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Abstract

This is a short collection of lecture notes based on a mini talk series aimed at counselors I gave
at Ross/Ohio 2024. The goal of this set of notes is to show finite-dimensionality of the cohomology
of invertible sheaves on nonsingular projective curves and the Riemann-Roch Theorem, following [1,
Propositions V.3.16 and VI.2.7], and the Serre duality theorem for such curves using the method of
adeles or “répartitions” due to Weil, following Serre’s [2, Chapter II, Theorem 2].
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1 Notation and Fundamentals

1 Notation and Fundamentals

Throughout this article, we let X be an irreducible smooth projective curve over an algebraically
closed field k. We will not assume that k has characteristic zero; however, if doing so significantly
simplifies a given proof, then we will, and direct the reader to a general proof elsewhere.
(a) We denote the function field of X by K, so that if η ∈ X is the generic point, then

K := k(X) = X,η.

and K is a field extension of k of transendence degree 1.
(b) Every point in X other than η is a closed point; in what follows, we will use the notation x ∈ U

for an open subset U ⊆ X to mean that x is a closed point of X contained in U , so that, for
instance, the divisor group Div(X) of X is the free abelian group on the set of x ∈ X. Given
a divisor D =

∑
x∈X nxx, we use the notation D(x) := nx and define the degree of D to be

degD :=
∑

x∈X D(x).
(c) For each x ∈ X, the stalk X,x ⊂ K is a regular local ring of dimension one, i.e. a discrete

valuation ring (DVR). We will denote the discrete valuation on K corresponding to the point
x ∈ X by vx, so that

X,x = {f ∈ K : vx(f) ≥ 0} has maximal ideal mX,x := {f ∈ K : vx(f) ≥ 1},

where vx(0) = ∞ by convention. Finally, we will denote the completion of X,x (resp. K) with
respect to the valuation vx by ̂X,x (resp. K̂x), so that K̂x = Frac ̂X,x. A choice t ∈ X,x of
uniformizer for vx yields the isomorphisms

̂X,x
∼= k[[t]] and K̂x

∼= k((t)).

(d) For each D ∈ Div(X), we denote the associated invertible sheaf by X(D), which at x ∈ X
has stalk

X(D)x := {f ∈ K : vx(f) +D(x) ≥ 0}
and for any nonempty open subset U ⊆ X satisfies X(D)(U) :=

⋂
x∈U X(D)x ⊆ K. For any

D ∈ Div(X), we have a monomorphism (X) ↪→ K of X(D) into the constant sheaf K, and
the space of global sections of the quotient K/X(D) can be identified via evaluation on stalks
as

H0(X,K/X(D)) ∼=
⊕
x∈X

K/X(D)x. (1)

For i = 0, 1, we also use the notation

Hi(D) := Hi(X,X(D)) and hi(D) := dimk H
i(D).

Then the short exact sequence 0 → X(D) → K → K/X(D) → 0 gives rise to the long exact
sequence

0 → H0(D) → K → H0(K/X(D)) → H1(D) → 0, (2)

where H1(K) = 0 because a constant sheaf on an irreducible space is flasque.
(e) We say that D is effective, written D ≥ 0, to mean that nx ≥ 0 for all x ∈ X, and for

D1, D2 ∈ Div(X), write D1 ≤ D2 to mean that D2 −D1 ≥ 0. Clearly, D1 ≤ D2 implies that
degD1 ≤ degD2 and H0(D1) ⊆ H0(D2), whence h

0(D1) ≤ h0(D2). We will also have need for
themaximum of two arbitrary divisorsD1 andD2, which is the unique divisorD = max{D1, D2}
satisfying

D(x) = max{D1(x), D2(x)}
for all x ∈ X. Similarly, we can define the minimum min{D1, D2} of D1 and D2; then we have
H0(D1) ∩H0(D2) = H0(min{D1, D2}).

