’s Theorem) is the key ingredient in the proof that
flat morphisms locally of finite presentation are open.

The Cohen-Seidenberg Theorems enable use to relate the dimensions of rings related
by an integral extension. This comparison result is

Corollary 4.2.6. Let R ⊂ S be an integral extension. Then

(a) dimR = dimS.

If p⊂ R and q⊂ S are primes with q∩R = p, then

(b) cohtp= cohtq,
(c) htp≥ htq, and
(d) equality holds in (c) whenever the result of the Going Down Theorem 4.2.5(b) holds.

Proof.

(a) Going Up and Incomparability (Theorem 4.2.5(a) and Theorem 4.2.1(b)) give us a canon-
cial bijection between (strict) chains of primes in R and S.

(b) The ring S/q is integral over R/p by Lemma 4.1.8(a), and so we are done by (a).
(c) If we have a chain of primes contained in q of length n, then by intersecting with R we

get a chain of length n in p (where the inclusions are strict again by incomparability–
Theorem 4.2.1(b)).

(d) Apply Going Down to go the other way.

■

54



Chapter 4. Integrality and Cohen-Seidenberg Theory

4.3 Extensions of Homomorphisms to Algebraically Closed
Fields

In this section, we discuss some general results on when homomorphisms to an algebraically
closed field extend across ring extensions. These results will be very helpful when we return to
dimension questions later.

Theorem 4.3.1. Let R ⊂ S be a ring extension and Ω be an algebraically closed field. Let
ϕ : R → Ω be a homomorphism; we ask when it extends to a homomorphism ϕ̂ : S → Ω.

(a) If R ⊂ S is integral, then ϕ extends to homomorphism ϕ̂ : S → Ω.
(b) (Lang’s Lemma) If S is a domain and finitely generated R-algebra, ϕ extends to a ϕ̂ : S →

Ω. In fact, given any 0 ̸= s ∈ S there is a 0 ̸= r ∈ R depending on s such if ϕ(r) ̸= 0, then
ϕ̂ can be chosen to satisfy ϕ̂(s) ̸= 0.

(c) If S is a field, then given any 0 ̸= α ∈ S, we have that ϕ extends to either R[α]→ Ω or
R[α−1]→ Ω.

Proof.

(a) Let p := kerϕ . Replacing R by Rp and S by Sp := (R∖p)−1S and using Lemma 4.1.8(b),
we can reduce to the case when (R,m,k) is local and kerϕ = m is maximal. By Lying
Over (Theorem 4.2.1(a)) and Lemma 4.1.8(d), there is a maximal n⊂ S such that n∩R =
m. Then S/n is an algebraic extension of the field k and Ω is an algebraically closed field
containing F := ϕ(k), so by the well-known case of algebraic extensions of fields, there
is an extension S/n → Ω extending ϕ : k → F . Then ϕ̂ : S ↠ S/n → Ω is the required
extension of ϕ .

(b) By inducting on the minimal number of generators of S as an R-algebra, we are reduced
to the case S = R[x]. Suppose that x is transcendental over R and let s= a0xn+ · · ·+an for
some n∈Z≥0 and a0, . . . ,an ∈ R with a0 ̸= 0. Define r := a0. If ϕ : R→Ω has ϕ(a0) ̸= 0,
then there is an α ∈ Ω such that ϕ(a0)α

n + · · ·+ϕ(an) ̸= 0, since Ω is infinite. Then
define ϕ̂ : R[x] → Ω by sending x 7→ α . Now suppose that x is algebraic; then so is s.
Write down equations a0xn + · · ·+ an = 0 and b0sm + · · ·+ bm = 0 satisfied by x and s
with n,m ≥ 1 and ai,b j ∈ R with a0,bm ̸= 0, and set r := a0bm. (That r ̸= 0 uses that S
is domain.) Then S[r−1] = R[r−1][x] is integral over R[r−1]. If ϕ(r) ̸= 0, then ϕ extends
to a map R[r−1] → Ω and hence by (a) to a ϕ̂ : S[r−1] → Ω; the restriction of this to S
gives the required extension. This extension satisfies ϕ̂(s) ̸= 0 because if ϕ̂(s) = 0, then
ϕ(bm) = 0 and so ϕ(r) = 0 as well.

(c) As in (a) we may assume that (R,m,k) is local and kerϕ = m is maximal and we may
let F = ϕ(k) as before, so ϕ : k →∼ F . Let a := { f (X) ∈ R[X ] : f (α) = 0} ⊂ R[X ] and let
b := (ϕ(a))⊂ F [X ]. Since F [X ] is a PID, we have b= (µ(X)) for some µ(X) ∈ F [X ]. If
µ(X) is either constantly 0 or nonconstant, then there is a β ∈ Ω such that µ(β ) = 0; then
α 7→ β gives an extension R[α]→ Ω. If µ(X) is a nonzero constant, then b= (1). Since
ϕ : k →∼ F , this implies that there is an f (X)∈R[X ] such that ϕ( f )(X) = 1, which is to say
that there is an integer n≥ 1 and elements a0, . . . ,an ∈R such that a0αn+ · · ·+an = 0 and
ϕ(a0) = ϕ(a1) = · · ·= ϕ(an−1) = ϕ(an)−1 = 0, and we can choose n to be the smallest
integer with this property, and by replacing ai by aia−1

n , we may assume that an = 1.
(This last step is justified by the fact that 1− an ∈ kerϕ = m = JacR ⇒ an ∈ R×.) The
claim is that this latter case cannot hold for both α and α−1; indeed, suppose that m≥ 1 is
the smallest integer for which there are b0, . . . ,bm−1 ∈ R and b0α−m + · · ·+bm−1α−1 +
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1 = 0 with ϕ(b0) = · · · = ϕ(bm−1) = 0. We may assume without loss of generality
that n ≥ m. Multiplying throughout by a0αn, we get the relation a0αn +a0bm−1αn−1 +
· · ·+ a0b0αn−m = 0. Here we have two cases. If n = m, then subtracting the two and
multiplying by (1− a0b0)

−1 gives us (a1 − a0bm−1)(1− a0b0)
−1αn−1 + · · ·+ 1 = 0. If

n ≥ 2, we have contradicted the minimality of n; if n = 1, then we have concluded the
absurdity 1 = 0.

■
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4.4 Exercises

Exercise 4.1. Let d ∈ Z be a squarefree integer. Show that

Q[
√

d] =

{
Z[
√

d], if d ≡ 2,3 (mod 4), and

Z
[

1+
√

d
2

]
, if d ≡ 1 (mod 4).

Exercise 4.2. Let k be a field and f (X) ∈ k[X ] be a nonconstant separable polynomial. Let
R := k[X ] and K := Frack[X ] = k(X).

(a) Show that Y 2 − f (X) ∈ K[Y ] is irreducible.

Let L = K[
√

f ] := K[Y ]/(Y 2− f (X)); this is an algebraic field extension of K. Let S := ClL(R).

(b) Show that if chark ̸= 2, then S = R[
√

f ].
(c) Show by example that the result of (b) is false in general if chark = 2. Can this result be

salvaged?
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5.1 Linear Disjointness

In this section, we study the basic condition of abstract linear disjointness. To set this notion
up, consider first the case of a large embedding field. Let Ω/k be a field extension, and let
k ⊂ K/L ⊂ Ω be two subextensions. In this setting, we let K[L] = L[K] denote the smallest
subring of Ω containing K and L, and let KL denote the compositum of K and L in Ω, i.e. the
smallest subfield of Ω containing both K and L, so that KL = FracK[L] with KL = K[L] if either
K or L is algebraic over k (see Exercise 5.1).

Proposition/Definition 5.1.1. Let Ω/k be a field extension, and let k ⊂K,L ⊂Ω be two subex-
tensions. The following conditions are equivalent:

(a) If a collection {xλ} of elements of K is linearly independent over k, then the same col-
lection considered in Ω is linearly independent over L.

(b) The same as (a) with K and L interchanged.
(c) If {xλ} (resp. {yµ}) is a collection of elements of K (resp. L) linearly independent over k

and cλ µ ∈ k are elements, all but finitely many zero, such that ∑cλ µxλ yµ = 0 ∈ Ω, then
each cλ µ = 0.

(d) The natural map K ⊗k L → Ω is injective.
(e) The natural map K ⊗k L → K[L] is an isomorphism.

When one of K and L is finite over k, say L, then these conditions are also equivalent to

(f) We have [KL : K] = [L : k].

When these equivalent conditions are satisfied, we say that K and L are linearly disjoint over k
in Ω. Further,

(g) If Λ ⊂ Ω is any field containing the compositum KL, then K and L are linearly disjoint
over k in Ω iff they are so in Λ; in particular, this holds for Λ = KL.

(h) In this setting, K and L are linearly disjoint over k in Ω iff for all finitely generated
subextensions K′ ⊂ K and L′ ⊂ L, the fields K′ and L′ are linearly disjoint over k in Ω.

(i) If K and L are linearly disjoint over k in Ω, then K ∩L = k.

Proof. Note that the natural map K ⊗k L → K[L] is surjective, so an isomorphism iff it is in-
jective. The equivalence of (a)-(e) is clear from the properties of tensor product over a field k.
When L is finite over k, then K[L] = KL is the compositum of K and L in Ω (Exercise 5.1), so
that (e) and (f) are equivalent for dimension reasons. The claims (g) and (h) are clear; for (i),
if θ ∈ K ∩L∖ k, then 1⊗θ −θ ⊗1 ∈ K ⊗k L is a nonzero element of the kernel of the map to
Ω. ■

When K and L are both finite over k, the condition (f) is clearly equivalent also to
[KL : k] = [K : k][L : k]. The converse of (i) is not true; see Theorem 5.1.3 and Remark 5.1.4.
Let us now immediately study the dependence of this notion on Ω, or equivalently the notion
of “abstract” linear disjointness of two field extensions; the original source for the following
very clear treatment is [7].

Proposition/Definition 5.1.2. Let k be a field, and K,L ⊃ k two field extensions, not necessar-
ily embedded in any larger field.

(a) The field extensions K and L are said to be somewhere linearly disjoint over k if there is
a field extension Ω ⊃ k and k-embeddings i : K ↪→ Ω and j : L ↪→ Ω such that i(K) and

59



Chapter 5. Field Theory

j(L) are linearly disjoint over k in Ω; this is equivalent to K ⊗k L being a domain.
(b) The field extensions K and L are said to be everywhere linearly disjoint over k if for every

field extension Ω ⊃ k and k-embeddings i : K ↪→ Ω and j : L ↪→ Ω, the fields i(K) and
j(L) are linearly disjoint over k in Ω; this is equivalent to K ⊗k L being a field.

(c) If either K or L is algebraic over k, then conditions (a) and (b) are equivalent, i.e. if K,L
are somewhere linearly disjoint over k, then they are everwhere linearly disjoint over k.
In this case, we say that K and L are (abstractly) linearly disjoint over k.

See also Exercise 5.8.

Proof.

(a) If there is such a field extension Ω, then K ⊗k L ∼= i(K)⊗k j(L) →∼ i(K)[ j(L)] ⊂ Ω is a
domain; conversely, if K ⊗k L is a domain, taking Ω = FracK ⊗k L suffices.

(b) If K ⊗k L is a field, then for any field Ω, the natural map K ⊗k L → Ω must be injective;
conversely, if K ⊗k L is not a field, then it has a nontrivial maximal ideal m ⊂ K ⊗k L,
and taking Ω := K ⊗k L/m gives us a field extension in which K and L are not linearly
disjoint over k.

(c) In light of Exercise 5.4, the implication (b) ⇒ (a) always holds, and if K or L is algebraic
(i.e. integral) over k, the implication (a) ⇒ (b) follows from the stability of integrality
under basechange and Lemma 4.1.8(c). Alternatively, suppose there is a field extension
Ω ⊃ k containing K and L such that K and L are linearly disjoint over k in Ω. Then by
Proposition/Definition 5.1.1(e), the natural map K ⊗k L → K[L] is an isomorphism. By
Exercise 5.1, if either K or L is algebraic over k, then K[L] = KL is the compositum of
K and L in Ω, and hence in this case K ⊗k L is a field, whence K and L are everywhere
linearly disjoint over k.

■

Here is a good illustration of these definitions.

Theorem 5.1.3. Let k be a field and K,L ⊃ k be two algebraic extensions such that at least one
of K and L is normal over k and at least one of K and L is separable over k. Then K and L are
(abstractly) linearly disjoint over k iff for some further field extension Ω containing K and L
we have K ∩L = k.

By Proposition/Definitions 5.1.2 if this condition holds, then K ∩L = k in any Ω.

Proof. One direction was shown in Propositions/Definitions 5.1.1(i) and 5.1.2(c) above; for the
other, suppose that we are given such an Ω, and further that K is separable over k; then in light
of Proposition 5.1.2(c), we only need to show that K ∩L = k implies that K and L are linearly
disjoint over k in Ω.

First suppose that K is also normal, so that K/k is Galois; this result is then called
the “Theorem on Natural Irrationalities.” By Proposition/Definition 5.1.1(h), we may assume
that K,L/k are finite, and by replacing K by its normal closure we may assume further that K
is finite Galois. By the Primitive Element Theorem, K is the splitting field of a single separable
polynomial over k, in which case KL is the splitting field of the same polynomial over L and
hence KL/L is Galois as well. Since K ∩ L = k, there is a restriction map Gal(KL/L) →
Gal(K/k), which is easily seen to be an isomorphism, giving us [KL : L] = [K : k]. Then we are
done by Proposition/Definition 5.1.1(f).
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Now suppose only that K is separable, but L is normal over k. As in the previous step,
we may assume that K and L are both finite over k. Let S (resp. I) denote the separable (resp.
purely inseparable) closure of k in L, so that S/k is Galois and so, by the case already shown, we
have [KS : K] = [S : k]. Now KS/k is separable and I/k purely inseparable, so that by Exercise
5.9, KS and I are linearly disjoint over k in Ω; in particular, [KL : KS] = [KSI : KS] = [I : k].
Then the result follows again from Proposition/Definition 5.1.1(f) along with the computation

[KL : K] = [KL : KS][KS : K] = [I : k][S : k] = [I : k][L : I] = [L : k],

where we are using in the second-to-last step that I = LAut(L/k), whence L/I is Galois with
Galois group Aut(L/k)∼= Gal(S/k), and so in particular [L : I] = [S : k]. ■

Remark 5.1.4. There is no easy way to strengthen the preceding theorem, in the following
sense.

(a) Taking k = Q, K = Q[ 3
√

2], and L = Q[ω 3
√

2] inside say Ω = C (where ω2 +ω +1 = 0)
gives us an example where both K and L are separable over k and K ∩L = k in Ω, but K
and L are not linearly disjoint over k, since KL = Q[ 3

√
2,ω] has degree 6 over k. Note

that neither K nor L is normal over k.
(b) Given a prime p > 0, taking k = Fp(s, t), K = k[X ]/(X p2

+sX p+ t), and L = k1/p∞

inside
an algebraic closure Ω of k gives us an example where L/k is normal and K∩L = k in Ω,
but K and L are not linearly disjoint over k. Note that neither K nor L is separable over k.
See §5.3 and [8] for details, and also Exercise 5.6 for a similar example.1

Finally, one result that is used quite often is

Theorem 5.1.5 (Transitivity of Linear Disjointness). Let k ⊂ Ω be a field extension, and let
k ⊂ K′ ⊂ K ⊂ Ω and k ⊂ L ⊂ Ω be subextensions. Then K and L are linearly disjoint over k in
Ω iff K′ and L are linearly disjoint over k in Ω and K and K′L are linearly disjoint over K′ in Ω.

Proof. Consider the sequence of maps

K ⊗k L →∼ K ⊗K′ (K′⊗k L)↠ K ⊗K′ K′[L]↠ K[L].

If K and L are linearly disjoint over k in Ω, then clearly so are K′ and L; further, the composite
map K ⊗k L → K[L] above is an isomorphism, forcing the map K ⊗K′ K′[L] → K[L] to be an
isomorphism as well, which implies that K and K′[L] are linearly disjoint over K′, and then so
are K and K′L since K′L = FracK′[L] (Exercise 5.3).

Ω

K KL

K′ K′L

k L

1I would be interested in seeing an example where both K and L are normal but Theorem 5.1.3 fails. I also
suspect that this result needs a suitable p-dimension to be at least 2 (so, e.g., that there is no counterexample with
k = Fp(s)).
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Conversely, if K′ and L are linearly disjoint over k in Ω, then the natural map K′⊗k
L → K′[L] is injective, and hence, since tensoring over a field is exact, so is K ⊗K′ (K′⊗k L)→
K ⊗K′ K′[L]. If further K and K′L are linearly disjoint over K′ in Ω, then so are K and K′[L]
(again see Exercise 5.3), and hence the map K⊗K′ K′[L]→ K[K′[L]] = K[L] is injective as well.
These two facts combined then imply that the map K ⊗k L → K[L] is also injective, so that K
and L are linearly disjoint over k. ■
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5.2 Some Dependence Relations Involving Fields

We use the abstract study of dependence relations (§10.2) to some more sophisticated concrete
examples: that of algebraic dependendence, p-dependence and differential dependence.

5.2.1 Algebraic Dependence

Theorem/Definition 5.2.1. Let k ⊂ K be a field extension. The map D : 2K → 2K defined by
sending X to the integral closure of k(X) in K, i.e.

DX = ClK(k(X))

is a dependence relation on K, called algebraic dependence over k.

A basis for this dependence relation is called a transcendence basis for K/k, and the
dependency of K with respect to this relation is called the transcendence degree of K over k,
written trdegk K. More generally, if R is a domain containing k, we define its transcendence
degree over k, written trdegk R to be trdegk R := trdegk FracR.

Proof. Conditions (a), (b), and (d) in Definition 10.2.1 are clear, and (c) follows from transitiv-
ity of integral closure: for any X , the set DX is a field by Lemma 4.1.8(c) and so

D2X = ClK k(DX) = ClK DX = ClK(ClK k(X)) = ClK k(X) =DX ,

where in the second to last step have used Corollary 4.1.4(d). It remains to show (e). Suppose
that x ∈ X ⊂ K and y ∈ DX ∖D(X ∖ {x}); then for some n ≥ 1 and a0, . . . ,an ∈ k(X) with
a0 ̸= 0 we have a0yn+ · · ·+an = 0. Clearing denominators, we may assume that each ai ∈ k[X ].
Rearrange the terms in this identity to write it out in powers of x, i.e. write it as b0xm + · · ·+
bm = 0 for some m ≥ 0 with b0 ̸= 0 and each bi ∈ k[(X ∖{x})∪{y}]. If m = 0, then b0 = 0 still
has a nonzero power of y and then shows that y ∈D(X ∖{x}), a contradiction; therefore m ≥ 1
and we have shown that x ∈D((X ∖{x})∪{y}) as needed. ■

The fundamental set of this relation is the field ClK(k), i.e. the algebraic closure of k
in K. An element x ∈ K is said to be transcendental over k iff {x} is algebraically independent
over k, which is equivalent to saying that x /∈ ClK(k). It is a straightforward consequence of
the definition that a family of elements {xλ} in K is algebraically independent over k iff the
natural map k[Xλ ] → K taking Xλ 7→ xλ is injective, and hence extends to an isomorphims
k(Xλ )→ k(xλ ). This family is, in addition, a transcendence basis for K/k iff K is in addition
algebraic over k(xλ ). In particular, K/k is algebraic iff trdegk K = 0 and trdegk k(X1, . . . ,Xn) =
n for any n ≥ 0. Finally, it is easy to see that if k ⊂ K ⊂ L is a tower of extensions, then
trdegk L = trdegk K+ trdegK L (Exercise 5.7), and that any finitely generated field extension has
finite transcendence degree–indeed, if K = k(a1, . . . ,an), then there is a subset of {a1, . . . ,an}
that is a transcendence basis for K over k.

Remark 5.2.2. It is not necessarily true that if K/k has finite transcendence degree then it is
finitely generated; indeed, consider k = Q and K = Q.

Example 5.2.3. Let Ω/Q be a field extension with |Ω| = c (e.g., Ω = R,C,Qp,Qp,Cp, etc.).
We show that trdegQ Ω = c. For that, first note that if k is a countable field, then so is k[X ] by
separating by degree and then so is k(X) = Frack[X ] because it injects into k[X ]× k[X ]. If K/k

63



Chapter 5. Field Theory

is an algebraic extension of a countable field, then K =
⋃

0̸= f∈k[X ]{α ∈ K : f (α) = 0} being
a countable union of finite sets is countable as well. Given this, if X = {xn}n≥1 is an atmost
countable transcendence basis of Ω over Q, then if we let K0 := Q and Kn := Kn−1(xn) for
n ≥ 1, then Q(X) =

⋃
n≥0 Kn is a countable union of countable sets and so countable; and then

the algebraicity of Ω over Q(X) would show that Ω is countable as well, which is false. The
Lefschetz principle (as well as another proof of the Nullstellensatz for k =Ω when algebraically
closed, see [9, Lecture 5]) makes use of this observation.

Example 5.2.4. Let k be a field, n ≥ 1 an integer, and f ∈ k[X1, . . . ,Xn] be an irreducible poly-
nomial. Then R := k[X1, . . . ,Xn]/( f ) is an integral domain; we claim that trdegk R = n− 1.
Indeed, let K := FracR. Write f = a0Xm

n + a1Xm−1 + · · ·+ am for some m ≥ 0 and each
ai ∈ k[X1, . . . ,Xn−1] with a0 ̸= 0. By relabelling the Xi if necessary, we may assume that
m ≥ 1. If x1, . . . ,xn denote the classes of X1, . . . ,Xn in R (and so K) respectively, then we
claim that {x1, . . . ,xn−1} form a transcendence basis for K over k. Indeed, the equation f = 0
in K shows that xn is algebraically dependent on {x1, . . . ,xn−1}, so these elements form an al-
gebraic spanning set. To show that they are algebraically independent, suppose that there is a
polynomial g ∈ k[X1, . . . ,Xn−1] such that g(x1, . . . ,xn−1) = 0. Then g ∈ k[X1, . . . ,Xn−1]∩ ( f ) =
(0)⊂ k[X1, . . . ,Xn] as needed.2

One further idea that we will use is that of

Definition 5.2.5. Let L/k be a field extension.

(a) A separating transcendence basis for L/k is a transcendence basis X for L/k such that
the algebraic extension L/k(X) is separably algebraic.

(b) The extension L/k is said to be separably generated if it admits a separating transcen-
dence basis.

Note that in characteristic zero, any transcendence basis is a separating transcendence
basis and every field extension is separably generated.

5.2.2 p-dependence

Next up is a phenomenon special to characteristic p > 0, due to Teichmüller from 1936.

Theorem/Definition 5.2.6. Let k ⊂ L be a field extension in characteristic p > 0. The map
D : 2K → 2K defined by sending X to the smallest subfield of K containing k,K p and X , i.e.

DX = k(K p,X)

is a dependence relation on K, called p-dependence over k.

A basis for this dependence relation is called a p-basis for K/k, and the dependency
of K with respect to this relation is called the p-dimension of K over k, written p-dimk K.

Proof. Conditions (a)-(d) are clear; again, we have to show (e). Suppose x ∈ X ⊂ K and y ∈
DX ∖D(X ∖{x}). Let L :=D(X ∖{x}) for convenience, so that DX = L(x) and y ∈ L(x)∖L.

2Note that the converse of this observation is also true: if p ⊂ k[X1, . . . ,Xn] is a prime ideal such that
R := k[X1, . . . ,Xn]/p has trdegk R = n− 1, then p is principal. This is dimension theory combined with Krull’s
Hauptidealsatz; see [TODO].
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Note that since xp ∈ L but x /∈ L, it follows that [L(x) : L] = p.3 Now L ⊊ L(y)⊂ L(x) and the
primality of p forces L(x) = L(y), whence x ∈ L(y), as needed. ■

The fundamental set of this relation is the field k(K p). A family of elements B= {xλ}
in K is p-indepedent over k iff for any finite subset B′ ⊂ B of cardinality n ≥ 0, we have
[k(K p,B′) : k(K p)] = pn, or equivalently iff the set ΓB of p-monomials

ΓB :=

{
xe = ∏

λ

xeλ

λ

}

in B (where e = (eλ ) runs over the set of tuples indexed by B such that 0 ≤ eλ ≤ p−1 for each
λ and eλ = 0 for all but finitely many λ ) is linearly independent over k(K p). This family B is
further a p-basis if in addition we have k(K p,B) = K, or equivalently iff ΓB is a k(K p)-basis of
K.

Example 5.2.7. Let p be a prime, n ≥ 0 an integer and K := Fp(X1, . . . ,Xn) and let k = K p.
Then {X1, . . . ,Xn} is a p-basis for K/k, so p-dimk K = n. Conversely, if K/k is any extension
field generated by m-elements (i.e. K = k(a1, . . . ,am)), then there is a subset of {a1, . . . ,an}
that is a p-basis for K/k, and in particular p-dimk K ≤ m. In particular, Fp(X ,Y )/Fp(X p,Y p) is
not a simple extension, illustrating the necessity of the separability hypothesis in the Primitive
Element Theorem.

5.2.3 Differential Dependence

Finally, here is a more sophisticated notion of dependence that we shall use in these notes.

Definition 5.2.8. Let k ⊂ K be a field extension. Then the module ΩK/k of Kähler differentials
is an K-vector space and so has a linear dependence relation LDK . If d : K → ΩK/k is the
universal differential, then the pullback dependence relation (Exercise 10.5) d∗LDK on K is
called the relation of k-differential dependence on K.

It follows from the definition that a collection {xλ} of elements k-differentially spans
K (resp. is k-differentially independent, is a k-differential basis) iff the collection {dxλ} of
its differentials K-linearly spans ΩK/k (resp. is K-linearly independent, is a K-linear basis).
Consequently, depd∗LDK = dimK ΩK/k.

3This uses Exercise 5.10.
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5.3 Separability

In this section, we talk about separability of algebras and non-algebraic field extensions. In this
section, all algebras are commutative.

Definition 5.3.1. Given a field k, a k-algebra A is called separable (over k) if AL := A⊗k L is a
reduced ring for every field extension L/k.

Remark 5.3.2. If a k-algebra A is separable, then every k-subalgebra of A is also separable.
Since reducedness can be detected at the element level and tensoring over k is exact, we see
that A is separable over k iff all of its finitely generated subalgebras are, iff A⊗k L is reduced
for every finitely generated extension L/k, and iff for any extension K/k, the algebra AK is
separable over K. In the language of algebraic geometry, separability corresponds to geometric
reducedness.

For future use, we record one elementary but important fact here as a lemma.

Lemma 5.3.3. Let k be a field, n ≥ 1 an integer, and A1, . . . ,An be k-algebras. The direct
product k-algebra A1 ×·· ·×An is separable iff each Ai for i = 1, . . . ,n is.

Proof. If the product is separable, then so is each Ai because each Ai is (isomorphic to) a k-
subalgebra of the product. For the other direction, check that the tensor product over a field k
commutes with taking finite direct product of k-algebras, i.e. for every field extension L/k, the
natural map (A1 ×·· ·×An)L → (A1)L ×·· ·× (An)L is an isomorphism of L-algebras. ■

Now let us understand the field extensions which satisfy this definition a little better.

Theorem/Definition 5.3.4 (Separable Field Extensions). For a field extension K/k, the fol-
lowing are equivalent.

(a) The field K is separable as a k-algebra, i.e. for every extension L/k, the ring K ⊗k L is
reduced.

(b) For every finite purely inseparable extension L/k, the ring K ⊗k L is reduced.
(c) There is a perfect extension L/k such that K ⊗k L is reduced.
(d) Let k be an algebraic closure of k. Then K ⊗k k is reduced.
(e) For every algebraically closed extension Ω of k and for all n ≥ 1 and k-linearly indepen-

dent elements a1, . . . ,an of Ω, there are σ1, . . . ,σn ∈Autk(Ω) such that det
(
σi(a j)

)
i, j ̸= 0.

(f) If chark = p > 0, then K and k1/p∞

are linearly disjoint over k.
(g) If chark = p > 0, then K and k1/p are linearly disjoint over k.
(h) Every finitely generated subextension of K is separably generated.
(i) For any subfield k′ ⊂ k the map K ⊗k Ωk/k′ → ΩK/k′ is injective.
(j) The map K ⊗k Ωk → ΩK is injective.
(k) Any derivation of k to an arbitrary K-vector space M extends to a derivation of K to M.

An extension satisfying these equivalent conditions is said to be a separable field extension.
Further,

(h) Suppose that K = k(a1, . . . ,an) is finitely generated and separable. Then there is a subset
of {a1, . . . ,an} that is a separating transcendence basis for K/k.

(i) If K/k is separably generated, then it is separable.
(j) If K/k is algebraic, then the above definition agrees with the usual definition of algebraic
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separability, i.e. K/k is separable iff the minimal polynomial over k of any element of K
is a separable polynomial.

(k) If K/k is finite, then K/k is separable iff it is étale over k iff the trace pairing on K is
perfect (or equivalently nondegenerate).

Remark 5.3.5. From the above theorem, it is clear that in characteristic zero every field ex-
tension is separable. It is not true that with the finitely generated hypothesis that a separable
extension is separably generated (i.e. that (j) holds); see Example 10.5.7.

Proof.

(a) ⇒ (b) Suppose chark = p > 0. It suffices to show that if L ⊂ k1/p∞

is any finitely generated
subextension, then K and L are linearly disjoint over k. For that, note that L/k is a finite
purely inseparable extension and pick an N ≫ 1 such that LpN ⊂ k. Since A := K ⊗k L
is a finite-dimensional K-algebra, it is an Artinian ring; since ApN ⊂ K, it follows that
every non-unit of A is nilpotent and hence A is local (Proposition/Definition 1.2.7); since,
addition, it is reduced by hypothesis, it follows from Theorem 1.3.9(a) that A is a field,
and hence K and L are linearly disjoint over k.

(b) ⇒ (c) Clear, since k1/p ⊂ k1/p∞

.
(c) ⇒ (d) If chark = 0, we are done. If chark = p> 0, replace K by this finitely generated extension

to assume that K is finitely generated; then we will show (h) using the definition (c) for
separability. After relabelling, assume that a1, . . . ,ar ∈ K are a transcendence basis for
K/k, ar+1, . . . ,as ∈ K are separably algebraic over k(a1, . . . ,ar). We induct on n− s.
If n− s = 0, we are done. Now suppose that s ≤ n− 1 and y := as+1 is not separably
algebraic over k(a1, . . . ,ar). Let f (Y p) ∈ k(a1, . . . ,ar)[Y ] be the minimal polynomial of
as+1 over k(a1, . . . ,ar), and minimally clear denominators to get a polynomial F(X ,Y p)∈
k[X ,Y ] := k[X1, . . . ,Xm,Y ] such that F(a1, . . . ,ar,a

p
s+1) = 0. Now if ∂F/∂Xi = 0 for

1 ≤ i ≤ r, then there is a polynomial G(X ,Y ) ∈ k1/p[X ,Y ] such that F = Gp; then

k[a1, . . . ,ar,as+1]⊗k k1/p ∼= k[X ,Y ]/(F)⊗k k1/p ∼= k1/p[X ,Y ]/(Gp)

is a nonreduced subring of K ⊗k k1/p, so K ⊗k k1/p cannot be a domain, contradicting
the linear disjointness hypothesis. Therefore, ∂F/∂Xi ̸= 0 for some 1 ≤ i ≤ r; after
further relabelling, we may assume ∂F/∂X1 ̸= 0. Then a1 is separable algebraic over
k(a2, . . . ,ar,as+1), and so are ar+1, . . . ,as. For transcendence degree reasons, a2, . . . ,ar,as+1
must be a transcendence basis for K/k. Setting a′1 := as+1, As+1 = a1 and a′j = a j for all
j ̸= 1,s+1. we have reduced n− s by 1, finishing the proof.

(d) ⇒ (a) It suffices to assume that K is finitely generated; then it suffices to show (i) using defi-
nition (a), i.e. that if K is a separably generated field extension, then K is separable as
a k-algebra. Let Γ be a separating transcendence basis for K over k. Now k(Γ)⊗k L is
a ring of fractions of the domain k[Γ]⊗k L ∼= L[Γ] and is hence a domain with field of
fractions L(Γ). Thus

K ⊗k L ∼= K ⊗k(Γ) (k(Γ)⊗k L) ↪→ K ⊗k(Γ) L(Γ),

and we are reduced to the case where K/k is separably algebraic. Again we may assume
that K is finitely generated, so that K is then finite separable. By the Primitive Element
Theorem, K ∼= k[X ]/( f ) for some separable f ∈ k[X ], and then K ⊗k L ∼= L[X ]/( f ). Now
f ∈ L[X ] is still separable, although no longer necessarily irreducible; say f = ∏

n
i=1 fi
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for distinct irreducibles fi which are pairwise coprime. Then the Chinese Remainder
Theorem gives us

L[x]/( f )∼=
n

∏
i=1

L[X ]/( fi),

which is a finite product of fields and hence reduced.
(c) ⇒ (e)
(e) ⇒ (f) Take k′ to be the prime subfield of k.
(f) ⇔ (g) Both are equivalent to the surjectivity of HomK(ΩK,M)→ HomK(K ⊗k Ωk,M) for each

M.
(f) ⇒ (c)

(h) This was shown in the proof of the implication (c) ⇒ (d).
(i) This was shown in the proof of the implication (d) ⇒ (a).
(j) Clear from (d) or (h); one direction of this was also shown in the proof of (d) ⇒ (a).
(k) Immediate from Theorem/Definitions 5.3.4 and 5.4.1 below.

■

Corollary 5.3.6. Let k ⊂ K ⊂ L be a tower of field extensions.

(a) If L/k is separable, then so is K/k. If, in addition, K/k is algebraic, then L/K is separable
as well.

(b) If K/k and L/K are separable, then so is L/k.

Proof.

(a) The separability of K/k is an immediate consequence of Theorem/Definition 5.3.4(c).
Suppose now that K/k is algebraic as well.

■

One simple consequence of the above definition is the characterization of fields with
only separable extensions.

Theorem/Definition 5.3.7 (Perfect Fields). Let k be a field. Then the following are equivalent:

(a) Either chark = 0 or chark = p > 0 and k = k1/p, i.e. every element of k is a pth power.
(b) Every field extension of k is separable.
(c) Every algebraic extension of k is separable.
(d) Every finite extension of k is separable.

Fields satisfying these equivalent conditions are called perfect fields.

Proof. The implication (a) ⇒ (b) follows from Theorem 5.3.4(c), and (b) ⇒ (c) ⇒ (d) are
clear. For (d) ⇒ (a), suppose chark = p > 0. If x ∈ k1/p ∖ k, then the finite extension k(x) of k
is not separable. ■

Example 5.3.8. Note that all fields of characteristic zero, all algebraically closed fields, all
finite fields, and all algebraic extensions of perfect fields are perfect (the last by Corollary
5.3.6(a)). A simple example of a field that is not perfect is Fp(t).

Theorem 5.3.9. Let k be a field and X be a geometrically integral k-scheme. Then the field
extension k(X)/k is a separable extension and k is algebraically closed in k(X). If X is locally
of finite type over k, then k(X) is also finitely generated.
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Proof. Replace X by an affine open to assume X = SpecA for a domain A. It follows from
geometric integrality of X that if k′/k is any algebraic extension field, then Ak′ = A⊗k k′ is still
a domain, and hence so is the localization k(X)⊗k k′, showing that k(X) and k′ are (abstractly)
linearly disjoint over k. Applying this to k′ = k1/p shows that k(X) is separable over k (Theorem
5.3.4(c)); applying this to k′ = Clk(X)(k) shows that k is algebraically closed in k(X). If X is
locally of finite type over k, then A can be taken to be a finitely generated k-algebra, and then
k(X) = FracA is a finitely generated extension of k. ■

Remark 5.3.10. Let k be a field and X an integral k-scheme. Consider the following condi-
tions:

(a) X is geometrically integral over k.
(b) The function field k(X) and an algebraic closure k are linearly disjoint over k.
(c) The field k is algebraically closed in the function field k(X).

Then (a) ⇔ (b) ⇒ (c). If k is perfect, then all conditions are equivalent.

Indeed, (a) ⇒ (b) was proven in Theorem 5.3.9, (b) ⇒ (a) is standard algebraic
geometry [TOCITE Liu], (b) ⇒ (c) is clear from the definitions, and the implication (c) ⇒
(b) when k is perfect is Exercise 5.5. Finally, Exercise 5.6 shows that these conditions are not
always equivalent if k is not perfect.

Theorem 5.3.11. Let K/k be a finitely generated field extension. Then

trdegk K ≤ dimK ΩK/k < ∞

with equality in the former iff K/k is separable. In this last case, a collection x1, . . . ,xn ∈ K
of elements is a separating transcendence basis of K/k iff dx1, . . . ,dxn form a K-linear basis of
ΩK/k.
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5.4 Étale Algebras and Grothendieck’s Reformulation of Ga-
lois Theory

In this section, we study Grothendieck’s reformulation of infinite Galois theory over a field k as
the computation of the étale fundamental group π ét

1 Speck. For this, the fundamental objects of
interest are étale algebras. Again, all algebras in this section are assumed to be commutative.

Theorem/Definition 5.4.1 (Étale Algebras). Let k be a field and k a fixed algebraic closure
of k with a given embedding k ↪→ k. For a finite-dimensional algebra A over k, consider the
following conditions.

(a) There is an isomorphism of k-algebras A ∼= k[X ]/( f ) for some separable f ∈ k[X ].
(b) A is a finite direct product of finite separable field extensions of k.
(c) A is separable as a k-algebra.
(d) Ak is a reduced ring.
(e) Ak is a finite direct product of copies of k.
(f) The discriminant of one (and hence any) basis of A/k is nonzero.
(g) The trace pairing on A is perfect (or equivalently nondegenerate).

The conditions (b)-(g) are equivalent and implied by (a). If dimk A ≤ #k (in particular, if k
is infinite), then all conditions are equivalent. A k-algebra A is said to be étale over k if it is
finite-dimensional, commutative, and satisfies the equivalent conditions (b)-(g).

Proof.

(a) ⇒ (b) The irreducible factors of f are all distinct and separable, and hence pairwise coprime;
we are done by the Chinese Remainder Theorem.

(b) ⇒ (c) Apply Theorem 5.3.4 and Lemma 5.3.3.
(c) ⇒ (b) A is Artinian since it is finite-dimensional over k. If A is local, then by Theorem 1.3.9(a),

A is a field, and then we are done by Theorem 5.3.4. In general, by Theorem 1.3.9(e),
A is a finite direct product of Artinian local rings, and it is easy to see from the proof of
that result that if A is a k-algebra, then so is each factor. By Lemma 5.3.3, each factor is
separable, and so we are done by the local case.