(f) For each nonzero f ∈ K, we denote the divisor of f by

div(f) = div0(f)− div∞(f) ∈ Div(X),

where
div0(f) :=

∑
x∈X:vx(f)>0

vx(f) · x and div∞(f) :=
∑

x∈X:vx(f)<0

−vx(f) · x

are the divisors of zeroes and poles of f , respectively. Then div(f) = 0 iff f is constant; each
nonconstant f gives rise to a finite morphism f : X → P1

k of degree

deg f = deg div∞(f) = deg div0(f) = [K : k(f)],

and then div0(f) = f∗(0) and div∞(f) = f∗(∞). In particular, deg div(f) = 0. Finally, for
D ∈ Div(X), if h0(D) ≥ 1 then degD ≥ 0 with equality iff D is principal, i.e. D = div(f) for
some 0 ̸= f ∈ K.
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2 Finiteness of Cohomology and Riemann-Roch

2 Finiteness of Cohomology and Riemann-Roch

Our first order of business is to show the two Theorem 2.1 below.

Theorem 2.1 (Finiteness of Cohomology). For D ∈ Div(X), we have h0(D), h1(D) <∞.

Remark 2.2. There are many sophisticated proofs of this result and its generalizations; the aim of
this article is to give a fairly accessible direct proof following [1, Propositions V.3.16 and VI.2.7],
but we list now some references to the general literature on finiteness of sheaf cohomology. On one
hand, one can show algebraically that if X is a projective scheme over a Noetherian ring A and F

a coherent X -module, then for all i ≥ 0, the cohomology groups Hi(X,F) are finitely generated
A-modules via a reduction to an explicit calculation of the cohomology of Pn

A
(d) for all n, d (see [3,

Theorem 5.2] or [4, Corollary 23.2]), or more generally that if f : X → S is a proper morphism of
schemes with S locally Noetherian, then for each coherent X -module F and integer i ≥ 0, the higher
pushforward Rif∗ is a coherent S-module (see [4, Theorem 23.17]). On the other hand, one can
show analytically for k = C that the cohomology of vector bundles on a compact complex manifold
is finite-dimensional, via finite-dimensionality of solution spaces to elliptic PDEs (see [5, Chapter
IV, Example 5.7] for the general case, or [6, Corollary 14.10] and the reduction as below for the case
of line bundles on compact Riemann surfaces), then invoke Serre’s GAGA principle to conclude the
result for smooth proper varieties over C (see the discussion in [4, §23.9]), and then conclude from
this the case of arbitrary algebraically closed fields of characteristic zero via the Lefschetz principle.

In light of Theorem 2.1, we define the genus of X to be

g := h1(0) = dimk H
1(X,X).

One thing we can them immediately derive from Theorem 2.1 is

Theorem 2.3 (Riemann-Roch, Version I). For any D ∈ Div(X), we have

h0(D)− h1(D) = degD − g + 1.

Proof. For each pair of divisors D1 ≤ D2 on X, there is a sheaf monomorphism X(D1) ↪→ X(D2)
inducing maps Hi(D1) → Hi(D2) for i = 0, 1, such that the map H0(D1) → H0(D2) is injective. The
comparison map of the (slightly modified) short exact sequences (2), looks like

0 K/H0(D1) H0(K/X(D1)) H1(D1) 0

0 K/H0(D2) H0(K/X(D2)) H1(D2) 0,

applying the snake lemma to which, along with the observation (1), yields both the short exact
sequence

0 → H0(D2)/H
0(D1) →

⊕
x∈X

X(D2)x/X(D1)x → H1(D1/D2) → 0, (3)

where H1(D1/D2) := ker
(
H1(D1) → H1(D2)