(c) ⇒ (d) Clear from the definition.
(d) ⇒ (e) Again, since Ak is a reduced Artinian ring, we are done by the same argument as in (c)

⇒ (b).
(e) ⇒ (f) The discriminant is stable under base change, and the discriminant of a finite direct prod-

uct of copies of k is clearly nonzero (take a basis of idempotents).
(f) ⇔ (g) Clear from the definition of the discriminant and the trace pairing.
(f) ⇒ (c) Again, since the discriminant is stable under base change, it suffices to show that if A

is a finite-dimensional algebra over a field with nonzero discriminant, then A is reduced.
Suppose n := dimk A and let r := dimk

√
0A; suppose instead that 1 ≤ r ≤ n. Pick an

(ordered) k-basis α1, . . . ,αn of A such that α1, . . . ,αr form a basis for
√

0A. Then if
either i ≤ r or j ≤ r, then the k-linear map αiα j : A → A is nilpotent, and hence has zero
trace. Therefore, the matrix [TrA

k (αiα j)]i j has its first r rows and columns identically
zero, so if r ≥ 1, it cannot have nonzero determinant.

(b) ⇒ (a), when dimk A ≤ #k. Find an integer n ≥ 1 and finite separable field extensions K1, . . . ,Kn
of k such that A ∼= ∏

n
i=1 Ki. For each i = 1, . . . ,n, use the Primitive Element Theorem to

pick monic irreducible fi ∈ k[X ] so that Ki ∼= k[X ]/( fi), ensuring that each new fi is not
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equal to f j for j < i. This can be achieved by replacing f j(X) by f j(X +a) for a ∈ k× if
necessary; here we use that there are at least (n−1) different choices for a by hypothesis
and that if f ∈ k[X ] is irreducible, then the { f (X +a)}a∈k× are irreducible and pairwise
coprime. Then the polynomials fi are irreducible, separable, and pairwise coprime, and
we may take f = ∏

n
i=1 fi.

■

The hypothesis that dimk A ≤ #k in the implication (b) ⇒ (a) is necessary; see Exer-
cise 5.11.

Finally, we want to mention that the ddecomposition of an étale algebra as a prod-
uct of field extensions is essentially unique; this is a consequence of the following general
observation.

Lemma 5.4.2. Let k be a field, n ≥ 1 an integer and K1, . . . ,Kn field extensions of k. Let
A := ∏

n
i=1 Ki be their product.

(a) Given a k-algebra B and a surjective k-algebra morphism ϕ : A → B, the map ϕ can be
decomposed as a projection onto a subproduct followed by an isomorphism.

(b) Further, if B is a field extension of k, then the projection map is a projection onto a single
factor. In particular, we have

Homk(A,B)∼=
n∏

i=1
Homk(Ki,B).

(c) If m ≥ 1 is another integer and L1, . . . ,Lm field extensions of k with B = ∏
m
j=1 L j, then

Homk(A,B)∼=
∏

i, j
Homk(Ki,L j).

(d) In particular, A ∼= B iff n = m and there is a permutation σ : [n]→ [n] such that Ki ∼= Lσ(i)
as k-algebras for i = 1, . . . ,n.

Proof.

(a) The projection of the kernel to each Ki is an ideal of Ki.
(b) The image of A in B is a k-subalgebra of a field, and hence an integral domain.
(c) Follows from Homk(A,B)∼= ∏

m
j=1 Homk(A,L j) combinted with (b).

(d) Clear from (c): note that n is determined as the number of inequivalent idempotents of A,
and projections ∏i Ki ↠ L j and ∏ j L j ↠ Ki show that each Ki is isomorphic to some L j.

■

Now suppose k is a field, and we fix an embedding k ↪→ k as above. Let ks denote
the separable closure of k in k, so k ⊂ ks ⊂ k. If L/k is any finite separable extension, then
#Homk-Alg(L,ks) = [L : k]s = [L : k] < ∞, and so XL := Homk-Alg(L,ks) is a finite set.4 The
absolute Galois group Gk = Gal(ks/k) acts on XL by postcomposition, and for each ϕ ∈ XL,
the stabilizer (Gk)ϕ = Gal(ks/ϕ(L)) is an open subgroup of Gk by the Fundamental Theorem
of Infinite Galois Theory, and so XL is a discrete Gk-set (see Exercise 5.13). Finally, this

4In the terminology of algebraic geometry, this is the set XL = Spec(L)(ks) of ks-valued points of the geomet-
rically reduced separated finite-type k-scheme (i.e. k-variety) Spec(L) in the category of k-schemes.
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action is transitive by the extension property of homomorphisms from algebraic extensions to
algebraically closed fields. In conclusion, XL is a left coset space for some open subgroup in Gk.
When L/k is Galois, XL is isomorphic to a quotient of Gk by an open normal subgroup, namely
Gal(ks/ϕ(L)) for one (and hence any) ϕ ∈ XL. If K and L are two finite separable extensions
and θ : K → L a k-homomorphism, then we get a pullback map θ ∗ : XL → XK , which is clearly
a Gk-set morphism.

Theorem 5.4.3. In the above set-up, the association L 7→ XL gives an antiequivalence between
the categories of finite separable extensions L/k and transitive finite (left) Gk-sets. Further,
Galois extensions correspond to finite quotients of Gk.

Proof. For essential surjectivity, let X be a transitive finite left Gk-set, and pick an x ∈ X . By
Exercise 5.13, the stabilizer of x in Gk is an open subgroup, and so by the Fundamental Theorem
of Infinite Galois Theory is of the form Gal(ks/L) for some finite separable subextension L/k
of ks. Let ι : L ↪→ ks be the inclusion; then the map XL → X given by gι 7→ gx is an isomorphism
of Gk-sets.

It remains to show that if K,L/k are finite separable extensions, then the map

−∗ : Homk(K,L)→ HomGk(XL,XK)

is a bijection. For this, we construct an inverse. Fix an ι ∈ XL; then a Gk-homomorphism
η : XL → XK determines and is determined by the element η(i) ∈ XK by transitivity. If η is
a Gk-homomorphism, then Gal(ks/ι(L)) = (Gk)ι ⊂ (Gk)η(ι) = Gal(ks/η(ι)(K)), so by the

Fundamental Theorem we get ι(L) ⊃ η(ι)(K). The composite θη : K
η(ι)−−→ ι(L) ι−1

−−→ L is a k-
algebra homomorphism with θ ∗

η = η . Checking that this construction gives inverse bijections
is left to the reader. ■

We can now ask what all the finite left Gk-sets are, not necessarily transitive ones.
Note that if A is an étale k-algebra, then XA := Homk-Alg(A,ks) is also a left Gk-set. If we pick
n and Ki as in Lemma 5.4.2 as given by Theorem/Definition 5.4.1(b), the decomposition in
Lemma 5.4.2(b) of the form

XA ∼=
n∏

i=1
XKi

is an isomorphism of Gk-sets. In particular, XA is a finite left Gk set. The main theorem we are
after here says exactly that these are, in fact, all.

Theorem 5.4.4 (Fundamental Theorem of Galois Theory, Grothendieck’s Version). The asso-
ciation A 7→ XA gives an antiequivalence between the categories of étale algebras A/k and finite
left Gk-sets. Further,

(a) separable field extensions correspond to transitive finite left Gk-sets, and
(b) Galois extensions correspond to finite quotients of Gk.

Proof. Again, for essential surjectivity, let X be a finite left Gk-set, and decompose it into its
Gk-orbits: pick an integer n ≥ 1 and Gk-invariant subsets X1, . . . ,Xn ⊂ X such that X =

∏n
i=1 Xi

and the action of Gk on each Xi is transitive. For each i = 1, . . . ,n, by Theorem 5.4.3, there is
a finite separable extension Ki/k and a Gk-set isomorphism XKi → Xi. Taking A = ∏

n
i=1 Ki, it

follows that the composition

XA ∼=
n∏

i=1
XKi →∼

n∏

i=1
Xi = X
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is a Gk-set isomorphism. Similarly, to show full faithfulness, suppose we have étale k-algebras
A,B, and we pick n,m,Ki and L j as in Lemma 5.4.2 so A ∼= ∏

n
i=1 Ki and B ∼= ∏

m
j=1 L j. Then we

get Gk-set isomorphisms

Homk-Alg(A,B)∼=
∏

i, j
Homk(Ki,L j)→∼

∏

i, j
HomGk(XL j ,XKi)

∼= HomGk(XB,XA),

where we are using Lemma 5.4.2(c), Theorem 5.4.3, and that a Gk-set morphism XB → XA must
preserve the decomposition into Gk-orbits. Everything else is clear from Theorem 5.4.3. ■

As remarked earlier, this theorem amounts to the computation π ét
1 Spec(k)∼= Gk.
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5.5 Exercises

Exercise 5.1. Suppose we have field extensions k ⊂ K,L ⊂ Ω as in Proposition/Definition
5.1.1. Show that if either K or L is algebraic over k, then K[L] = KL, i.e. that the smallest
subring of Ω containing K and L is a field. Come up with an example of fields k,K,L, and Ω

as above for which K[L]⊊ KL.

Exercise 5.2.

(a) Let K,L be finite extensions of a field k such that [K : k] and [L : k] are relatively prime.
Show that K and k are linearly disjoint over k.

(b) Show that f (X) := X5 +4X3 +6X +14 ∈ Q[
√

5,cos(2π/7)][X ] is irreducible.

Exercise 5.3. Suppose k ⊂ Ω is a field extension, and that k ⊂ K,L ⊂ Ω intermediate domains.
We say that K and L are linearly disjoint over k in Ω iff the natural map K⊗k L → Ω is injective.
Show that K and L are linearly disjoint over k in Ω iff their fraction fields FracK and FracL are
.

Exercise 5.4. Show that if k is a field and K,L ⊃ k two extension fields, then there is a field
extension of k containing k-isomorphic copies of K and L.

Exercise 5.5. Partially generalize Theorem 5.1.3 as follows. Let k be a field and K/k be any
extension such that k is algebraically closed in K. If L/k is a Galois extension (e.g. if k is
perfect and L is an algebraic closure of k), then K and L are linearly disjoint over k.

Exercise 5.6. Let F be any imperfect field, so that p := charF > 0, and pick an s ∈ F∖Fp. Let
k := F(t).

(a) Show that X p + sY p + t ∈ k[X ,Y ] is irreducible.

Let K := Frack[X ,Y ]/(X p + sY p + t). Let k → L be an algebraic closure of k, let K → Ω be an
algebraic closure of K, and extend the natural map k → K → Ω to an inclusion L → Ω. In what
follows, identify k,K, and L with their images in Ω.

(b) Show that K∩L = k (i.e. k is algebraically closed in K), but that K and L are not linearly
disjoint over k in Ω. In particular, K and L ∼= k are not abstractly linearly disjoint over k.

Exercise 5.7. Let k ⊂ K ⊂ L be a tower of field extensions. Show that trdegk L = trdegk K +
trdegK L.

Exercise 5.8. Let k be a field, and K,L ⊃ k be two extension fields of k. Show that if K and L
are everywhere linearly disjoint over k, then one of K or L is algebraic over k.

Exercise 5.9. Let k be a field and K,L ⊃ k be two algebraic extensions of k. Show directly (i.e.
without quoting Theorem 5.1.3) that if K is separable and L is purely inseparable, then K and
L are linearly disjoint over k.

Exercise 5.10. Let k be a field and f (X) ∈ k[X ] be a polynomial such that for every field
extension K of k, if f has a root in K then f splits over K. Show that all irreducible factors of f
have the same degree. In particular, if in addition f has prime degree and does not have a root
in k, then f is irreducible over k.

Exercise 5.11. Show that the étale F2-algebra A = F3
2 is not isomorphic to F2[X ]/( f ) for any

f ∈ F2[X ].
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Exercise 5.12. Let G be a profinite group and n ≥ 1 an integer. Show that any continuous
homomorphism ρ : G → GLn C factors through a finite quotient of G.

Exercise 5.13. Let G be a topological group acting on a set X . Show that the following are
equivalent:

(a) The action of G on X is continuous for the discrete topology on X .
(b) For each x ∈ X , the stabilizer Gx ⊂ G of x in G is an open subgroup of G.
(c) Every element x ∈ X is stabilized by some open subgroup Ux ⊂ G, i.e. X =

⋃
U≤G XU ,

where the union is over open subgroups U ≤ G.

In this situation, we call X a discrete G-set.
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6.1 Noether Normalization and Zariski’s Lemma

The main theorem of this section is:

Theorem 6.1.1 (Noether Normalization). Let R be a finitely generated commutative k-algebra
with k a field. Then there exists an integer r ≥ 0 and elements z1, . . . ,zr ∈ R such that:

(a) The zi’s are algebraically independent over k, i.e. the map k[Z1, . . . ,Zr] → R given by
Z j 7→ z j for j = 1, . . . ,r, is injective.

(b) R is integral over the image k[z1, . . . ,zr].

Finally, if k is infinite, and we express R as R ∼= k[x1, . . . ,xn] = k[X1, . . . ,Xn]/a for some integer
n ≥ 0 and ideal a⊂ k[X1, . . . ,Xn], then the zi can be chosen to be linear combinations of the xi.

Proof. Start with a set {z j}r
j=1 for some r ≥ 0 with R integral over k[z j]

r
j=1 (e.g. we can

start with any generating set, say {xi}n
i=1 if we are in the second situation). Either the zi are

algebraically independent, and we are done; or, r ≥ 1 and there is a 0 ̸= f ∈ k[Z1, . . . ,Zr] such
that f (z1, . . . ,zr) = 0. As explained below, we can replace Z j for 1 ≤ j < r by Z′

j such that
k[Z1, . . . ,Zr] = k[Z′

1, . . . ,Z
′
r−1,Zr] and such that the polynomial f when written in these new

variables is monic in Zr (possibly after rescaling); and further, we can ensure that if k is infinite
then the Z′

j are linear combinations of the Z j. Having done this, we would conclude that zr is
integral over k[z′1, . . . ,z

′
r−1], where each z′j is the image of Z′

j, and then by Corollary 4.1.4(c),
R would be integral over k[z′1, . . . ,z

′
r−1]. We have now reduced r by 1. Therefore, by repeating

this process finitely many times we will arrive at an algebraically independent collection of the
sort required.

For the transformation steps, first assume that k is infinite. Set Z′
j := Z j−α jZr for 1≤

j < r for α1, . . . ,αr−1 ∈ k to be determined later. Let ∑I cIZI be the sum of monomials of highest
total degree |I|=: N in f (so cI ̸= 0 for at least one I), and look at ∑I cI

(
∏

r−1
j=1(Z

′
j +α jZr)

i j
)

Zir
r .

The coefficient of ZN
r in this expansion is c :=∑I cI ∏

r−1
j=1 α

i j
j . Since this is a nonzero polynomial

in k[α j]
r−1
j=1 and k is infinite, we can choose α1, . . . ,αr−1 such that c ̸= 0. Clearly, none of the

the homogenous terms of f of total degree less than N can contribute to the coefficient of ZN
r ,

so scaling by c−1, we are done.

In the general case, consider integers (“weights”) w1, . . . ,wr−1 ≥ 0 to be specified
later, and set wr = 1. Set Z′

j := Z j −Zw j
r for 1 ≤ j < r. In a typical monomial cIZI in f after

substitution, we get a term of the form cI

(
∏

r−1
j=1(Z

′
j +Zw j

r )i j
)

Zir
r . This has term of highest

degree in Zr that looks like Zr to the power ∑
r
j=1 i jw j. If we can pick the w j in such a way that

all of these sums over varying I are distinct, then we could pick a unique highest order term
of power of Zr in the changed polynomial, so after scaling we would be done. This is always
possible because of Lemma 6.1.2 below. ■

Lemma 6.1.2. Suppose that r ≥ 1 is an integer, and I = {(i1, . . . , ir) : i1, . . . , ir ≥ 0} a finite set
of ordered r-tuples of nonnegative integers. Then there are nonnegative integers w1, . . . ,wr−1,wr,
such that wr = 1 and if I ̸= I′ ∈I then ∑

r
j=1 i jw j ̸= ∑

r
j=1 i′jw j.

Proof. Proceed by induction on r, with r = 1 clear. If r ≥ 2, then by induction choose w2, . . . ,wr−1,wr ≥
0 with wr = 1 such that ∑

r
j=2 i jw j =∑

r
j=2 i′jw j ⇒ I = I′. Now choose w1 >maxI∈I{∑

r
j=2 i jw j}.

■
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Remark 6.1.3. Geometrically, the Normalization Theorem says that every affine variety ad-
mits a finite surjective map to an affine space of its dimension. If the base field is infinite (as
are usually the fields we work with in algebraic geometry), then in fact we can take this map to
be a linear projection.

Corollary 6.1.4. If in addition R is an integral domain, then r = trdegk R.

Proof. The integral closure ClFracR(k(z1, . . . ,zn)) ⊂ FracR is a field by Lemma 4.1.8(c) and
contains R, so it must be FracR. Therefore, z1, . . . ,zr ∈ FracR is a transcendence basis and
trdegk FracR = r. ■

Remark 6.1.5. We will show below [TOCITE] that for r ∈ Z≥0 that dimk[Z1, . . . ,Zr] = r. It
will then follow from Corollary 4.2.6(a) that dimR = r as well. In all, this will show that if R
is a finitely generated commuative k-algebra for some field k that is an integral domain, then
dimR = trdegk R.

Now we derive plenty of delicious consequences. We begin with useful lemma.

Lemma 6.1.6 (Artin-Tate Lemma). Let R ⊂ S ⊂ T be rings. Suppose that R is Noetherian,
T is a finitely generated R-algebra, and that T is integral over S (equivalently, T is a finite
S-module). Then S is a finitely generated R-algebra.

Proof. Let m,n≥ 1 be integers such that we can pick generators x1, . . . ,xm of T as an R-algebra,
and y1, . . . ,yn of T as an S-module. Then there are expressions of the form xi = ∑ j si jy j and
yiy j = ∑k si jkyk for si j,si jk ∈ S. Let S′ := R[si j,si jk]i, j,k. Since R is Noetherian, so is S′, being a
finitely-generated R-algebra (Theorem 1.3.5). Any element of T is a polynomial in the xi with
coefficients in R; substituting the above, we see that T is generated as an S′-module by the y j; in
particular, it is module-finite over S′. Since S′ is Noetherian and S is a submodule of the finitely
generated S′-module T , the ring S is module-finite over S′. Since S′ is a finitely-generated R
algebra, it follows that S is a finitely generated R-algebra as well. ■

Remark 6.1.7. Here is one historically significant application of the Artin-Tate Lemma: the
construction of quotient varieties. Let k be a field, n≥ 1 an integer and G a finite group acting on
a finitely generated k-algebra T , and we are interested in studying the G-invariants T G. Lemma
6.1.6 applied to R = k and S = T G says that the ring S of invariants is finitely generated.1 A
closer examination of the proof, however, reveals that it is not constructive; a variant of this
proof in this special case, essentially due to Noether and Hilbert, was the impetus behind the
development of a lot of commutative algebra (including the definition of Noetherian ring and
the Hilbert Basis Theorem), and initially got Hilbert under fire (Gordan denounced this proof
as “theology, not mathematics!”) [TOCITE]. It was a long time before this proof technique,
and nonconstructive techniques in commutative algebra, became mainstream.

We now come to one of the most fundamental results of the algebraic theory of di-
mension, of which we give five proofs.

Theorem 6.1.8 (Zariski’s Lemma). Let k ⊂ K be a field extension. If K is a finitely generated
k-algebra, then it is a finite algebraic extension.

1In modern algebraic geometry, this is saying that the quotient of the finitely generated affine k-scheme
Spec(T ) by the action of G is still of the same type, i.e., a geometric quotient of Spec(T ) by G exists in this
category. It is also clear that if T is reduced, then so is T G: the quotient of an affine k-variety by a finite group G
is also one.
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Proof 1. Induct on n ∈ Z≥0, the minimal number of generators of K as a k-algebra, the case
n = 0 being trivial. Suppose n ≥ 1 and K = k[x1, . . . ,xn] for some x1, . . . ,xn ∈ K. If K is not
algebraic over k, at least one of the xi, say x1, is not algebraic over k. Then k(T )∼= k(x1)⊂ K,
and K is generated as a k(x1) algebra by x2, . . . ,xn, so by induction x2, . . . ,xn are algebraic
over k(x1). By clearing out denominators in equations of algebraic dependence, we can find an
f ∈ k[x1] such that f x2, . . . , f xr are integral over k[x1]. Now let g ∈ k[x1] be an irreducible not
dividing f ; this is possible, since k[x1] is a PID with infinitely many irreducibles.2 Then 1/g ∈
k(x1) ⊂ K = k[x1, . . . ,xn] implies that there is an N ≫ 1 such that f N/g ∈ k[x1, f x2, . . . , f xn].
Then f N/g ∈ k(x1) is integral over k[x1]. But k[x1] is a UFD and hence normal (Example 4.1.5),
so f N/g ∈ k[x1], i.e. f N = gh for some h ∈ k[x1], a contradiction. ■

Proof 2. Let K = k[x1, . . . ,xn]. If K is not algebraic over k, then n ≥ 1 we may reorder the
xi to arrange that x1, . . . ,xr are algebraically independent over k for some r ≥ 1 and that
each of xr+1, . . . ,xn are algebraic over k(x1, . . . ,xr). Applying Lemma 6.1.6 to R = k,S =
k(x1, . . . ,xr),T = K, it follows that the purely transcendental extension k(x1, . . . ,xr) is a finitely
generated k-algebra, say k(x1, . . . ,xr) = k[y1, . . . ,ys] for some s ≥ 1. Then each yi = f j/g j for
some polynomials f j,g j in x1, . . . ,xr. Since there are infinitely many irreducible polynomials in
k[x1, . . . ,xn], we may pick an irreducible g ∈ k[x1, . . . ,xn] that does not divide g1 · · ·gs. Then the
element g−1 ∈ k[y1, . . . ,ys] implies that g−1 is polynomial in y1, . . . ,ys, which is not possible;
this contradiction shows that K is algebraic over k. ■

Proof 3. From Noether Normalization (Theorem 6.1.1), we can write k ⊂ k[z1, . . . ,zr] ⊂ K
where the first extension is polynomial and the second extension is integral. But from Lemma
4.1.8(c), we get that since K is a field, so must be k[z1, . . . ,zr]. This is only possible if r = 0. ■

Proof 4. Taking R = k, S = K, and ϕ : k ↪→ Ω an algebraic closure of k, in Lang’s Lemma
(Theorem 4.3.1(b)) gives an extension ϕ̂ : K → Ω. Since K is a field, this last homomorphism
is injective, and so K is algebraic over k. Since it is a finitely generated k-algebra, it is finite
algebraic. ■

Finally, we record a more “geometric” proof of this result as well, which uses a little
more algebraic geometry.

Proof 5. If K is not algebraic over k, then there is an inclusion k[X ] ↪→ K of the polynomial ring
k[X ] into K. This gives rise to a dominant morphism π : SpecK → A1

k of finite-type k-schemes.
By Chevalley’s Theorem, the image of π is constructible, but the image of π is the generic
point of A1

k , which is not constructible. ■

2For instance, by the same argument as the infinitude of primes.
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6.2 Some Classical Algebraic Geometry

6.2.1 The Classical Nullstellensatz

In classical algebraic geometry, we look at the vanishing loci of polynomials in affine space.

Definition 6.2.1. For an integer n ≥ 1 and ring k, the k-points of affine n-space is the set

An(k) = {(a1, . . . ,an) : ai ∈ k}

of ordered n-tuples of elements of k.

In what follows, we fix an n ∈ Z≥1. In modern algebraic geometry, this is the set of k-
points of the universal affine n-space An

Z = SpecZ[X1, . . . ,Xn]. In classical algebraic geometry,
in the absence of the notion of Spec, this was the geometric space on which algebraic geometry
was done. Here’s a version that we will set up.

Fix a field k and an algebraic closure k of k. Associate to each subset a⊂ k[X1, . . . ,Xn]
its vanishing locus V(a)⊂ An(k), and to each subset X ⊂ An(k) the ideal I(X)⊂ k[X1, . . . ,Xn]
of polynomials over k vanishing on it. Then with this notation we have

Theorem 6.2.2 (Hilbert’s Nullstellensatz).

(a) If a⊂ k[X1, . . . ,Xn] is a proper ideal, then V(a) ̸= /0.
(b) If a⊂ k[X1, . . . ,Xn] is any ideal, then I(V(a)) =

√
a.

Proof.

(a) Since a is proper, there is a maximal ideal m⊂ k[X1, . . . ,Xn] containing a. Then V(m)⊂
V(a). Therefore, it suffices to do the case when a is maximal. In this case, the quotient
K := k[X1, . . . ,Xn]/a is a field extension which is a finitely generated k-algebra, and hence
by Zariski’s Lemma 6.1.8, it is a finite algebraic extension. In particular, there is a k-
embedding ϕ : K → k, and then the point (ϕ(X1), . . . ,ϕ(Xn)) ∈ V(a)⊂ An(k).

(b) The inclusion
√
a ⊂ I(V(a)) is clear. For the other direction, we use the Rabinowitsch

trick: if f ∈ I(V(a)), then in k[X1, . . . ,Xn+1], the ideal b := (a, f · Xn+1 − 1) has the
property that V(b) = /0. By (a), b= (1). Therefore,

0 = k[X1, . . . ,Xn]/b∼= (k[X1, . . . ,Xn]/a) [Xn+1]/( f ·Xn+1 −1)∼= (k[X1, . . . ,Xn]/a) [ f
−1
],

which by Example 1.1.4 gives us that f ∈ Nil(k[X1, . . . ,Xn]/(a)) as needed.

■

Corollary 6.2.3. Suppose that k = k, i.e., that k is algebraically closed. Then there is a bijection
between An(k) and the maximal ideals of k[X1, . . . ,Xn], given by sending a point (a1, . . . ,an) to
the ideal (X1 −a1, . . . ,Xn −an).

Proof. This map is clearly well-defined and injective. For an arbitrary maximal ideal m ⊂
k[X1, . . . ,Xn], as in Theorem 6.2.2(a), the quotient K = k[X1, . . . ,Xn]/m is a finite algebraic ex-
tension of k. Since k is algebraically closed, this means that the natural map k→ k[X1, . . . ,Xn]/m
is an isomorphism. For i = 1, . . . ,n, if the element ai ∈ k maps to the class of Xi in K, then
m⊃ (X1 −a1, . . . ,Xn −an); but the latter is already a maximal ideal. ■
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In fact, the above set-up can be used to give an antitone Galois connection between
the k-subvarieties of An(k) and radical ideals in k[X1, . . . ,Xn]; but that belongs properly to a
course on classical algebraic geometry. This observation is also the starting point of modern
algebraic geometry, which systematically studies not only maximal ideals of polynomial rings
over a field but rather all prime ideals of arbitrary rings as its “points”.

6.2.2 Jacobson Rings

The Nullstellensatz implies that (when k is algebraically closed) for any ideal a⊂ k[X1, . . . ,Xn]
we have

√
a=

⋂
m⊃am (check!). We call rings with this property Jacobson rings; this is devel-

oped systematically in

Theorem/Definition 6.2.4 (Jacobson Rings). The following conditions on a ring R are equiv-
alent:

(a) In every quotient ring of R, the nilradical equals the Jacobson radical.
(b) Every radical ideal in R is the intersection of maximal ideals.
(c) Every prime ideal in R is the intersection of maximal ideals.
(d) If S is a domain quotient of R and there is a 0 ̸= x ∈ S such that S[x−1] is a field, then S is

a field.
(e) Every finitely generated algebra over R that is a field is finitely generated as an R-module.

A ring satisfying the above equivalent conditions is said to be a Jacobson ring. In this situation:

(f) If S is a finitely generated R-algebra by ϕ : R → S, then S is also Jacobson. Further, if
m⊂ S is maximal, then so is ϕ−1m⊂ R and hence S/m is a finite algebraic extension of
R/ϕ−1m.

Remark 6.2.5. Geometrically, a morphism of Jacobson schemes which is locally of finite type
(e.g., that of varieties over a field) maps closed points to closed points; this fact enabled classical
algebraic geometers to stick to closed points in their interpretation of the geometry of algebraic
geometry.

Proof.

(a) ⇒ (b) Let a⊂ R be a radical ideal. Then in R/a we have 0=Nil(R/a) = Jac(R/a) =
⋂
m⊂R/am,

so in R we have a=
⋂
m⊃am.

(b) ⇒ (c) Clear.
(c) ⇒ (a) If a ⊂ R is any ideal, then

√
a =

⋂
p⊃a p =

⋂
m⊃am, where the first statement is Theo-

rem 1.2.2, and the second uses the hypothesis (c). Therefore, Nil(R/a) =
√

0(R/a) =⋂
m⊂R/am= Jac(R/a).

(c) ⇒ (d) Let p := ker(R → S), and lift x to an x̃ ∈ R∖p. By hypothesis, there is a maximal ideal
m containing p but not x̃; this corresponds to a maximal ideal of S not containing x and
hence by Corollary 1.1.12(d) a proper prime ideal of S[x−1], which must be (0); therefore,
p=m.

(d) ⇒ (c) We have to show that given a prime p and x /∈ p, there is a maximal m containing p such
that x /∈ m. In this case, (R/p)[x−1] is not the zero ring and therefore has a maximal
ideal m0; then m := ϕ−1m0 is a prime in R containing p and not containing x, where
ϕ : R ↠ R/p

η−→ (R/p)[x−1]. We claim that m is maximal. Indeed, the composite R ↠

R/p
η−→ (R/p)[x−1]↠ (R/p)[x−1]/m0 :=K has kernel exactly m and so gives an injection

81



Chapter 6. Dimension Theory

R/m ↪→ K; since x /∈ m, this extends to a map (R/m)[x−1] ↪→ K. But by construction of
K this map is also clearly surjective, and so an isomorphism. By (d) applied to S = R/m,
we conclude that m is maximal.

(d) ⇒ (e) Suppose that K is a field and a finitely generated R-algebra via ϕ : R → K. Replacing
R by R/kerϕ , we may assume that R is a domain; let k := FracR. Since K is a finitely
generated R-algebra, it is also a finitely generated k-algebra, so by Zariski’s Lemma
(Theorem 6.1.8), K/k is finite algebraic. For the finitely many generators of xi of K/k,
write down equations of algebraicity and take a large common denominator 0 ̸= x ∈ R of
the coefficients so that R[x−1] ↪→ K is an integral extension. By Lemma 4.1.8(c), R[x−1]
is a field, so that by hypothesis R = k. Since K/k is finite, we are done.

(e) ⇒ (d) Let S and x be as given. Since S[x−1] is a finitely generated R-algebra that is a field, by (e)
it is integral over R. Writing an equation of integral dependence of x−1 of degree n ≥ 1
and multiplying throughout by xn shows then that x−1 ∈ S and hence S = S[x−1] is a field.

(f) The ring S clearly satisfies (e). Finally, if m⊂ S is maximal, then S/m is a finitely gener-
ated R-algebra that is a field, so by (e) again S/m is integral over R. Then R/ϕ−1m⊂ S/m
is an integral extension of domains with S/m a field, so by Lemma 4.1.8(d), ϕ−1m is
maximal.

■

Example 6.2.6.

(a) Fields and hence finitely generated algebras over fields are Jacobson; this is the classical
Nullstellensatz.

(b) A Dedekind domain is Jacobson iff it has infinitely many prime ideals (Exercise 6.1). In
particular, if K is a number field, then K is a Jacobson ring.

(c) A local domain that is not a field is not Jacobson; see also Exercise 6.2.

6.2.3 Dimension of Affine Varieties

Let us now return to a little bit of dimension theory. The first promised result is

Theorem 6.2.7. Let k be a field and n ∈ Z≥0. Then dimk[X1, . . . ,Xn] = n.

6.3 Hilbert-Samuel Polynomials

6.4 The Main Theorem of Dimension Theory and Regular
Rings

6.5 Krull’s Hauptidealsatz Revisited

6.6 Systems of Parameters, Regular Sequences, Depth, and
Cohen-Macaulay Rings
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6.7 Exercises

Exercise 6.1. Show that a Dedekind domain is a Jacobson ring iff it has infinitely many prime
ideals.

Exercise 6.2. Show that a local ring is a Jacobson ring iff it has Krull dimension zero.
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7.1 Valuation Rings and Discrete Valuation Rings

An abelian group Γ with a translation-invariant total order ≤ is said to be an ordered abelian
group; to such a group we associate an ordered abelian monoid Γ+ := Γ⊔{∞} by defining
∞+ξ = ∞ and ξ ≤ ∞ for all ξ ∈ Γ.

Definition 7.1.1. Let R be a domain, and Γ be an ordered abelian group.

(a) A Γ-valued valuation on R is a monoid homomorphism v : (R, ·)→ Γ+ satisfying that for
x ∈ R we have v(x) = ∞ iff x = 0, and for all x,y ∈ R we have

v(x+ y)≥ min{v(x),v(y)}.

In the above situation, v can be uniquely extended to a Γ-valued valuation on the fraction field
K := FracR by v(x/y) = v(x)− v(y) whenever x,y ∈ R with y ̸= 0. Therefore, it suffices to talk
about valuations on fields.

(b) Suppose K is a field and v : K → Γ+ is a valuation. Then we define the value group of v
to be the subgroup v(K×)⊂ Γ, the valuation ring of v to be

v := {x ∈ K : v(x)≥ 0},

and the maximal ideal to be

mv := {x ∈ R : v(x)> 0}.

(c) A valuation v : K → Γ is said to be a discrete valuation if the value group of v is isomor-
phic to Z as an ordered abelian group; in this case, identifying the value group with Z,
we say that an element π ∈ K is a uniformizing parameter, or uniformizer, if v(π) = 1
(i.e. if v(π)> 0 is a generator of the value group).

Remark 7.1.2. If Γ is any ordered abelian group, then there is a field K and a Γ-valued valua-
tion on K with value group Γ; in fact, K can be chosen to be of any characteristic, and indeed
K = Frack[Γ] suffices for any base field k. See [4, Exercise 5.33]. For a suitable choice of
Γ, this can be used to construct a nonempty scheme with no closed points. See [10, Exercise
3.3.27].

Remark 7.1.3. It is easy to check (do!) that in (b) above, given x ∈ K× we have v(x−1) =
−v(x), we have x ∈ ×

v iff v(x) = 0, and that mv = v ∖×
v is an ideal, so by Proposi-

tion/Definition 1.2.7, the nomenclature above is justified: v is a local domain with the unique
maximal ideal mv. In this case, note that K = Fracv; in fact, for any x ∈ K× we have either
x ∈v or x−1 ∈v. And indeed, this property characterizes all rings that arise in this way; this
is the content of Theorem/Definition 7.1.5 below.

Example 7.1.4 (TODO: Examples).

Theorem/Definition 7.1.5 (Valuation Rings). Let R ⊂ K be a ring extension with K a field.
Then the following are equivalent:

(a) For all x ∈ K×, either x ∈ R or x−1 ∈ R.
(b) The ideals of R are totally ordered by inclusion and K = FracR.
(c) There is an ordered abelian group Γ and a Γ-valued valuation v on K such that R = v.
(d) The ring R is a local ring maximal with respect to dominance in K.1

1This last property says that if S ⊂ K is a local ring such that R ⊂ S and mR ⊂mS, then R = S.
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A domain R satisfying these equivalent properties (for some field K, which must a
posteriori be the fraction field of R) is said to be a valuation ring.

Proof.

(a) ⇒ (b) Let a,b⊂ R be ideals, and suppose there is a x ∈ a∖b. Then for any nonzero y ∈ b, the
fraction x/y cannot be in R, and hence y/x ∈ R, whence y ∈ a. This shows b⊂ a.

(b) ⇒ (a) Given z ∈ K×; since K = FracR, there are nonzero x,y ∈ R with z = x/y; use the total
ordering to compare the ideals (x) and (y).

(a) ⇒ (c) Let Γ := K×/R×, and given ξ ,η ∈ Γ represented by x,y ∈ K× respectively, say ξ ≤ η

iff yx−1 ∈ R. Then, by (a), Γ is an ordered abelian group, and the natural projection
v : K× → Γ extended by v(0) = ∞ is the required valuation.

(c) ⇒ (a) This was observed above (Remark 7.1.3).
(a) ⇒ (d) Locality follows from the implication (a) ⇒ (b) combined with Remark 7.1.3. If S ⊂

K is a local ring such that R ⊂ S and mR ⊂ mS and x ∈ S ∖R, then x−1 ∈ mR ⊂ mS,
contradicting x ∈ S.

(d) ⇒ (a) Let m ⊂ R be the maximal ideal and for x ∈ K ∖R, set S := R[x]. If the ideal mS ⊂ S is
proper, then it is contained in a maximal ideal n ⊂ S, and then n∩R = m implies that S
is properly dominated by Sn. Since we are assuming this cannot happen, we must have
mS = S, and hence there is an integer n ≥ 1 and elements c0,c1, . . . ,cn ∈ m such that
1 = ∑

n
i=0 cixi. By Proposition/Definition 1.2.7, we have 1− c0 ∈ R×,and so this equation

implies that x−1 ∈ ClK(R), and hence by Theorem 4.2.1(a) there is a prime p of R[x−1]
lying over m. Then it follows from maximality that x ∈ R[x−1]p = R.

■

Corollary 7.1.6. Let R be a valuation ring and K := FracR its fraction field.

(a) Any subring of K containing R is also a valuation ring; in particular, every nonzero
localization of R is a valuation ring.

(b) Every quotient of R by a prime ideal (i.e. every integral domain quotient of R) is a
valuation ring.

(c) The domain R is normal, i.e. ClK(R) = R.

Proof. The statement (a) is clear from Theorem/Definition 7.1.5, and (b) follows from the same
combined with the fact that if p ⊂ R is a prime, then Rp → Frac(R/p) is surjective (check!).
For (c), if x ∈ K× is such that for some integer n ≥ 1 and elements a1, . . . ,an ∈ R we have
xn +a1xn−1 + · · ·+an = 0 and x−1 ∈ R, then multiplying throughout by x−n+1 yields also that
x ∈ R. ■

Corollary 7.1.7. Let R ⊂ K be any extension with K a field. Then the normalization of R in K
is the intersection of all valuation rings of K containing R.

Proof. One inclusion follows from Corollary 7.1.6(c). Conversely, if x /∈ ClK(R), then x−1 /∈
R[x−1]×, and hence there is a maximal ideal m of R[x−1] containing x. Let Ω be an algebraic
closure of R[x−1]/m with a fixed embedding thereof, and consider the natural map ϕ : R[x−1]→
Ω. By Zorn’s Lemma, this admits a maximal extension ϕ̂ : S → Ω to a subring S of K, which
by Theorem 4.3.1(c) is a valuation ring of K containing R[x−1]. Since x−1 ∈ S with ϕ̂(x−1) = 0,
we conclude that S is a valuation ring of K containing R but not containing x. ■
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Finally, we are able to characterize discrete valuation rings (i.e. valuation rings of
discrete valuations), abbreviated DVRs, as rings with rather special properties.