)
, as well as the fact that H1(D1) → H1(D2) is surjec-

tive. Since for each x ∈ X, the ring X,x is a DVR, it follows that the vector space X(D2)x/X(D1)x
has dimension D2(x)−D1(x) over k: indeed if t ∈ K is a uniformizer at x, then X(D2)x/X(D1)x
has basis given by the classes of t−D1(x)−1, t−D1(x)−2, . . . , t−D2(x). Since D1(x) = D2(x) = 0 for all
but finitely many x ∈ X, the middle term in (3) is finite-dimensional over k, whence so are the left
and right terms, and

degD2 − degD1 = dimk

(
H0(D2)/H

0(D1)
)
+ dimk H

1(D1/D2). (4)

If we assume, as guaranteed by Theorem 2.1 that hi(Dj) <∞ for i = 0, 1 and j = 1, 2, then

dimk

(
H0(D2)/H

0(D1)
)
= h0(D2)− h0(D1) and dimk H

1(D1/D2) = h1(D1)− h1(D2),

where we are using in the last step that H1(D1) ↠ H1(D2). It then follows from (4) after some
rearrangement that for any divisors D1, D2 ∈ Div(X) with D1 ≤ D2, we have

h0(D1)− h1(D1)− degD1 = h0(D2)− h1(D2)− degD2.

Since the partial order ≤ on Div(X) is directed, it follows that the quantity h0(D)− h1(D)− degD
is a constant independent of D ∈ Div(X), and this constant can be evaluated by taking D = 0 to be

h0(0)− h1(0)− deg 0 = 1− g,

where h0(0) = 1 by projectivity of X (see [3, Theorem I.3.4]), h1(0) = g by definition, and deg 0 = 0.
■
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2 Finiteness of Cohomology and Riemann-Roch

We are ready to prove Theorem 2.1, following [1, Propositions V.3.16 and VI.2.7].

Proof. The proof of Theorem 2.3 suggests a proof strategy for Theorem 2.1. Indeed, the sequence (3)
along with the directedness of the partial order ≥ on Div(X) tells us that to show that h0(D) <∞
for all D ∈ Div(X), it suffices to exhibit one D0 ∈ Div(X) such that h0(D0) <∞ (and similarly also
for h1). Since h0(0) = 1 by projectivity of X, we are done for h0. For h1, we divide the proof into
four steps. In steps (a) through (c) below, we will fix a function f ∈ K ∖ k, and let D := div∞(f)
be its divisor of poles and d := deg f = degD.
(a) For any divisor E ∈ Div(X), there is an integer m ≥ 1 and a 0 ̸= g ∈ k[f ] ⊂ K such that

E − div(g) ≤ mD.

To show this, let x1, . . . , xn be the (closed) points of X such that both E(xi) ≥ 1 and vxi(f) ≥ 0
for each i = 1, . . . , n. Then taking g :=

∏n
i=1(f − f(xi))

E(xi) suffices, where, for each i, the
number f(xi) = [f ] ∈ X,xi/mX,xi

∼= k is the result of evaluating f at xi, the element g ∈ K
is nonzero because f /∈ k, and div∞(g) = N ·D where N =

∑n
i=1E(xi).

(b) There is an integer m0 ≥ 1 such that for all m ≥ m0, we have

h0(mD) ≥ (m−m0 + 1)d.

In particular, there is an integer M ≥ 0 such that for all m ≥ 1 we have

md− h0(mD) ≤M.

The second statement follows from the first by taking M = (m0 − 1)d. To show the first,
note that since d = [K : k(f)], we may find h1, . . . , hd ∈ K that are linearly independent over
k(f). For each j = 1, . . . , d, applying (a) to E = − div(hj) yields an integer mj ≥ 1 and a
0 ̸= gj ∈ k[f ] ⊂ K such that gjhj ∈ H0(mjD). Let m0 := maxd

i=1{mi}. If m ≥ m0, then for
each i = 0, . . . ,m −m0 and j = 1, . . . , d, we have f igjhj ∈ H0(mD), where we are using that
f ∈ H0(D). Finally, these (m−m0 + 1)d functions (f igjhj)i,j are linearly independent over k,
because the hj are linearly independent over k(f), each gj is nonzero, and f is transcendental
over k (this uses that k is algebraically closed).

(c) The same bound M in (b) works not just for all nonnegative multiples of D, but in fact all
E ∈ Div(X), i.e. for all E ∈ Div(X), we have

degE − h0(E) ≤M.

Indeed, given any E, let m and g be as in (1). If we let F := E − div(g), then degE = degF
because deg div(g) = 0. Also, multiplication by g gives the sheaf isomorphism X(E) ∼= X(F ),
so that h0(E) = h0(F ), and hence degE − h0(E) = degF − h0(F ), but this time F ≤ mD.
It follows from (4) and the finite-dimensionality of h0, already proven, that for any divisors
D1, D2 ∈ Div(X) with D1 ≤ D2, we have

h1(D1/D2) := dimkH
1(D1/D2) = (degD2 − h0(D2))− (degD1 − h0(D1)) ≥ 0. (5)

Taking D1 := F and D2 := mD in (5) then yields

degF − h0(F ) = md− h0(mD)− h1 (F/mD) ≤M.

(d) Step (c) tells us that there is some D0 ∈ Div(X) such that degD0 − h0(D0) is maximal. To
finish the proof, it suffices to show that h1(D0) = 0, for which it suffices to show that for any
divisor D ∈ Div(X), we have

H1(D) =
⋃

D′≥D

H1(D/D′). (6)

Indeed, it would follow that if h1(D0) ̸= 0, then there is a nonzero α ∈ H1(D0); then by (6),
there would be a D′ ≥ D0 such that α ∈ H1(D0/D

′), whence h1(D0/D
′) ≥ 1, and then (5)

would contradict our choice of D0. To show (6), in light of (1) and (2), it suffices to show that
given finitely many points x1, . . . , xn ∈ X and f1, . . . , fn ∈ K, there is a divisor D′ ≥ D such
that for all i = 1, . . . , n, we have fi ∈ X(D′)xi , which is clear.

■

Incidentally, this proof illustrates that showing the analogous result about finite dimensionality
(and then Riemann-Roch) for a compact Riemann surface X is directly equivalent to producing a
nonconstant global meromorphic function on X.
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3 Serre Duality

The power of the Riemann-Roch Theorem comes from being able to identify the “correction term”
h1 explicitly as the h0 of a different divisor. This is enabled by Serre Duality. For our treatment of
Serre Duality, we will need a more explicit description of the group H1(D) for a D ∈ Div(X)–such
as is afforded by the adelic interpretation–as well as machinery to deal with differentials on curves.
Let us develop both tools now. In this section, we closely follow the argument used in the proof of
[2, Chapter II, Theorem 2].

3.1 Adele Ring

We first define and discuss the basic properties of, the adele ring AX associated to a curve X.

Definition 3.1. The adele ring of X is the restricted direct product ring

AX :=
∏∏
x∈X

(K,X,x).

In other words, an element of AX is a family r = (rx)x∈X of elements of K indexed by the
closed points x ∈ X such that for all but finitely many x ∈ X we have rx ∈ X,x.

Remark 3.2. Conventions differ on what this ring should be called–older texts like Serre’s [2] call this
the algebra of répartitions of X,1 and most sources define the adele ring to be the restricted direct
products of the completions, i.e.

∏∏x∈X(K̂x, ̂X,x); we will stick to the convention in Definition 3.1.

The diagonal embedding K ↪→ AX makes AX a K-algebra. For each divisor D ∈ Div(X), we
define the k-subspace

AX(D) := {r ∈ AX : for all x ∈ X, we have vx(rx) +D(x) ≥ 0} ⊂ AX .

Some basic properties of these spaces are listed in the following lemma, the proof of which is clear.

Lemma 3.3.
(a) For divisors D1, D2 ∈ Div(X), we have

(i) D1 ≤ D2 iff AX(D1) ⊆ AX(D2),
(ii) AX(D1) ∩ AX(D2) = AX(min{D1, D2}), and
(iii) AX(D1) · AX(D2) = AX(D + E).