Theorem 7.1.8 (DVRs). The following conditions on a (nonzero) ring R are equivalent:

(a) R is the valuation ring of a discrete valuation.
(b) R is a Noetherian domain that is not a field, but is maximal with respect to inclusion of

subrings in its fraction field.
(c) R is a Noetherian valuation ring that is not a field.
(d) R is a local PID that is not a field.
(e) R is a UFD with a unique irreducible element up to associates, i.e. multiplication by

units.
(f) R is a Noetherian local domain that is not a field and if m (resp. k) is its maximal ideal

(resp. residue field), then
(1) m is principal (or equivalently2 dimkm/m2 = 1),
(2) every nonzero ideal in R is of the form mn for some (necessarily unique3) integer

n ≥ 0,
(3) dimR = 1 and R is normal, or
(4) dimR = 1 and the only m-primary ideals of R are powers of m.

(g) R is a local domain that is not a field and every fractional ideal of R is invertible.

In this case,

(h) An element π ∈ R is a uniformizer iff m= (π) iff π ∈m∖m2, and in this case FracR =
R[π−1]. In particular, the discrete valuation as in (a), when normalized to be Z-valued, is
determined uniquely.

(i) The only prime ideals of R are (0) and m.

Proof.

Step 1. First, we show the equivalence of (a)-(e).

(a) ⇒ (b) Let v be a discrete valuation on K := FracR with valuation ring R = v; without
loss of generality, we may assume that v is Z-valued. If a ⊂ R is a nonzero ideal,
and an element x ∈ a is chosen with minimal v(x), then a= (x), showing that R is a
PID. If R were a field, then mv = 0 and hence v(x) = 0 for all x ∈ R, contradicting
that the value group of v is nonzero. Finally, if S is a ring with R ⊂ S ⊂ K, then
since R has a uniformizer, the set v(S) is of the form [n,∞) for some (unique) n =
infv(S) ∈ Z≤0 ∪{−∞}. If n = 0, then S ⊂ R. If n ≤ −1, then, since S is a ring,
we must have n = −∞. In this case, given any x ∈ K×, there is an s ∈ S such that
xs−1 ∈ R, which implies x ∈ S; therefore, S = K.

(b) ⇒ (c) In light of Theorem/Definition 7.1.5(d), it only remains to show that R is local.
Suppose contrarily that there are maximal ideals m,n⊂ R and an element x ∈m∖n.
Then we claim that R ⊊ R[x−1]⊊ K = FracR, a contradiction. The first containment
follows from x ∈ m, and the second follows from the fact that n is nonzero and if
0 ̸= y ∈ n, then y−1 /∈ R[x−1] (check!).

2This is Corollary 1.5.4(c).
3If (R,m,k) is a nonzero Noetherian local domain that is not a field and every nonzero ideal in R is of the

form mn for some integer n ≥ 0, then this integer is unique. Indeed, if there are integer n ≥ 0 and k ≥ 1 such
that mn = mn+k, then mn = mn+1 = · · · = mn+k and so by Nakayama’s Lemma (Corollary 1.5.3) we conclude
that mn = 0. If n = 0, this contradicts our assumption that R is nonzero; if n ≥ 1, then m =

√
mn =

√
0 = 0,

contradicting our assumption that R is not a field.
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(c) ⇒ (d) Using Theorem/Definition 7.1.5, we have to show that a Noetherian valuation ring
is a PID; for this if a ⊂ R is any ideal and we pick an integer n ≥ 0 and generators
x1, . . . ,xn ∈ a of a, then by the total ordering of ideals, there is a k with 1 ≤ k ≤ n
such that (xk) contains all (x1), . . . ,(xn),and then a= (xk).

(d) ⇒ (e) A PID is a UFD (Corollary 1.4.4). If we take a generator π of the maximal ideal
m ⊂ R, then 0 ̸= π is irreducible. If x ∈ R∖R×, then by locality x ∈ m = (π) and
hence π | x; this shows that π is the unique irreducible element up to associates.

(e) ⇒ (a) Let π be an irreducible element. Then for each nonzero x ∈ R, there is a unique
integer n = n(x)≥ 0 and unit u ∈ R× such that x = uπn. The map x 7→ n(x) extends
to a discrete valuation on FracR with valuation ring R.

Step 2. Next, we show that (a)-(e) imply (h) and (i).

(h) If π is a uniformizer for some discrete valuation v, then it is irreducible, and hence
a generator of the maximal ideal by (e). If m= (π) and π ∈m2 = (π2), then since R
is a domain, we would conclude that π is a unit, which is a contradiction. Finally, if
π ∈m∖m2 and v is a discrete valuation on K = FracR with valuation ring R, then
we may pick a uniformizer ϖ for v. By what we have already shown, ϖ is the unique
irreducible in R up to associates and is a generator of m. In the UFD R, we can
factor π uniquely as π = uϖn for a unit u ∈ R× and integer n ≥ 0; then π ∈m∖m2

implies that n = 1, and hence π is also a uniformizer for v. Then we conclude that,
in fact, for any x ∈ K× where K = FracR, we can uniquely write x = uπn for a
unit u ∈ R× and n ∈ Z, so certainly K = R[π−1]. That the (normalized) discrete
valuation is uniquely determined is clear, since we have characterized uniformizers
with respect to any discrete valuation as generators of m or elements of m∖m2.

(i) We have shown in (a)-(e) and (h) that every nonzero ideal in R is of the form mn for
some n ≥ 1, any the only prime ideal of this form is m.

Step 3. Now we finish the proof.

(f1) ⇒ (f2) By Corollary 1.5.5, we have
⋂

n≥0m
n = 0.4 In particular, if a ⊂ R is a nonzero

proper ideal, then there is a unique integer n ≥ 1 such that a ⊂ mn but a ̸⊂ mn+1.
Fix an x∈ a∖mn+1. Write m= (π) and use a⊂mn to write x= uπn for some u∈R.
Since x /∈mn+1, we must have u /∈m, so u is a unit. Then mn = (πn) = (x)⊂ a.

(f2) ⇒ (f1) By uniqueness, there is a π ∈m∖m2; then there is a unique integer n ≥ 0 such that
(π) =mn, and we must have n = 1.

Clearly, (d) implies (f1), and (f1) and (f2) together imply (d). Next, (a)-(e) imply (f3)
by combining Corollary 7.1.6(c) with the already proven implication (a) ⇒ (i) in Step 2.
Hence the implication (f1)-(f2) ⇒ (f4) is also clear, as is the implication (d) ⇒ (g). The
next few implications then finish the proof.

(f3) ⇒ (f1) First note that (f3) ⇒ (i).

(f4) ⇒ (f2)

(g) ⇒ (f2)

■

4In the present case, this can also be deduced very simply: if m = (π) and 0 ̸= x ∈ Km, then for each integer
n ≥ 0 there is an xn ∈ R such that x = xnπn. Then xn = xn+1π for each n ≥ 0; the ascending chain (x0)⊂ (x1)⊂ ·· ·
stabilizes by the Noetherian condition to give us the contradiction π ∈ R×.
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7.2 Invertibility of Fractional Ideals
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7.3 Dedekind Domains
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7.4 Extensions of Dedekind Domains

Theorem 7.4.1. Let R be a domain with fraction field K. Let L/K be a finite extension. If
either

(a) R is Noetherian and normal and L/K is separable, or
(b) R is a finitely generated algebra over a field,

then the integral closure S := ClL(R) of R in L is a finitely generated R-module.

Proof 1 of (a). For (a), by the algebraicity of L/K it is easy to see that every K-basis of L can
be rescaled by elements of R to lie in S; let v1, . . . ,vn ∈ S be one such basis. Since L/K is
separable, the trace pairing (x,y) 7→ TrL

K(xy) is nondegenerate (by Theorems 5.3.4[TODO] and
5.4.1(g)). Using this pairing we find the dual basis v∗1, . . . ,v

∗
n ∈ L with TrL

K(v
∗
i v j) = δi j. Write

an x ∈ S as x = ∑i xiv∗i , then for each i, the inclusion xvi ∈ S implies that xi = TrL
K(xvi) ∈ R by

Lemma 4.1.10(b) by taking a= (1), combined with Theorem 10.3.5(b). Therefore, S ⊂ ∑ j Rv∗j ;
we finish by the Noetherian hypothesis. ■

Proof 2 of (a). Replacing L by its Galois closure (and using that R is Noetherian), we may
assume that L/K is finite Galois with Galois group G := Gal(L/K). As in the first proof, let
v1, . . . ,vn ∈ S be an a basis of L/K; and let D be the discriminant with respect to this basis (Def-
inition 10.3.6), where 0 ̸= D by separability as before. Again by Lemma 4.1.10 and Theorem
10.3.5(b), we have D ∈ R. If x ∈ S is x = ∑ j x jv j for some x j ∈ K, then we’ll show that Dx j ∈ R
for each j. Indeed, by applying σi ∈ G we get σix = ∑ j x jσiv j. By Cramer’s rule, we can write
x j = y j/δ for some y j ∈ S, where δ := det

(
σiv j

)
i, j and D = δ 2 (by Theorem 10.3.5(a) and

Definition 10.3.6); clearly also δ ∈ S. Then Dx j = y jδ ∈ ClK(R) = R. In fact, this shows that
we have Dx2

j ∈ R. ■

Proof of (b). By Noether normalization (Theorem 6.1.1), R is integral over some polynomial
k[z1, . . . ,zr], so by transitivity of integrality and algebraicity of K over k(z1, . . . ,zr) we may as-
sume that R = k[z1, . . . ,zr] is polynomial and so K = k(z1, . . . ,zr). Since R is Noetherian, we
can replace L by its normal closure over K (say the splitting field in some algebraic closure
of L of the minimal polynomials over K of some generating set of L as a field extension of
K) to assume that L/K is normal. Let I := LAut(L/K), so that L/I is Galois and I/K is purely
inseparable (see [11, Theorem 4.23] if needed). If we show that T := ClI(R) is a finitely gen-
erated R-module, then it is Noetherian and is normal since I = FracT , so by (a) we would have
that S = ClL(T ) would be a finitely generated T -module, so we would be done by transitiv-
ity of module-finiteness. Therefore, we can suppose by replacing L by I that L/K is purely
inseparable. If L = K (e.g. if charK = 0), this is trivial; else assume that p := chark > 0.
Then for some power q of p, the field L is generated by qth roots of finitely many rational
functions. Extending L further by adjoining qth roots of their coefficients, we may assume that
L = k′(z1/q

1 , . . . ,z1/q
r ) where k′ is obtained from k by adjoining the qth roots of the coefficients.

Then S = ClL(R) = k′[z1/q
1 , . . . ,z1/q

r ] since this is ring is integral over R and is normal in its
quotient field L; visibly, S and is module-finite over R. ■

Theorem 7.4.2 (Ramification Formula). Let R be a Dedekind domain with fraction field K. Let
L/K be a finite extension and S := ClL(R) such that S is a f.g. R-module (e.g. in the hypotheses
of Theorem 7.4.1). Then:
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(a) The ring S is also a Dedekind domain.
(b) If n := [L : K] and p ⊂ R is a prime and pS = ∏iP

ei
i , and fi := [κ(Pi) : κ(p)], then

∑
n
i=1 ei fi = n.

(c) If L/K is Galois and for each i the extensions κ(Pi)/κ(p) are separable, then all the
ei = |IPi| are all equal. Further, all the fi are equal too, so if there are r distinct primes,
then this formula reduces to e f r = n.

Proof. For (a), ring S is Noetherian since it is a f.g. R-module with R Noetherian; it is nor-
mal because of idempotence and L = FracS; it is of dimension 1 by Corollary 4.2.6(a), so S
is Dedekind by Theorem ??(a)(1). For (b), By Weak Approximation (Theorem ??(i)) we have
S/pS ∼= ∏i S/Pei

i . Since each PiSPi is principal, say (qi), by Theorem ??(a)(3), we get iso-
morphisms q j

i : S/Pi →∼ P
j
i /P

j+1
i for each j ≥ 0; this shows that ∑

n
i=1 ei fi = dimκ(p)(S/pS).

On the other hand, let x1, . . . ,xr ∈ S reduce to a κ(p)-basis of S/pS. Then the xi also reduce
to spanning set of Sp/pSp over κ(p), and so by Lemma 1.5.3(b) the elements xi generate Sp
over Rp and hence certainly span L over K. If they are linearly dependent, say ∑ j a jx j = 0 with
a j ∈ K not all zero, then multiplying by a suitable power of the generator of pRp we can assume
that the ai are all in Rp but not all in pRp. Reducing mod pRp, we get a nontrivial dependence
relation over κ(p), which is not possible. This shows that x1, . . . ,xr form a basis of L/K and
hence n := [L : K] = r := dimκ(p)(S/pS). ■

In fact, more generally we have:

Theorem 7.4.3. Let R be a Noetherian one-dimensional domain with fraction field K. Let L/K
be a finite extension and let S := ClL(R). Then S is a Dedekind domain.

In this case, we only have the inequality [L : K]> ∑P|p eP fP.
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8.1 Projective, Injective, and Flat Modules

For this chapter only, we do not require that rings be commutative, and work carefully with
left- and right- modules over possibly noncommutative rings, although (a) the whole setup can
more-or-less be carried out in any suitable abelian category, and (b) the reader will not lose
much by focusing on the commutative case on the first pass. For a (possibly noncommutative)
ring R, we let R-Mod denote the category of left R-modules (i.e. (R,Z)-bimodules), and let
Mod-R denote the category of right R-modules (i.e. (Z,R)-bimodules). Let Ab = Z-Mod be
the category of abelian groups. The first key observation here is

Lemma 8.1.1 (The Definitive Tensor-Hom Adjunction). Let A,B,C be rings. Let X be an
(A,B)-bimodule, Y be a (B,C)-bimodule, and Z be an (A,C)-bimodule. There are isomor-
phisms of abelian groups

Hom(A,B)(X ,Hom(Z,C)(Y,Z))∼= Hom(A,C)(X ⊗B Y,Z)∼= Hom(B,C)(Y,Hom(A,Z)(X ,Z)).

These isomorphisms are natural in A,B,C,X ,Y, and Z.

Proof. Let ϕ : X → Hom(Z,C)(Y,Z) be an (A,B)-bimodule homomorphism. Consider the map
X ×Y → Z given by (x,y) 7→ ϕ(x)(y). This is B-balanced, and so descends to a map ϕ̃ :
X ⊗B Y → Z which is easily seen to be an (A,C)-bimodule homomorphism. The resulting map
Hom(A,B)(X ,Hom(Z,C)(Y,Z))→ Hom(A,C)(X ⊗B Y,Z) given by ϕ 7→ ϕ̃ is the required isomor-
phism. The second part is similar, and the naturality statement is clear from the proof; the
details are left to the reader. ■

A ring homomorphism f : R → S makes S an (R,R)-bimodule and gives rise to three
functors:

(a) the extension-of-scalars functor f ∗ : R-Mod→ S-Mod given by M 7→ S⊗R M,
(b) the restriction-of-scalars functor f∗ : S-Mod→ R-Mod,
(c) the dualizing-of-scalars functor f ! : R-Mod→ S-Mod given by M 7→ HomR(S,M), with

S-module structure given by (s ·ϕ)(t) := ϕ(ts) for s, t ∈ S and ϕ ′in f !M.

Corollary 8.1.2. If f : R → S is a ring homomorphism, then f ∗ ⊣ f∗ ⊣ f !. In particular, f ∗ is
right-exact, f∗ is exact, and f ! is left-exact.

Proof. If M is a left R-module and N a left S-module, then there are natural abelian group
isomorphisms

HomS( f ∗M,N) = HomS(S⊗R M,N)∼= HomR(M,HomS(S,N))∼= HomR(M, f∗N),

where in the second step we have applied the second of the two isomorphisms in Lemma 8.1.1
applied to A = X = S,B = R,C = Z,Y = M and Z = N, and in the third step we have used that
HomS(S,N)∼= N as S-modules, whence HomS(S,N)∼= f∗N as R-modules. Similarly, there are
natural abelian group isomorphisms

HomR( f∗N,M)∼= HomR(S⊗S N,M)∼= HomS(N,HomR(S,M)) = HomS(N, f !M),

where in the first step we have used N ∼= S⊗S N as S-modules, and in the second step the second
isomorphism from Lemma 8.1.1 applied to A = R,B = X = S,C = Z,Y = N and Z = M. ■
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Corollary 8.1.3. Let R be a ring, and T be a left R-module.

(a) The functor HomR(T,−) : R-Mod→ Ab is right adjoint, and hence left exact.
(b) The functor HomR(−,T ) : R-Modop → Ab is right adjoint, and hence left-exact.
(c) The functor −⊗R T : Mod-R → Ab is left adjoint, and hence right-exact.

Similarly, if T is a right R-module, then:

(d) The functor T ⊗R − : R-Mod→ Ab is left-adjoint, and hence right-exact.

Proof.

(a) Let M be a (left) Z-module and N a left R-module; then Lemma 8.1.1 applied to A =
R,B =C = Z,X = T,Y = M,Z = N gives us the required natural isomorphism

HomR(T ⊗Z M,N)∼= HomZ(M,HomR(T,N)).

(b) Let M,N be as in (a); then Lemma 8.1.1 applied to A = R,B =C = Z,X = N,Y = M,Z =
T gives us the required natural isomorphisms

HomZ(M,HomR(N,T ))∼= HomR(N,HomZ(M,T ))∼= HomR-Modop(HomZ(M,T ),N).

(c) Let M be a right R-module and N a left Z-module; then Lemma 8.1.1 applied to A =C =
Z,B = R,X = M,Y = T,Z = N gives us the required natural isomorphisms

HomZ(M⊗R T,N)∼= Hom(Z,R)(M,HomZ(T,N)).

(d) Similar and left to the reader.

■

This leads us directly to

Proposition/Definition 8.1.4 (Projective Modules). Let R be a ring, and P be a left R-module.
The following conditions are equivalent:

(a) The functor HomR(P,−) : R-Mod→ Ab is exact.
(b) If M → N → 0 is exact in R-Mod, then so is HomR(P,M)→ HomR(P,N)→ 0 in Ab.

(c) If M →N → 0 is exact in R-Mod and P
f−→N a morphism, then there exists a lift f̃ : P→M

of f , i.e. there is a dashed arrow making the following diagram commutative:

P

M N 0.

f̃
f

(d) Every short exact sequence 0 → L → M → P → 0 in R-Mod splits. (See Exercise 8.1.)
(e) P is the direct summand of a free module.

The module P is said to be projective if it satisfies these equivalent conditions.

Proof. In light of Corollary 8.1.3(a) and the fact that every module is the quotient of a free
module, the implications (a) ⇔ (b) ⇔ (c) ⇒ (d) ⇒ (e) are clear. Therefore, it suffices to show
that (e) ⇒ (c), which follows from observations that a free module is projective, and given a
family Pi of modules, the direct sum

⊕
i Pi is projective iff each Pi is. ■
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The following consequences of the definition are clear.

Corollary 8.1.5.

(a) If R is a (commutative) PID, then every projective module over R is free.1

(b) A finitely generated module is projective iff it is a direct summand of a finitely generated
free module.

(c) Every module is a quotient of a projective module, i.e. for any ring R, the category R-Mod
has enough projectives. In particular, every module admits a projective (in fact a free)
resolution.

(d) Suppose that R is commutative, and that {Pj} j is a finite family of projective modules.
Then the tensor product

⊗
j Pj is also projective.

The dual definition is

Proposition/Definition 8.1.6 (Injective Modules). Let R be a ring and Q a left R-module. The
following conditions are equivalent:

(a) The functor HomR(−,Q) : R-Mod→ Ab is exact.
(b) If 0 → L → M is exact in R-Mod, then so is HomR(M,Q)→ HomR(L,Q)→ 0 in Ab.

(c) If 0 → L → M is exact in R-Mod and L
f−→ Q a morphism, then there exists an extension

f̃ : M → Q of f , i.e. there is a dashed arrow making the following diagram commutative:

0 L M

Q.

f
f̃

(d) Every short exact sequence 0 → Q → M → N → 0 in R-Mod splits.
(e) (Baer) The condition in (c) for the special case where M = R, so L = a ⊂ R is a (left)

ideal.

Proof. Thanks to Corollary 8.1.3(b), the implications (a) ⇔ (b) ⇔ (c) ⇒ (d), (e) are clear.

(d) ⇒ (c) Given a solid diagram as in (c), complete it to a pushout diagram

0 L M

0 Q P.

f

Since the map L → M is injective, so is the map Q → P (Exercise 8.2). Since by assump-
tion the sequence 0 → Q → P → P/Q → 0 splits, we have a splitting map p : P → Q;
then the composition M → P

p−→ Q gives the extension f̃ . Alternatively, use Proposition
8.1.9(b) to find an injective M such that Q ↪→ M; then since 0 → Q → M → M/Q → 0

1Recall, if needed, that any submodule M of a free module F over a PID is free of rank at most that of F .
This is well-known in the finitely generated case, but we do not need the hypothesis of finite generation. Indeed,
let R be a PID and F be a free module with free basis {ei}i∈I . Let pi : F → R denote the projection onto the ith

coordinate. Well-order I, and for each i, let Fi ⊂ F be the free module generated by the e j with j ≤ i, so that for
each i we have Fi =

⋂
j>i ker p j and ker pi =

⋃
j<i Fj. Now suppose that M ⊂ F is a submodule, and for each i, let

Mi := M ∩Fi. Then pi(Mi) ⊂ R has the form Rai for some ai ∈ R; pick, for each i, an element mi ∈ Mi such that
pi(mi) = ai, ensuring that mi = 0 if ai = 0. It is then easy to see via transfinite induction on I that the nonzero mi
constitute a free basis for M.
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splits, we see that M ∼= Q⊕M/Q ∼= Q×M/Q, so we are done by the observation that
given a family Qi of modules, the direct product ∏i Qi is injective iff each Qi is.

(e) ⇒ (c) Given a solid diagram as in (c), consider the partially ordered set

 = {(L′, f ′) : L ⊂ L′ ⊂ M, f ′ : L′ → Q such that f ′|L = f}.

By Zorn’s Lemma, this has a maximal element, say (L0, f0). Suppose for the sake of
contradiction that L0 ⊊ M, and pick an m ∈ M∖L0. Let a := (L0 :R m) = {r ∈ R : rm ∈
L0}, and define a map ϕ : a → Q by ϕ(r) = f0(rm). By assumption, there is a lift
ϕ̃ : R → Q of ϕ to R. Define the map f1 : L0 +Rm → Q by f1(ℓ+ rm) = f0(ℓ)+ ϕ̃(r);
this is well-defined because if ℓ+ rm = ℓ′+ r′m, then ℓ− ℓ′ = (r − r′)m ∈ L0, whence
r− r′ ∈ a and so

ϕ̃(r− r′) = ϕ(r− r′) = f0((r− r′)m) = f0(ℓ− ℓ′).

From this, we see that (L0, f0) < (L0 +Rm, f1) in , contradicting the maximality of
(L0, f0).

■

Let us now give some examples. For this, we need the following comparison lemma.

Lemma 8.1.7. Let f : R → S be a ring homomorphism.

(a) If P is a projective R-module, then f ∗P = S⊗R M is a projective S-module.
(b) If Q is an injective R-module, then f !Q = HomR(S,Q) is an injective S-module.

Proof.

(a) The functor HomS( f ∗P,−) ∼= HomR(P, f∗−) is a composition of two exact functors,
where HomR(P,−) is exact because P is projective and the fact that f∗ is exact was
observed in Corollary 8.1.2.

(b) Identical to (a), using HomS(−, f !Q)∼= HomR( f∗−,Q) instead.

■

In all, it suffices to exhibit injective modules over one ring, say R = Z. We do a little
better.

Definition 8.1.8. Given a ring R and an R-module Q, we say that Q is divisible if for every
nonzerodivisor2 r ∈ R, we have rQ = Q, i.e. given any q ∈ Q, there is a q′ ∈ Q such that
q = rq′.

Proposition 8.1.9 (Enough Injectives in R-Mod). Let R be a ring.

(a) Every injective R-module is divisible, and the converse holds if the R is a (commutative)
PID.

(b) Every module is a submodule of an injective module, i.e. the category R-Mod has enough
injectives. In particular, every module admits an injective resolution.

Proof.

2By this, we mean that if ar = 0 for a ∈ R, then a = 0. An r not satisfying this condition is called a right
zerodivisor. Of course, over commutative rings, it is clear what a nonzerodivisor is.
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(a) Let Q be an injective R-module, q ∈ Q and r ∈ R a nonzerodivisor. Define the R-module
homomorphism f : (r) → Q by f (ar) = aq for a ∈ R; this is well-defined because if
ar = a′r, then (a− a′)r = 0 and hence a = a′ because r is a nonzerodivisor. Since Q is
injective, there is an extension f̃ : R → Q of f . Setting q′ := f̃ (1), we conclude that

q = f (r) = f̃ (r) = r f̃ (1) = rq′

as needed. Now suppose that R is a (commutative) PID, and Q a divisible R-module; to
show that Q is injective, we use Baer’s criterion (Proposition/Definition 8.1.6(e)). As-
sume that there is a morphism f : a→ Q. Since R is a PID, a = (r) for some r ∈ R. If
r = 0, then f̃ = 0 works; else r is a nonzerodivisor, so by divisibility there is a q′ ∈ Q
such that f (r) = rq′. Then the map f̃ : R → Q by f̃ (s) = sq′ is an extension of f .

(b) First we show the result for R = Z, so R-Mod= Ab. Let G be any abelian group. Pick a
short exact sequence 0 → K → F → G → 0 with F free so that F/K ∼= G. The composite
F ↪→Q⊗Z F ↠ (Q⊗Z F)/K has kernel K, and hence gives us an embedding G∼=F/K ↪→
(Q⊗Z F)/K, where the last group is divisible and hence injective thanks to (a).
Now suppose that R is any ring, and let f : Z→R be the natural homomorphism. Suppose
that M is any R-module. By the previous case, we can find an injective Z-module Q such
that f∗M ↪→Q. Since the left adjoint f∗ is faithful, it follows that the unit map M → f ! f∗M
of the adjunction f∗ ⊣ f ! is a monomorphism (check!); then we have the composition of
monomorphisms

M ↪→ f ! f∗M ↪→ f !Q,

where the second step uses that f ! is left exact (Corollary 8.1.2). Since f !Q is an injective
R-module thanks to Lemma 8.1.7(b), we are done.

■

The final notion that we will need is that of a flat R-module.

Definition 8.1.10.

[Faithfully exact functors by Ishikawa]
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8.2 Derived Functors: Tor and Ext

Example 8.2.1 (Lie Algebra (Co)homology).

Example 8.2.2 (Hochschild (Co)homology).
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8.3 Exercises

Exercise 8.1. Let A be any abelian category; think A = R-Mod for some ring R if needed. Let

0 → M′ f−→ M
g−→ M′′ → 0 be a short exact sequence in A. Show that the following conditions

are equivalent:

(a) The monomorphism f splits, i.e. there is a morphism p : M → M′ such that p f = 1M′ .
(b) The epimorphism g splits, i.e. there is a morphism i : M′′ → M such that gi = 1M′′ .
(c) There is an isomorphism of short exact sequences

M

0 M′ M′′ 0.

M′⊕M′′

∼

gf

ι π

(d) There is a morphism of short exact sequences as in (c), i.e. the condition in (c), except
we do not necessarily require the map M → M′⊕M′′ to be an isomorphism a priori.

When these equivalent conditions are satisfied, the sequence 0 → M′ → M → M′′ → 0 is called
split.

Exercise 8.2. Given a ring R and a diagram

L M

Q

g

f

in R-Mod, explicitly identify the colimit P of this diagram (called the pushout) as a quotient of
M⊕Q. Let f ′ : M → P and g′ : Q → P denote the maps that complete the pushout square, i.e.

L M

Q P.

g

f f ′
g′

Show that if f (resp. g) is a monomorphism, then so is f ′ (resp. g′), and the same holds with
the word “monomorphism” replaced by “epimorphism”.

Exercise 8.3. Show that the following conditions on a commutative ring R are equivalent:

(a) R is a reduced Artinian ring.
(b) R is a finite direct product of fields.
(c) Every R-module is projective.
(d) Every R-module is injective.
(e) Every short exact sequence of modules over R splits.
(f) Every R-module is semisimple.
(g) The global dimension gdR of R is zero.
(h) R is semisimple as a module over itself.
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9.1 Unique Factorization II

Theorem 9.1.1 (Auslander-Buchsbaum). A regular local ring is a UFD.

Theorem 9.1.2. If R is a regular UFD, then so are R[X ] and R[[X ]].

Corollary 9.1.3. If K is a field, then for any n ≥ 1 the ring K[[X1, . . . ,Xn]] is a UFD.

Proof. Clear from Theorem 9.1.2 by induction, since K is trivially a regular UFD. ■

Theorem 9.1.4. Let R be a Noetherian ring. Then dimR[X ] = dimR[[X ]] = dimR+1.

Corollary 9.1.5. Let R be a Noetherian ring, and m a maximal ideal. If the completion R̂m is a
UFD, then so is R.
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10.1 Length and the Jordan-Hölder Theorem

In this section, the base ring R is not necessarily commutative, and the word “R-module” refers
to a left R-module. Much of what follows can be generalized to arbitrary abelian categories
without much more effort.

Definition 10.1.1. Let R be a ring and M be an R-module.

(a) We say that M is simple if it is nonzero and has no nontrivial proper submodules.
(b) A finite chain of submodules M = M0 ⊋ M1 ⊋ · · ·⊋ Mn = 0 is called a composition series

of length n ≥ 1 if each successive quotient Mi/Mi+1 for i = 0, . . . ,n− 1 is simple. The
successive quotients Mi/Mi+1 are called the composition factors of the series.

(c) The length ℓR(M) ∈ N∪{∞} is the infimum of the lengths of all composition series of
M.

When R is commutative, every simple module is isomorphic to a field quotient of R.
In general, a module has length 0 iff it is trivial, length 1 iff it is simple, and finite length iff it
admits a finite composition series, so, for instance, ℓZ(Z) =∞. The notion of length generalizes
that of dimension1: if R = k is a field, then ℓk(M) = dimk M.

Lemma 10.1.2. Let R be a ring and M be a nonzero R-module. If M is finitely generated, then
M has a maximal proper submodule, and hence a simple quotient.

Proof. The collection A of all proper submodules of M is nonempty since 0 ∈A. To invoke
Zorn’s Lemma, it remains to show that if (Nα) is a chain in A, then

⋃
α Nα is proper. This

follows from the fact that M is finitely generated: if
⋃

α Nα = M, then finitely many generators
of M lie in some Nα thanks to the total ordering. ■

Counterexample 10.1.3. Lemma 10.1.2 is false if we do not assume M to be finitely generated:
take R = Z and M = Q. The only simple Z-modules are finite fields of prime order, but every
Z-module homomorphism from Q to a finite field is zero (Exercise 10.1). This gives us another
proof of the well-known fact that Q is not a finitely generated abelian group.

Lemma 10.1.4. Let M = M0 ⊋ M1 ⊋ · · ·⊋ Mn = 0 be a composition series of an R-module M,
and let N ⊂ M be a submodule. Then:

(a) Intersection with N gives a sequence of submodules of N as

N = M0 ∩N ⊃ M1 ∩N ⊃ ·· · ⊃ Mn ∩N = 0.

This sequence becomes a composition series for N after eliminating repetitions.
(b) Taking quotients by N gives a sequence of submodules of M/N as

M/N = M0/N ⊃ (M1 +N)/N ⊃ ·· · ⊃ (Mn +N)/N = 0.

This sequence becomes a composition series for M/N after eliminating repetitions.

In particular, for any submodule N ⊂ M we have max{ℓR(N), ℓR(M/N)} ≤ ℓR(M).

Proof.

1At least in a naive way that conflates all infinite cardinalities.
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(a) For each i, the map Mi ∩N ↪→ Mi ↠ Mi/Mi+1 has kernel Mi+1 ∩N giving us an injection

(Mi ∩N)/(Mi+1 ∩N) ↪→ Mi/Mi+1.

(b) Similarly, for each i, the composite map

Mi ↪→ Mi +N ↠
Mi +N

Mi+1 +N
∼=

(Mi +N)/N
(Mi+1 +N)/N

is surjective and its kernel contains Mi+1, giving us a surjection from Mi/Mi+1 to this last
module.

■

The key result is

Theorem/Definition 10.1.5 (Jordan-Hölder). Let R be a ring and M an R-module. If ℓR(M)<
∞, then the lengths and the multisets of factors of any two composition series of M are the
same, so that ℓR(M) is the length of any composition series of M. The multiset of composition
factors that appear in any composition series of M is called the multiset of simple factors of M.

Proof. We induct on n := ℓR(M). If n = 0, then M = 0 and the result is trivial; hence assume
n ≥ 1. Let M = M0 ⊋ · · ·⊋ Mn = 0 be a composition series of length n, and let M = M′

0 ⊋ · · ·⊋
M′

m = 0 be another, for some m ≥ 0. We have to show that m = n and that the composition
factors in both are the same. If m = 0, then M = 0 and n = 0, a contradiction; therefore,
m ≥ 1. If M1 = M′

1, then we are done by induction, since ℓR(M1) ≤ n− 1; therefore, assume
that M1 ̸= M′

1. Since both M/M1 and M/M′
1 are simple, we must have M1 +M′

1 = M and that
N := M1 ∩M′

1 ⊊ M1,M′
1. By Lemma 10.1.4, N has finite length; pick any finite composition

series N = N0 ⊋ N1 ⊋ · · ·⊋ Nr = 0 for it. Then

M1

N
=

M1

M1 ∩M′
1

∼=
M1 +M′

1
M′

1
=

M
M′

1
and similarly

M′
1

N
∼=

M
M1

.

Therefore, we get two new composition series for M that look like

M ⊋ M1 ⊋ N ⊋ N1 ⊋ · · ·⊋ Nr = 0 and M ⊋ M′
1 ⊋ N ⊋ N1 ⊋ · · ·⊋ Nr = 0

that differ only at the first step; these trivially have the same length and same composition
factors. The same observation above (about when the first submodule in two composition series
is the same) tells us that the first of these has the same length and the same factors as our original
series; in particular, r = n−2. This in turn tells us, by looking at the second composition series,
that ℓR(M′

1) ≤ n− 1, and so by induction the composition series M′
1 ⊋ M′

2 ⊋ · · · ⊋ M′
m for it

must have length n−1, giving us m= n. That the multisets of composition factors agree follows
immediately (check!). ■

Corollary 10.1.6. Let R be a ring.

(a) If 0 → M′ → M → M′′ → 0 is a short exact sequence of R-modules, then

ℓR(M) = ℓR(M′)+ ℓR(M′′).

If ℓR(M) < ∞, then the multiset of simple factors of M is the union of those of M′ and
M′′.
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(b) If M is an R-module of finite length ℓR(M), then every proper chain of submodules of M
has length at most ℓR(M) and can be refined to a composition series.

Proof.

(a) First observe that the LHS is finite iff the RHS is: if M′ and M′′ = M/M′ have a finite
composition series, then juxtaposing them gives a finite composition series for M; con-
versely, if M has a finite composition series, then so do M′ and M′′ by Lemma 10.1.4.
The rest of the result follows from juxtaposition of two composition series.

(b) The second claim is clear since every subquotient of M has finite length by Lemma
10.1.4; then the first claim follows from Theorem 10.1.5.

■

The notion of simple modules can be generalized a little to that of semisimple mod-
ules.

Proposition/Definition 10.1.7. The following conditions on an R-module M are equivalent:

(a) M is the direct sum of some family of simple modules.
(b) M is the sum of some family of simple modules.
(c) Every short exact sequence 0 → M′ → M → M′′ → 0 splits.

A module satisfying these equivalent properties is said to be semisimple or completely re-
ducible.

Proof. The implication (a) ⇒ (b) is clear.

(b) ⇒ (a) Let M = ∑i∈I Mi with each Mi simple. We claim that there is a subset I′ ⊂ I such that
M =

⊕
i∈I′ Mi. Indeed, suppose without loss of generality that each Mi ̸= 0 and consider

the collection  of subsets J of I such that the sum ∑ j∈J M j is a direct sum. This is
nonempty since /0 ∈ , and it is easy to see that Zorn’s Lemma applies to , whence we
get some maximal subset I′ ∈ . Let N :=

⊕
i∈I′ Mi = ∑i∈I′ Mi ⊂ M. For each j ∈ I, if

M j ∩N = 0, then I′∪{ j} is a strictly larger element of ; therefore, M j ∩N ̸= 0, whence
by simplicity of M j we conclude that M j ⊂ N. It follows then that M = ∑ j∈I M j ⊂ N,
whence M = N.

(b) ⇒ (c) Let M′ ↪→ M be a submodule of M, and consider the collection

N = {N ⊂ M : N is the sum of simple modules and N ∩M′ = 0}

of submodules of M. Using Zorn’s Lemma, pick a maximal element N of N; we claim
that M′⊕N →∼ M, giving a splitting of M′ ↪→ M. Indeed, M′∩N = 0 by construction, and
if M′+N ⊊ M, then there is a simple module S in the family given that is not contained in
M′+N. From the simplicity of S we conclude that S∩ (M′+N) = 0, whence S+N ⊋ N
is a bigger element of N, contradicting our choice of N.

(c) ⇒ (b) First note that the condition (c) passes to subquotients. Now, let M′ ⊂ M be the sum of
all simple submodules of M. If M′ ⊊ M, choose a splitting of M′ ↪→ M to produce a com-
plementary submodule M′′ ⊂ M, and pick a nonzero m ∈ M′′. Find by Lemma 10.1.2 a
maximal proper submodule P ⊂ Rm. Since (c) applies to Rm, pick a complementary sub-
module S ⊂ Rm to P in Rm; then S ∼= Rm/P implies that S is simple and hence nonzero.
But then S ⊂ M′ by definition of M′, contradicting the fact that M′∩M′′ = 0.

■
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Semisimple modules are the basic objects of study in representation theory.
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10.2 Dependence Relations

In this section we develop the fundamentals of abstract dependence relations that serve as the
foundation for a lot of key concepts in commutative algebra and combinatorics.

Definition 10.2.1. Let S be a set. A closure operator on S is a map Cl : 2S → 2S that is

(a) extensive, i.e. X ⊂ ClX for all X ⊂ S,
(b) increasing, i.e. X ⊂ Y ⇒ ClX ⊂ ClY for all X ⊂ Y ⊂ S, and
(c) idempotent, i.e. ClClX = ClX for all X ⊂ S.

A closure operation Cl is said to

(d) be finitary, if for any X ⊂ S we have ClX =
⋃

X ′⊂X
|X ′|<∞

ClX ′.