(b) We have
⋂

D∈Div(X) AX(D) = 0, while
⋃

D∈Div(X) AX(D) = AX .

(c) For any D ∈ Div(X), we have AX(D) ∩K = H0(D) and

H0(K/X(D)) ∼=
⊕
x∈X

K/X(D)x ∼= AX/AX(D),

where the last isomorphisms are compatible with the diagonal embedding of K into these.
In particular, from (2), we obtain the isomorphism

AX

AX(D) +K
∼= H1(D).

It follows from Lemma 3.3 that the subsets of AX of the form AX(D) for D ∈ Div(X) form
the base for a Hausdorff topology on AX , called the Tate topology. This topology turns AX into a
topological ring: if π : AX × AX → AX is the multiplication map, then for any divisor D ∈ Div(X),
we have

π−1AX(D) =
⋃

D1+D2=D

AX(D1)× AX(D2).

We then give the quotient ring AX/K the quotient topology coming from the natural surjection
π : AX → AX/K. If we give the base field k the discrete topology, AX/K is a topological vector
space over k, and we denote the topological dual of this space by

J := (AX/K)∨.

In other words, J is the set of all k-linear maps α : AX → k such that kerα ⊇ AX(D) +K for some
divisor D. Then we can give J the structure of a vector space over K by defining for f ∈ K and
α ∈ J , the element fα ∈ J by

⟨fα, r⟩ := ⟨α, fr⟩.
1This explains our choice for the letter r for an element of AX .
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3 Serre Duality

Indeed, this is in J because if f ∈ H0(D) and kerα ⊇ AX(D′) +K, then

ker(fα) ⊇ AX(D′ −D) +K.

To phrase the above construction slightly differently, we denote for each D ∈ Div(X), the (ordinary)
linear dual of H1(D) by

J(D) := H1(D)∨ ∼= {α : kerα ⊇ AX(D) +K} ⊂ Homk(AX , k).

Then dimk J(D) = h1(D) and

J =
⋃

D∈Div(X)

J(D),

where the union is taken in Homk(AX , k). The K-vector space structure on J comes from the natural
one on Homk(AX , k) and the observation that for any divisors D,D′ ∈ Div(X), we have

if f ∈ H0(D) and α ∈ J(D′), then fα ∈ J(D′ −D). (7)

In fact, we can say a lot about J as a K-vector space.

Theorem 3.4. We have dimK J ≤ 1.

Proof. Suppose not, so that we can find α, β ∈ J that are linearly independent over K. Let D be a
divisor such that α, β ∈ J(D); then for any x ∈ X and integer n ≥ 0, the map

H0(nx)⊕H0(nx) → J(D − nx), (f, g) 7→ fα+ gβ

is injective, so that Theorem 2.3 gives us

n+ (g − degD − 1) + h0(D − nx) = h1(D − nx) ≥ 2h0(nx) ≥ 2(n− g + 1).

However, for n > degD, we have h0(D − nx) = 0, so this inequality is false for n≫ 0. ■

At this point, to show dimK J = 1, all we need to do is exhibit a nonzero element of J ; in stead
of doing this, we will exhibit J later as the dual to the K-vector space ΩK/k of Kähler differentials
of K over k, which we now discuss.

3.2 Differentials and the Main Proof

For each x ∈ X (and also for the generic point x = η), we let

Ωx := ΩX,x/k

be the X,x-module of Kähler differentials of the local ring X,x over the base field k, so that the
Ωx glue together to give us a locally free sheaf Ω on X, called the canonical sheaf of X, which has
generic stalk Ωη =: ΩK/k the K-vector space of meromorphic differentials on k. Each Ωx is a free
X,x-module of rank 1; if x ∈ X is a closed point, then a basis of Ωx over X,x is given by taking dt
for any uniformizer t at x, which then also serves as basis for ΩK/k over K.2

To each x ∈ X and ω ∈ ΩK/k, we may associate the valuation of ω at x, denoted vx(ω), as
follows. Pick a uniformizer t at x; by the above discussion, dt is a K-basis for ΩK/k, and so we may
write ω = fdt for some unique f ∈ K, denoted f := ω/dt. We define

vx(ω) := vx(f).

The first result we need is

Theorem 3.5.
(a) The valuation of a nonzero meromorphic differential at a point is well-defined, i.e. if x ∈ X

and ω ∈ ΩK/k, if t, u ∈ K are any two uniformizers at x, and we write ω = f dt = g du
for some f, g ∈ K, then we have

vx(f) = vx(g).

(b) Given any nonzero ω ∈ ΩK/k, we have vx(ω) = 0 for all but finitely many x ∈ X.

2Indeed, since t is a uniformizer, it follows that {t} is a separating transcendence basis of K/k. This is automatic in
characteristic 0, and in characteristic p > 0 it uses that t /∈ Kp and [7, Exercise 2.15]. See also [3, II.8].
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3 Serre Duality

We will prove Theorem 3.5 in §3.3. It follows from it that for any x ∈ X, we can also describe
Ωx as

Ωx = {ω ∈ ΩK/k : vx(ω) ≥ 0}
and for a nonempty open subset U ⊂ X, the space of sections Ω(U) as

Ω(U) =
⋂
x∈U

Ωx ⊂ ΩK/k.

Theorem 3.5 tells us that given a nonzero ω ∈ ΩK/k, we may define the divisor associated to ω to be

div(ω) :=
∑
x∈X

vx(ω)x ∈ Div(X).

Then we have for any nonzero f ∈ K that

div(fω) = div(f) + div(ω).

A divisor of the form ω for a nonzero ω ∈ ΩK/k is called a canonical divisor; since ΩK/k is a K-vector
space of rank 1, it follows that for any two nonzero ω1, ω2 ∈ ΩK/k, the difference div(ω1)− div(ω2)
is principal, so that any two canonical divisors are linearly equivalent. The class of any canonical
divisor in the Picard group Pic(X) = Div(X)/K∗ is called the canonical class of X, and is often
written as ωX or KX .3 Of course, under the isomorphism Pic(X) ∼= H1(X,×

X), the canonical class
ωX is the class of the invertible sheaf Ω. We will also use ωX to denote any canonical divisor on X;
any assertion involving ωX will then be be independent of the choice of canonical divisor, as usual.

For any divisor D ∈ Div(X), the sheaf Ω(D) := Ω⊗X X(D) then has stalk

Ω(D)x := {ω ∈ ΩK/k : vx(ω) +D(x) ≥ 0}

for any x ∈ X, and again for a nonempty open subset U ⊂ X, we have

Ω(D)(U) =
⋂
x∈U

Ω(D)x ⊂ ΩK/k.

For each divisor D ∈ Div(X), we will let

Ω0(D) := H0(X,Ω(D)).

Clearly, for any nonzero ω ∈ ΩK/k and divisor D, we have a sheaf isomorphism Ω(D) →∼ X(div(ω)+
D) given by sending fω 7→ f , whence we get an isomorphism

Ω0(D) ∼= H0(ωX +D).

The Serre Duality Theorem (Theorem 3.8) then asserts that for each divisor D, we have an isomor-
phism Ω0(−D) → J(D), whence an equality of dimensions h1(D) = h0(ωX −D).

To show Serre Duality, we need one more notion. Suppose again that we have a closed point
x ∈ X and a ω ∈ ΩK/k, and we have written ω = fdt for some uniformizer t at x and f ∈ K. Since

K̂x
∼= k((t)), we can expand f ∈ K ⊂ K̂x uniquely as

f =
∑

n≫−∞

ant
n

for an ∈ k, where the notation n ≫ −∞ means that an = 0 for all but finitely many negative n.
Then we define the residue of ω to at x to be

Resx ω := a−1.