(e) satisfy MacLane-Steinitz exchange if x ∈ X ⊂ S and y ∈ ClX ∖Cl(X ∖ {x}) together
imply that x ∈ Cl(X ∖{x}∪{y}),

Closure operators are ubiquitous in mathematics, with some examples being integral
closure, algebraic closure, separable closure, abelian closure, unramified closure, differential
closure, topological closure, graph closure, etc. Closure operators satisfying MacLane-Steinitz
exchange are called matroid closure operations; readers familiar with matroids will recognize
that the above conditions are reformulations of the matroid axioms.2

Definition 10.2.2. A dependence relation on a set S is a finitary closure operation satisfying
MacLane-Steinitz exchange, i.e. a map D : 2S → 2S satisfying (a)-(e). Given such a pair (S,D),
we say that a subset X ⊂ S is

(a) a spanning set if DX = S,
(b) independent if for all x ∈ X we have x /∈D(X ∖{x}), and
(c) a basis if it is both independent and a spanning set.

We say that (S,D) is of finite dependency if it admits a finite spanning set. Finally, we define
the fundamental set of the dependence relation to be D( /0).

Here we think of DX as the set of elements of S which are dependent on those in X .
We will show below that any two bases of S have the same cardinality; this cardinality is then
called the dependence of S. The classic example of this phenomenon is

Example 10.2.3 (Linear Dependence). Let V be a vector space over a field k. Then the map
⟨·⟩ : 2V → 2V taking a subset X ⊂V to its linear span ⟨X⟩ is a dependence relation on V , namely
the relation of linear dependence, often written LD. In this case, the fundamental set is {0}
and the dependence of (V,LD) is exactly dimk V .

Lemma 10.2.4. Let (S,D) be a set with a dependence relation. Then

2Usually, matroids are defined on finite sets because duality theory is an essential feature of finite matroids
that the above set of axioms do not provide in the infinite case. A recent workaround has been found by Bruhn
et al. ([12]), which replaces axiom (d) by the axiom that for any independent set X and any set Y , the collection
A of independent Z ⊂ S such that X ⊂ Z ⊂ X ∪Y has a maximal element. As the reader can verify, with this
replacement, the theory below proceeds with minimal changes–the only results below which essentially use axiom
(d) are Lemma 10.2.4(d) and Proposition/Definition 10.2.7(b) in the infinite case; notably, Theorem 10.2.5 goes
through, with the first line in the proof even easier. However, since the only matroids we will come across in this
course satisfy the above axioms (and we will hardly have any direct use for duality of infinite matroids), we will
restrict ourselves to looking at these only.
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(a) if X ,Y ⊂ S are subsets, then X ⊂DY ⇒DX ⊂DY ,
(b) if X ⊂ S is independent and y ∈ S∖DX , then X ∪{y} is independent,
(c) if X ⊂ S is any subset, then the following are equivalent:

(1) X is a basis,
(2) X is a minimal spanning set,
(3) X is a maximal independent set, and

(d) if (Xα) is a totally ordered collection of independent subsets, then
⋃

α Xα is also indepen-
dent.

Proof.

(a) We have X ⊂DY ⇒DX ⊂D2Y =DY .
(b) Let X ′ := X ∪{y}. We have to show that for all x ∈ X ′ that x /∈D(X ′∖{x}). This is clear

if x= y by hypothesis. If x∈X∩D(X ′∖{x}), then x∈D((X∖{x})∪{y})∖D(X∖{x})
implies by exchange that y ∈DX , again contrary to hypothesis.

(c) For (1) ⇒ (2), let X be a basis, so it is certainly spanning; if there were a proper spanning
subset X ′ ⊊ X , then picking an x ∈ X ∖X ′ would give x ∈ S = D(X ′) ⊂ D(X ∖ {x}),
contradicting the independence of X . For (2) ⇒ (1), suppose that X is a minimal spanning
set and that for some x∈X we have x∈D(X∖{x}). Then X ⊂D(X∖{x}) implies by (a)
that S=DX ⊂D(X∖{x}), so that X∖{x} is a proper subset that is also spanning, which
is a contradiction. To show (1) ⇒ (3), let X be a basis, so it is certainly independent; if
there were a proper independent superset X ′ ⊋ X , then picking an x ∈ X ′ ∖ X would
show x ∈ S = D(X) ⊂ D(X ′∖ {x}), contradicting the independence of X ′. For (3) ⇒
(1), suppose that X is a maximal independent set. If there is a y ∈ S∖DX , then by (b),
X ∪{y}⊋ X is still independent, which is a contradiction.

(d) Let X :=
⋃

α Xα . If there is an x ∈ X such that x ∈D(X ∖{x}), then, since D is finitary,
there is a finite subset X ′ ⊂ X ∖{x} such that x ∈DX ′. By the total ordering, there is an
α with X ′∪{x} ⊂ Xα , and then x ∈DX ′ ⊂D(Xα ∖ {x}) contradicts the independence
of Xα .

■

Theorem 10.2.5 (MacLane-Steinitz Exchange). Let (S,D) be a set with a dependence relation.
If X ,Y ⊂ S are subsets with X independent and Y spanning, then X can be completed to a basis
by borrowing elements from Y : there is a subset Y ′ ⊂ Y such that X ∩Y ′ = /0 and X ∪Y ′ is a
basis.

Proof. Let A be the collection of independent Z ⊂ S such that X ⊂ Z ⊂ X ∪Y ; then A is
nonempty because X ∈A. By Lemma 10.2.4(d) and Zorn’s Lemma, this has a maximal element
Z. We claim that Z is a basis; indeed, it is independent since Z ∈ A. If there is a y ∈ Y ∖
DZ, then by Lemma 10.2.4(b) we have Z ⊊ Z ∪ {y} ⊂ Y with Z ∪ {y} still independent, a
contradiction to maximality. Therefore, Y ⊂DZ so by Lemma 10.2.4(a) we have S =DY ⊂
DZ; therefore, Z is spanning as well. ■

Corollary 10.2.6. Let (S,D) be a set with a dependence relation.

(a) Every independent subset of S can be completed to a basis.
(b) Every spanning subset of S contains a basis.
(c) In particular, S admits a basis.

Proof.
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(a) Apply Theorem 10.2.5 with X the independent subset and Y = S.
(b) Apply Theorem 10.2.5 with X = /0 and Y the spanning subset.
(c) Apply (a) to X = /0 or (b) to Y = S.

■

Proposition/Definition 10.2.7. Let (S,D) be a set with a dependence relation.

(a) If X ,Y ⊂ S are subsets with X independent and Y a finite spanning set , then |X | ≤ |Y |.
In particular, any independent subset in a set with finite dependency is finite.

(b) Any two bases of S have the same cardinality.

The dependency of (S,D) is the cardinality of any basis and is denoted depS.

Proof.

(a) We will show: if X ,Y ⊂ S are subsets with X independent and Y a finite spanning set,
then |X | ≤ |Y | and there is a Y ′ ⊂Y of size |Y ′| ≤ |Y |−|X | such that X ∩Y ′ = /0 and X ∪Y ′

is a basis. First suppose that |X | itself is finite, and show the statement by induction on
|X |. When |X | = 0, then certainly |X | ≤ |Y | and by Corollary 10.2.6(b) there is a basis
Y ′ ⊂ Y . If |X | = n ≥ 1, say X = {x1, . . . ,xn}, then by applying the inductive hypothesis
to X ′ := X ∖ {xn}, we conclude that n− 1 ≤ |Y | and there is a subset Y ′

0 ⊂ Y disjoint
from X ′ of size |Y ′

0| ≤ |Y | − n+ 1 such that X ′ ∪Y ′
0 is a basis. If xn ∈ Y ′

0, then taking
Y ′ := Y ′

0 ∖{xn} suffices; else assume that xn /∈ Y ′
0. In this case, the set X ∪Y ′

0 is spanning
but not independent, since xn ∈ S =D(X ′∪Y ′

0) =D((X ∪Y ′
0)∖ {xn}) where X ′∪Y ′

0 =
(X∪Y ′

0)∖{xn} because xn /∈Y ′
0. Since X is independent and X∪Y ′

0 spanning, by Theorem
10.2.5, there is a Y ′ ⊂ Y ′

0 disjoint from X such that X ∪Y ′ is a basis, and necessarily
we must have Y ′ ⊊ Y ′

0. This shows 0 ≤ |Y ′| < |Y ′
0| ≤ |Y | − n + 1 ⇒ n ≤ |Y | and that

|Y ′| ≤ |Y |− n. The first part of the argument then shows that the assumption that |X | is
finite always holds: if |X | were infinite, then we may apply the above argument to any
subset X ′ ⊂ X of size greater than |Y | to obtain a contradiction.

(b) This follows immediately from (a) if S has finite dependency, so suppose now that S does
not have infinite dependency; then no basis of S can be finite. Let X and Y be bases of S.
For each y ∈Y , we have y ∈ S =DX =

⋃
X ′⊂X
|X ′|<∞

DX ′, so there is a finite Xy ⊂ X such that

y ∈ DXy. Then Y ⊂ D(
⋃

y∈Y Xy). If x ∈ X ∖
⋃

y∈Y Xy, then x ∈ S = DY ⊂ D(
⋃

y Xy) ⊂
D(X ∖{x}) contradicts the independence of X ; therefore, X =

⋃
y∈Y Xy. It follows that

|X |=

∣∣∣∣∣⋃
y∈Y

Xy

∣∣∣∣∣≤
∣∣∣∣∣∏y∈Y

Xy

∣∣∣∣∣≤ |Y ×N|= |Y |

where the last uses that Y is infinite. By symmetry, of course, |Y | ≤ |X | as well, so we
are done by the Cantor-Schröder-Bernstein Theorem.

■
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10.3 Trace, Norm, and Discriminant

Definition 10.3.1. Let R⊂ S be a finite extension of rings such that S is a finitely generated free
R-module. Given an element α ∈ S, define its trace (resp. norm), denoted TrS

R(α) (resp. NS
R(α))

to be the trace (resp. determinant) of the R-module endomorphism of S given by multiplication
by α .

Example 10.3.2. Finite field extensions K/k, or more generally finite-dimensional algebras
over fields, e.g. étale algebras, and rings of integers Z⊂K are primary examples (see Example
10.3.8). For instance, for R ⊂ C and z ∈ C we have TrC

R(z) = z+ z = 2Rez and NC
R(z) = zz =

|z|2.

Observation 10.3.3. Let R ⊂ S be a ring extension such that S is a finitely generated free
R-module of rank n ≥ 1.

(a) For any α,β ∈ S and λ ,µ ∈ R we have

TrS
R(λα +µβ ) = λ TrS

R(α)+µ TrS
R(β ),

NS
R(αβ ) = NS

R(α)NS
R(β ),

TrS
R(λ ) = nλ , and

NS
R(λ ) = λ

n.

(b) (Base Change) Suppose that R is an A-algebra for some ring A. Then if T is any other
A-algebra, then the ring extension R⊗A T ⊂ S⊗A T still satisfies the above condition, and
we have for any α ∈ S that

TrS⊗AT
R⊗AT (α ⊗1) = TrS

R(α)⊗1 and NS⊗AT
R⊗AT (α ⊗1) = NS

R(α)⊗1.

(c) (Transitivity) Let S ⊂ T be a further ring extension so that T is a finitely generated S-
module. Then T is also a finitely generated R-module, and we have further for any α ∈ T
that

TrT
R(α) = TrS

R TrT
S (α) and NT

R(α) = NS
R NT

S (α).

This last is a consequence of the following lemma about block determinants:

Lemma 10.3.4. Let R be any ring, n ≥ 1, and S ⊂ Matn R a (commutative, unitary) subring
of the n× n matrix ring over R. For any m ≥ 1 and matrix M ∈ Matm S ⊂ Matmn R, we have
detmn

R M = detnR detmS M.

Proof. We induct on m, with m = 1 being clear. Hence assume m ≥ 2, and write M as

M =

[
A b
c d

]
where A,b,c,d have dimensions n(m − 1)× n(m − 1), and n(m − 1)× n, and n × n(m − 1)
and n× n respectively. Since S is commutative, we have that c · dIS

m−1 = dc, and similarly
A ·dIS

m−1 = dA. Therefore, [
A b
c d

][
dIS

m−1 0
−c IS

1

]
=

[
dA−bc b

0 d

]
,
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so that taking detS gives detS M ·dm−1 = detS(dA−bc) ·d and hence taking detR gives

(detR detS M)(detR d)m−1 = (detR detS(dA−bC))(detR d) = (detR(dA−bc))(detR d).

On the other hand, taking detR = detmn
R directly gives

(detR M)(detR d)m−1 = (detR(dA−bc))(detR d).

Putting these together gives us

(detR detS M−detR M)(detR d)m−1 = 0.

If detR d is not a zero divisor in R, we are done; we can now either reduce to this case by working
in the “universal case” of polynomial rings over Z, or replace our base ring R by R[x] and use
dx := xIR

n +d instead. Then detR dx is a monic polynomial of degree n and the above holds as a
polynomial identity with Mx replacing M; in a polynomial ring, a monic polynomial is never a
zero divisor, and so we conclude that other factor is 0, and now specialize to x = 0. ■

Theorem 10.3.5. Let L/K be a finite field extension and let K be an algebraic closure of K.
Let Σ := HomK(L,K).

(a) For all α ∈ L we have

TrL
K(α) = [L : K]i ∑

σ∈Σ

σα andNL
K(α) =

(
∏
σ∈Σ

σα

)[L:K]i

.

(b) Given a 0 ̸= α ∈ L, let d := [K(α) : K] and let its minimal polynomial be µα(X) =
Xd + a1Xd−1 + · · ·+ ad = ∏

d
i=1(X −αi), where the last is the factorization in K[X ]. If

n := [L : K] and e = [L : K(α)], then

TrL
K(α) =

d

∑
i=1

eαi =−ea1 and NL
K(α) =

d

∏
i=1

α
e
i = (−1)nae

d.

Proof. This belongs to elementary field theory; see [11, Propositions 8.6, 8.12]. ■

The trace map TrS
R : S → R is an R-linear map; since S is a ring, we get a bilinear

pairing on S given by ⟨x,y⟩ 7→ TrS
R(xy) called the trace pairing. This gives us an R-linear map

S → S∗ (where S∗ is its dual as an R-module, i.e. HomR(S,R)) given by x 7→ TrS
R(x·).

Definition 10.3.6. Given an ordered free basis s := (s1, . . . ,sn) of S over R, define the discrim-
inant D(s) to be the determinant of the linear map S → S∗ with respect to the bases s and s∗,
i.e. in other words,

D(s) := det
[
TrS

R(sis j)
]n

i, j=1
.

As usual for bilinear pairings, choosing a different basis s′ changes D(s) by the square
of a unit (namely, the determinant of the change of basis matrix), and so in general, we get a
well-defined element DS/R ∈ R/(R×)2 depending only on S, which we call the relative discrim-
inant of S over R. When R = Z, we have (Z×)2 = {1}, and so this gives an honest element of
Z. In general, we get a well-defined ideal DS/R ⊂ R called the discriminant ideal.

Now suppose that R is a domain, K = FracR and L/K a finite extension with charK ∤
[L : K]. In this case, the trace pairing TrL

K : L → K is not identically zero (since TrL
K(1) = [L :

K] ̸= 0) and hence nondegenerate, since TrL
K(x ·x−1) ̸= 0 for every nonzero x). In particular, we

get an isomorphism L → L∗ = HomK(L,K) given by x 7→ TrL
K(x·).
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Definition 10.3.7. Given any R-submodule M ⊂ L, we define its trace dual to be

M∗ := {x ∈ L : TrL
K(xy) ∈ R for all y ∈ M}.

This is another R-submodule of L. If M is free with basis s1, . . . ,sn, then M∗ is free
with basis s∗1, . . . ,s

∗
n, where s∗i are such that s∗i s j = δi j.

Example 10.3.8. Let K be a number field. We’ll show that K := ClK(Z) is a free Z-module
of rank n := [K : Q]. Indeed, the above conditions are automatically satisfied. The key point is
that if α ∈K , then TrK

Q(α) ∈ Z; this follows immediately from Corollary 4.1.11 and Theorem
10.3.5. Let v1, . . . ,vn ∈ K be a Q-basis lying in K (this can always be achieved by rescaling)
and let M := ∑

n
i=1 Zvi. Then it suffices to observe that M ⊂ K ⊂ M∗, and we are done by the

structure theorem for finitely generated abelian groups. The discriminant DK := DK/Z ∈ Z is
a fundamental invariant of K.
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10.4 Derived Functors in Abelian Categories

In this section, we review the generalities of (the naive approach to) derived functors on abelian
categories. We use cohomological terminology, and the translation into homological language
(i.e. left-derived functors, etc.) is left to the reader. In the following, a functor is always
covariant.

Definition 10.4.1. Let , be abelian categories and F :  →  be an additive functor. A
(cohomological) δ -functor extending F is a triple (F•, ι ,δ ), where

(a) F• = (Fq)q∈Z≥0 is a sequence of additive functors Fq : →  indexed by q ∈ Z≥0, and
(b) ι is a natural isomorphism ι : F ⇒ F0,
(c) δ is a natural assignment A → δ •

A = (δ
q
A)q∈Z≥0 to each short exact sequence

A : 0 → A′ → A → A′′ → 0

in , a sequence of morphisms δ
q
A : Fq(A′′)→ Fq+1(A′) in  indexed by q ∈ Z≥0 such

that the sequence

· · · → Fq(A′)→ Fq(A)→ Fq(A′′)
δ

q
A−→ Fq+1(A′)→ ·· · (∗)

(with F−1 := 0) is a cochain complex.3

If for each short exact sequence A, the sequence (∗) is exact, we say further that this δ -functor
is exact.

A δ -functor is often denoted simply by F• : →, with ι and δ implicit (in writing
δ , the sub- and superscripts are often dropped too). The morphisms δ • are called the connecting
homomorphisms. Further, ι is often used to identify F and F0; we will sometimes use this
convention to make life simpler.4

Now, let F,G : → be additive functors between abelian categories, F•,G• : →
 be δ -functors extending F and G respectively, and η : F ⇒ G be a natural transformation. A
δ -transformation from F• to G• extending η is a sequence η• = (ηq)q∈Z≥0 of natural transfor-
mations ηq : Fq ⇒ Gq such that ιG• ◦η = η0 ◦ ιF• as natural transformations F ⇒ G0, and η•

commutes with connecting morphisms, i.e. for each short exact sequence A in  and q ∈ Z≥0,
the following diagram commutes:

Fq(A′′) Fq+1(A′)

Gq(A′′) Gq+1(A′).

η
q
A′′

δ q

η
q+1
A′

δ q

It is clear what the notion of a composition of δ -transformations should mean. The δ -transformation
η• is said to be a δ -isomorphism if there is a natural transformation θ : G ⇒ F and a δ -
transformation θ • extending it such that θ • ◦η• = 1F• and η• ◦θ • = 1G• .

3Naturality means that given a morphism f = ( f ′, f , f ′′) : A → B of short exact sequences in  and for each
q ≥ 0, we have Fq+1( f ′)◦δ

q
A = δ

q
B ◦Fq( f ′′) as maps Fq(A′′)→ Fq+1(B′) in .

4Sometimes it is important to keep this distinction and the natural isomorphism ι in mind; in this case, we’ll
point it out. [TODO]
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Finally, suppose F :  →  is an additive functor and F• :  →  a δ -functor ex-
tending F . The δ -functor F• is said to be universal if it is exact, and if G : →  is any other
additive functor, G• : → a δ -functor extending G and η : F ⇒ G a natural transformation,
there is a unique δ -transformation η• : F• → G• extending η .

It follows that there is at most one universal δ -functor extending a given functor
F : → , up to unique δ -isomorphism extending the identity transformation 1F : F ⇒ F ; in
fact, any δ -transformation extending 1F between universal δ -functors extending a given functor
F must be a δ -isomorphism. A/“the” universal δ -functor extending F :→ is called a/“the”
right derived functor of F , and denoted R•F :  → . Note that if F admits a right derived
functor, then F is left-exact.