Again, we will need

Theorem 3.6 (Invariance of Residue). The residue of a meromorphic differential at a point is
well-defined: if x ∈ X and ω ∈ ΩK/k, if t, u ∈ K are uniformizers at x, and

ω =
∑

n≫−∞

ant
ndt =

∑
m≫−∞

bmu
mdu,

then a−1 = b−1.

3We will avoid the latter terminology to prevent confusion with the function field K.
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3 Serre Duality

We will prove this result, which is slightly harder, in §3.4. Note that in this notation, vx(ω) is
the smallest integer n such that an ̸= 0, so Theorem 3.5 can also be seen as a result about this power
series expansion of f . Note finally also that if vx(ω) ≥ 0, then Resx ω = 0, whence, by Theorem
3.5(b), the quantity ∑

x∈X

Resx ω

is well-defined. The final ingredient in the soup is then

Theorem 3.7 (Residue Theorem). For any ω ∈ ΩK/k, we have∑
x∈X

Resx ω = 0.

This can be proved using transcendental methods in characteristic zero (use the Lefschetz principle
to reduce to k = C, where we can check that Resx ω = 1

2πi

¸
γ
ω, where γ is a small counterclockwise

loop around x, and then finish with Stokes’ Theorem); but a purely algebraic proof can also be given,
and we do this in the final section §3.5. Given these ingredients, we are now ready to prove

Theorem 3.8 (Serre Duality). For any divisor D ∈ Div(X), there is an isomorphism

θD : Ω0(−D) → J(D).

In particular,
h1(D) = h0(ωX −D).

Proof. Consider the k-bilinear pairing

ΩK/k × AX → k, (ω, r) 7→ ⟨ω, r⟩ :=
∑
x∈X

Resx(rxω).

Now we make three observations:
(i) For any f ∈ K,ω ∈ ΩK/k and r ∈ AX , we have ⟨fω, r⟩ = ⟨ω, fr⟩.
(ii) From Theorem 3.7, it follows that for any f ∈ K ⊂ AX and ω ∈ ΩK/k we have that ⟨ω, f⟩ = 0.
(iii) For any D ∈ Div(X), if ω ∈ Ω0(−D) and r ∈ AX(D), then ⟨ω, r⟩ = 0.
It follows from these observations that the pairing above induces a K-linear map

θ : ΩK/k → J, ω 7→ ⟨ω, ·⟩,

which for any divisor D ∈ Div(X) takes Ω0(−D) ⊂ ΩK/k to J(D); denote the restriction of θ to
Ω0(−D) by θD. We claim that this θD is the required isomorphism, which we prove in two steps:
(a) For any D ∈ Div(X), we have

θ−1J(D) = Ω0(−D).

Indeed, the inclusion Ω0(−D) ⊆ θ−1J(D) is clear from the above discussion; to show the
opposite inclusion, suppose that ω /∈ Ω0(−D). It follows that there is an x ∈ X such that
vx(ω) < D(x). Pick a uniformizer t at x, and consider the element r ∈ AX(D) given by ry = 0
for y ̸= x and rx = t−vx(ω)−1. Then vx(rxω) = −1, whence θ(ω)(x) = Resx(rxω) ̸= 0, showing
θ(ω) /∈ J(D).

(b) Now we finish the proof. To show the injectivity of θD, it suffices to show that θ is injective,
and indeed if ω ∈ ΩK/k is such that θ(ω) = 0, then by (a) we have that

ω ∈
⋂

D∈Div(X)

θ ∈ J(D) =
⋂

D∈Div(X)

Ω0(−D) = {0}.

To show θD is surjective, it again suffices to show that θ is surjective: indeed, then if we pick an
α ∈ J(D), and we find an ω ∈ ΩK/k such that θ(ω) = α, then by (a) we get that ω ∈ Ω0(−D).
But, finally, the surjectivity of θ follows from the fact that it is an injective K-linear map from
a nonzero K-vector space ΩK/k to the K-vector space J which, by Theorem 3.4, has dimension
at most 1.