Remark 10.4.2. If R•F exists, then F is exact iff RqF = 0 for each q ≥ 1 iff R1F = 0.

Here’s a simple criterion to check the universality of a δ -functor:

Definition 10.4.3. Let F : →  be an additive functor between abelian categories.

• Given an A ∈ Ob(), an F-effacement of A is a mono i : A → I such that F(i) = 0.
• The functor F is said to be effaceable if every A ∈ Ob() admits an F-effacement.

If F is effaceable, then F-effacements can be constructed functorially:

Lemma 10.4.4. Let F : →  be an effaceable functor, and let f : A → A′ be a morphism in
. If i : A → I is any F-effacement, then there is an F-effacement i′ : A′ → I′ and a morphism
f̃ : I → I′ such that the following diagram commutes:

A A′

I I′;

i

f

i′

f̃

Proof. Let j : I ⊕A′ ↪→ J be an F-effacement, and let I′ := coker(A
j◦(i, f )−−−−→ J). Let i′ : A′ → I′

be the negative of the composite A′ ιA′−→ I ⊕ A′ j−→ J ↠ I′, and f̃ : I → I′ be the composite

I
ιI−→ I ⊕A′ j−→ J ↠ I′. ■

Theorem 10.4.5. If F• : → is an exact δ -functor such that Fq is effaceable for each q ≥ 1,
then F• is universal, and hence the right derived functor R•F0.

Proof. Given a δ -functor G• and a natural transformation η0 : F0 ⇒ G0, we recursively con-
struct natural transformations ηq : Fq ⇒ Gq that commute with the connecting homomor-
phisms. The base q = 0 is given; suppose q ≥ 1. By effaceability, there is a monomorphism
i : A → I with Fq(i) = 0. Consider the short exact sequence 0 → A i−→ I → I/A → 0 and the
corresponding long sequences to get

· · · Fq−1I Fq−1(I/A) FqA 0

· · · Gq−1I Gq−1(I/A) GqA · · ·

ηq−1I ηq−1(I/A)

δ
q−1
F

∃!

δ
q−1
G
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The exactness of the top row proves the unique such a δ -transformation if one exists. We use
the above to define the map ηqA : FqA → GqA.

(a) This map is independent of the choice of effacement. Suppose that i : A→ I and i′ : A→ I′

are both Fq-effacements. Then so is (i, i′) : A → I ⊕ I′ because (i, i′) = ιI ◦ i+ ιI′ ◦ i′ and
Fq is additive. Consider the morphism of SES’s given by

0 A I ⊕ I′ (I ⊕ I′)/A 0

0 A I I/A 0

(i,i′)

πI ∃
i

Using this, the naturality of LES’s for F• and G• and the naturality of ηq−1, it follows
that the map FqA → GqA obtained in this way is the same for the effacement i : A → I
and (i, i′) : A → I ⊕ I′.

(b) The map ηq is a natural transformation. Suppose f : A → A′ is a morphism. Then pick
any effacements i : A → I and i′ : A′ → I′ and morphism f̃ : I → I′ as in Lemma 10.4.4,
and consider the morphism of SES’s given by

0 A I I/A 0

0 A′ I′ I′/A′ 0.

f

i

f̃ ∃

i′

Using this, the naturality of LES’s for F• and G• and the naturality of ηq−1, we conclude
that ηq is a natural transformation.

(c) Finally, ηq commutes with δ q−1, i.e. given an SES 0 → A′ → A → A′′ → 0 in , the
diagram

Fq−1A′′ FqA′

Gq−1A′′ GqA′

δ
q−1
F

ηq−1A′′
ηqA′

δ
q−1
G

commutes. Indeed, note that if i : A → I is any F-effacement, then the map A′ → A i−→ I
is also an F-effacement. Then we get a morphism of SES’s given by

0 A′ A A′′ 0

0 A′ I I/A′ 0

i ∃

Using this, the naturality of LES’s for F• and G• and the naturality of ηq−1, we get the
result.

■

One general situation in which right derived functors of left-exact functors exists is
when category  has enough injectives (so that every object has an injective resolution). This
is a standard consequence of:
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Lemma 10.4.6 (Fundamental Lemma of Homological Algebra). In an abelian category , if
T → J• is any resolution and A → I• an injective resolution, then any morphism f : T → A
lifts to a morphism f • : J• → I• of complexes that extends f , and this extension is unique up to
homotopy equivalence.

Proof. ■

Corollary 10.4.7. Let F : →  be a left-exact additive functor of abelian categories. Sup-
pose that  has enough injectives. Then the right derived functor R•F of F exists.

Proof. For each object A, pick an injective resolution A[0]→ I• of A, apply F to this resolution
to get the complex F(I•), and define Fq(A) to be the qth-cohomology object of the complex
F(I•), namely

Fq(A) := Hq(F(I•)) := ker(FIq → FIq+1)/ im(FIq−1 → FIq).

Lemma 10.4.6 guarantees that the isomorphism type of Fq(A) is independent of the choice of
resolution, and that the construction Fq is functorial. Left-exactness of F implies that for each
A, the map F(A) → F(I0) induces an isomorphism ιA : F(A) → F0(A), and naturality of ιA
in A follows again from Lemma 10.4.6. Finally, δ can be constructed by taking simultaneous
resolutions and taking the long exact cohomology sequence corresponding to a short exact
sequence of resolutions, with naturality following again from Lemma 10.4.6 and the naturality
of long exact sequences. Finally, each Fq for q ≥ 1 according to this definition is effaceable
because an injective object is its own resolution, and we have assumed that  has enough
injectives; therefore, universality follows from Theorem 10.4.5. ■

Example 10.4.8. Let  be an abelian category with enough injectives. Given a fixed object
M ∈ Ob(), the functor Hom(M,−) : → Ab is left exact. The (components of the) right
derived functor of this functor are called the Ext functors Extq(M,−) :  → Ab for q ≥ 0,
i.e. Ext•(M,−) = R•Hom(M,−). The reason for this name is that Ext1(M,N) classifies
the extensions of M by N: given an extension 0 → N → E → M → 0, the class in Ext1(M,N)
is given by taking the image of 1M ∈ Hom(M,M) under δ 0; on the other hand, given an
element of Ext1(M,N), pick an SES 0 → N → I → I/N → 0 with I injective to lift it to an
element of ϕ ∈ Hom(M, I/N), and then form the extension E as the pullback of I → I/N and
ϕ : M → I/N.

Unfortunately, this method is not very useful in practice because injective resolutions,
even when they exist, are hard to write down by hand. To compute these derived functors in
practice, one usually uses acyclic resolutions:

Definition 10.4.9. Let F : → be a left exact functor and suppose  has enough injectives,
so that the right derived functor R•F exists.

(a) An object A of  is said to be F-acyclic if RqF(A) = 0 for all q ≥ 1.
(b) A resolution A[0]→ J• of A is an F-acyclic resolution if all the Jq for q≥ 0 are F-acyclic.

Lemma 10.4.10. In the set-up of the previous definition, if A[0]→ J• is an F-acyclic resolution
of an object A, then the right derived functors of F can be computed by taking the cohomology
of F(J•), i.e. for each q ≥ 0, there is an isomorphism

Hq(F(J•))→∼ RqF(A).
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Proof. Induct on q; the case q = 0 follows from the left exactness of F and the exact sequence
0 → A → J0 → J1. Next, to show q = 1, use 0 → A → J0 → J0/A → 0 and R1FJ0 = 0 to get

coker
(
R0FJ0 → R0F(J0/A)

)
→∼ R1FA,

and 0 → J0/A → J1 → J2 to get

R0F(J0/A)→∼ ker
(
R0FJ1 → R0FJ2) ;

putting these together, we get H1(F(J•))→∼ R1FA. Finally, for q ≥ 2, use inductively that there
is an acyclic resolution (J0/A)[0]→ J•+1 and the exact sequence 0 → A → J0 → J0/A → 0 to
get

Hq(F(J•)) = Hq−1(F(J•+1))→∼ Rq−1F(J0/A)→∼ RqFA.

■

Therefore, to compute derived functors of a functor F , it remains to identify appro-
priate F-acyclic objects. This can often be done using:

Lemma 10.4.11 (Acyclic Cohomology). Let F :→ be a left exact functor between abelian
categories and suppose  has enough injectives. Let  ⊂ Ob() be a class of objects in 
such that:

(a) every injective object of  is in  , and
(b) if 0 → A′ → A → A′′ → 0 is exact and A′,A ∈  , then A′′ ∈  , and the resulting sequence

0 → FA′ → FA → FA′′ → 0 is exact.

Then all elements of  are F-acyclic, so  -resolutions can be used to compute the derived
functor R•F .

Proof. We show by induction on q ≥ 1 that RqF T = 0 for all T ∈  . For q = 1, given a T ,
take a monomorphism T ↪→ I for injective I and consider the SES 0 → T → I → I/T → 0. By
the LES and (b), we get that 0 → R1FT → R1FI is exact, but R1FI = 0 since I is injective and
hence F-acyclic. For q ≥ 2, the sequence Rq−1F(I/T )→ RqFT → RqFI is exact, but the first
term is zero by (a), (b), and induction; the last term is zero since I is F-acyclic as before. ■
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10.5 Pathologies, or Counterexamples in Commutative Al-
gebra

Example 10.5.1. A UFD R such that R[[X ]] is not a UFD. Consider S := k[x,y,z] := k[X ,Y,Z](X2+
Y 3 +Z7), and the localization R = S(x,y,z). By Exercise 1.14(c), S and hence R is a UFD.

Example 10.5.2. A ring R and a prime p⊂ R such that htp+cohtp< dimR. Consider the ring
R := k[[X ,Y,Z]]/(XY,XZ). Then dimR = 2. If p= (y,z)⊂ R, then p is prime with htp= 0 but
cohtp= 1.

Example 10.5.3. A zero-dimensional non-Noetherian ring. Take

R = k[ε1,ε2, . . . ] := k[X1,X2, . . . ]/(X2
1 ,X

2
2 , . . .).

This has a unique prime, namely (ε1,ε2, . . .) and is hence zero dimensional; the increasing
chain 0 ⊂ (ε1)⊂ (ε1,ε2)⊂ ·· · show that R is non-Noetherian.

Example 10.5.4. A positive finite-dimensional non-Noetherian ring, and a domain in which
the Krull intersection theorem fails. Valuation rings of dimension at least two are not Noethe-
rian ([TO CITE]). The Krull dimension of a valuation ring is the height (i.e. number of isolated
subgroups) of its value group. A standard example is the valuation ring of the Z2-valued valu-
ation on k(x,y) with v(xnym) = (n,m). This is also an example of a domain in which the Krull
intersection theorem fails.

Example 10.5.5. (Nagata) An infinite-dimensional Noetherian ring. Let R := k[X1,X2, . . . ] and
m1,m2, . . . an increasing sequence of positive integers such that mi+1 −mi > mi −mi−1 for all
i ≥ 1. Let pi := (xmi +1, . . . ,xmi+1), and let S := R∖

⋃
i pi. Then S−1R is the required example.

Example 10.5.6. A nonzero module with no associated primes. Let R = (R,R) be the ring
of continuous functions f : R → R. If f ∈ R is a nonzero element, then there are x ̸= y ∈ R
such that f (x) f (y) ̸= 0. Let g,h ∈ R be functions such that g(x) = h(y) = 1 and gh = 0, then
g,h /∈ Ann( f ) but gh ∈ Ann( f ); consequently, Ann( f ) is not prime. In particular, AssR(R) = /0.

Example 10.5.7. A separable field extension K/k that is not separably generated. Let p > 0 be
a prime, k =Fp be a field let K = k(X ,X1/p,X1/p2

, . . .). On the one hand, k is perfect, and hence
every extension K/k is separable. On the other hand, k(X) ↪→ K with K algebraic over k(X)
implies that trdegk K = 1. If f ∈ K is a separating transcendence basis, then K is separably
algebraic over k( f ); but there is an N ≥ 1 such that f ∈ k(X1/pN

) and then K/k(X1/pN
) is a

nontrivial purely inseparable superextension, which is a contradiction.
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10.6 Exercises

Exercise 10.1. Show that for any finite field Fq, the only group homomorphism (Q,+) →
(Fq,+) is the trivial one.

Exercise 10.2. Let R be a ring. If 0 → M1 → M2 → ··· → Mn → 0 is an exact sequence of R-
modules, each of finite length, then the lengths of these modules are related by ∑

n
i=1(−1)iℓR(Mi)=

0.

Exercise 10.3. Using the structure theorem for finitely generated abelian groups, determine
which of these have finite lengths (as Z-modules). For the ones that do, determine their lengths
and multisets of simple factors.

Exercise 10.4. Let (R,m,k) be a Noetherian local ring.

(a) Show that for each i ≥ 1, the quotient mi−1/mi is a finite-dimensional vector space over
k.

(b) Show that for any n ≥ 0,

ℓR(R/mn) =
n

∑
i=1

dimk(m
i−1/mi).

Exercise 10.5.

(a) Let S be a set with a dependence relation D and let ϕ : T → S be any set map. Show
that the map ϕ∗D : 2T → 2T defined by (ϕ∗D)(X) = ϕ−1(D(ϕ(X)) for any X ⊂ T is a
dependence relation on T . This is called the pullback of the relation D under the map
ϕ . What are the spanning sets of ϕ∗D? What are the independent sets? What is its
fundamental set? What can you say about the special situation in which the map ϕ is
injective?

(b) Let V,W be vector spaces and ϕ : V →W be a linear map. If LD is the linear dependence
relation on W , then what is the dependency of the pullback relation ϕ∗LD? What is its
fundamental set?

Exercise 10.6. Let D and E be two dependence relations on the same set S. Consider the
following conditions on S.

(a) For every subset X ⊂ S, we have EX ⊂DX .
(b) For every subset iT : T ↪→ S, each i∗TE-spanning subset of T is i∗TD-spanning.
(c) Each D-independent subset is E-independent (and hence depD≤ depE).

Show that (a) ⇔ (b) ⇒ (c). Are all the conditions equivalent?

Exercise 10.7. Let D andE be two dependence relations on the same set S. Prove or disprove
and salvage if possible: if the D-independent subsets andE-independent subsets coincide, then
D=E.

Exercise 10.8. Let G = (V,E) be a graph. Consider the map Cl : 2E → 2E defined by saying
that for any X ⊂ E, the set ClX is the set edges whose endpoints are connected to each other by
a path in X . Check that this defines a dependence relation on E; this is often called the graph
closure operator. Explore the properties of this operator. What are spanning (resp. independent)
subsets? What is a basis? When does it have finite dependency? What is the dependency of
this relation? What is its fundamental set?
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Exercise 10.9. Let V be a real vector space. A subset K ⊂ V is said to be convex if for all
x,y ∈ K and t ∈ [0,1] we have tx+(1− t)y ∈ K. Is the map Conv : 2V → 2V sending a subset
X ⊂V to its convex hull Conv(X), i.e. the intersection of all convex subsets of V containing X ,
a closure operator? Is it finitary? Does it satisfy MacLane-Steinitz exchange? How far can you
generalize the notion of spanning sets, independent sets, bases, etc. for this operation?
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Possible Hints to Selected Exercises

Exercise 1.7(a). First replace the Vi by U ∩Vi to reduce to the case U =V . Draw a picture.

Exercise 1.10. For the counterexample, consider the ring R = [0,1] of continuous functions
f : [0,1]→ R. For more on this, see [13].

Exercise 1.13. For (c) ⇒ (b), show that the localization of R at the multiplicative subset
generated by all primes in R is a field. For the alternative proof of implication (b) ⇒ (a) in
Corollary 1.4.5, suppose p ⊂ R is a nonzero prime ideal but p∩S = /0. Use (c) and the ACCP
hypothesis on R to produce a prime element π ∈ S−1p which lies in R and is not divisible by
any element in S; then use Corollary 1.1.12(c). For the alternative proof of the key implication
(a) ⇒ (b) in Corollary 1.4.10, let p ⊂ R[X ] be a nonzero prime. If p∩R ̸= (0), use Exercise
1.12(b). If p∩R = (0), then pK[X ] is prime by Corollary 1.1.12, and so contains an irreducible
polynomial f (X) in K[X ]; then consider the primitive part of f (X) and use Gauss’s Lemma as
in the proof of Corollary 1.4.10 given. See [11, Theorem A.4.5].

Exercise 1.14. We give hints for (b); (c) is similar. Work with the ring

S = C[z,w,x3, . . . ,xn] := C[Z,W,X3, . . . ,Xn]/(ZW +X2
3 + · · ·+X2

n )

instead. Show that S is a domain, z ∈ S is a prime element, and the elements z,x3, . . . ,xn ∈ S
are algebraically independent over C (this can be done by hand here, or using Example 5.2.4),
whence S[z−1]∼= C[Z,X3, . . . ,Xn,Z−1] is a UFD. Now finish using Corollary 1.4.5. In fact, the
result in (b) is true over any field k of characteristic not two; this can be done first by adjoining a√
−1 if needed and reducing to the above case, and then using “descent” from the field k[

√
−1]

to k. See [14, Theorem 6.2]. This ring (coordinate ring of the affine cone over smooth quadric
four-fold) is the standard example of a ring that is factorial (i.e. a UFD) but not regular.

Exercise 3.6. Consider an ideal with the property that it does not contain a product of primes,
and which is maximal with respect to inclusion.

Exercise 4.2(c). Consider f (X) = X5 +X4 +X2 +1, when
√

X ∈ S. If f0 ∈ k[X ] is the polyno-
mial of least degree such that K(

√
f0) = K(

√
f ), then S = R[

√
f0]. When k is perfect, we can

always choose f0 = X . In general, f0 can be found in terms of f ; see [15, Example 4.23] (but
beware the errors).

Exercise 5.4. Either consider a maximal ideal of K ⊗k L, or fix a set Γ of sufficiently large
cardinality and consider k(Γ).

Exercise 5.5. If L/k is finite, use the Theorem on Natural Irrationalities ([11, Theorem 5.5]).
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Exercise 5.6(b). Here’s one outline. Show that the natural map F[X ,Y ] → K is injective and
so yields an isomorphism F(X ,Y ) → K of field extensions of F; this reduces the problem to
showing that F(X p + sY p) ⊂ F(X ,Y ) is algebraically closed. Next, show that there is an F-
algebra homomorphism ϕ : F[X ,Y ] → F[s1/p][T ] with kerϕ = (X p + sY p). Finally, suppose
there is an f ∈ F(X ,Y )∖F(X p + sY p) algebraic over the latter, and write f = g/h for some
nonzero coprime g,h ∈ F[X ,Y ] chosen so as to minimize the “size” | f | = degX g + degX h.
Applying ϕ to a suitable equation adapted from the one demonstrating the algebraicity of f ,
produce another algebraic element of smaller size.

Exercise 5.9. When K is finite, a power of the minimal polynomial over L of a generator of
K/k lies in k[X ].

Exercise 5.12. Consider an open subset V ⊂ GLn C containing the identity such that V does
not contain any nontrivial subgroup of GLn C.

Exercise 8.3. For (h) ⇒ (d), use Baer’s criterion. For (h) ⇒ (a), use that a semisimple module
has finite length iff it is finitely generated, and that if R is a direct simple of simple ideals, then
the kernel of each projection map onto a factor is a maximal ideal.

Exercise 10.6. The conditions in (a) and (b) are said to define a strong map of matroidsE⇒D,
and (c) a weak map of matroids E →D.

Exercise 10.8. First try to answer these questions when G is finite.
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