■

In fact, the above proof shows that the map θ : ΩK/k → J = (AX/K)× is an isomorphism, giving
us a different perspective on meromorphic differentials and adèles. Let’s now fill in all the missing
details.
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3.3 Invariance of Valuation

The purpose of the next three subsections is to fill in the gaps in the proofs from the previous section.
For this, we need to examine the DVR X,x for a closed x ∈ X, its fraction field K, and their x-adic
completions ̂X,x ⊂ K̂x more carefully.

For the proofs of Theorems 3.5 and 3.6, we will fix an x ∈ X. If t ∈ K is any uniformizer at x,
then t is transcendental over k and for each n ≥ 0, the natural map

k[t]/(tn) → X,x/m
n
X,x

is easily seen to be injective, and hence surjective for dimension reasons. In particular, we get an
isomorphism of completions

k[[t]] →∼ ̂X,x,

the inverse of which is given by “expansion in powers of t”. Let us denote this inverse map by
ψt : ̂X,x → k[[t]]. Then ψt extends to an isomorphism of the corresponding fraction fields

ψt : K̂x → k((t)).

The first observation to be made here is then

Lemma 3.9. Let x, t and ψt be as above.
(a) For any f ∈ K ⊂ K̂x, we have f ∈ X,x iff ψt(f) ∈ k[[t]].
(b) For any f ∈ X,x, we have df/dt ∈ X,x.

Recall that df/dt is by definition the unique element of K such that df = (df/dt) · dt ∈ ΩK/k,
which exists because ΩK/k has K-basis dt.

Proof.
(a) Clear because the map ψt preserves the valuation on both sides by construction, i.e. the

valuation vx on K̂x coincides under ψt with the t-adic valuation in k((t)).
(b) On the one hand, the map K → k((t)) given by f 7→ ψt(df/dt) is a k-derivation taking t 7→ 1.

On the other hand, if we consider the k-derivation ∂t of k((t)) defined by

∂t :
∑

n≫−∞

ant
n 7→

∑
n≫−∞

nant
n−1,

then map f 7→ ∂tψt(f) is also a k-derivation K → k((t)) that takes t 7→ 1. Since ΩK/k = K · dt,
it follows from the universal property defining ΩK/k that we must have

ψt

(
df

dt

)
= ∂tψt(f) (8)

for any f ∈ K. In particular, if f ∈ X,x, then by (a) we have ψt(f) ∈ k[[t]], from which it follows
that ∂tψt(f) ∈ k[[t]], from which it follows by part (a) and Equation (8) that df/dt ∈ X,x as
needed.

■

Let us now proceed to the proof of Theorem 3.5.

Theorem 3.5.
(a) The valuation of a nonzero meromorphic differential at a point is well-defined, i.e. if x ∈ X

and ω ∈ ΩK/k, if t, u ∈ K are any two uniformizers at x, and we write ω = f dt = g du
for some f, g ∈ K, then we have

vx(f) = vx(g).

(b) Given any nonzero ω ∈ ΩK/k, we have vx(ω) = 0 for all but finitely many x ∈ X.

Proof.
(a) Write u = ct for some c ∈ ×

X,x to get

fdt = g du = g

(
t
dc

dt
+ c

)
dt,

and so

f = g

(
t
dc

dt
+ c

)
.

Since dc/dt ∈ X,x by Lemma 3.9(b) and c ∈ ×
X,x, it follows that t(dc/dt) + c ∈ ×

X,x as well,
from which it follows that vx(f) = vx(g) as needed.

9



3 Serre Duality

(b) Note that if t ∈ K is a uniformizer at x ∈ K, then there is an open subset V in X such
that for all y ∈ V the function t − t(y) is a uniformizer at t. Indeed, if t : X → P1 denotes
the corresponding map to P1, then V is the locus where t is unramified, i.e. the complement
of the support of the relative cotangent sheaf ΩX/P1 , which is nonempty since it contains x.
Since dt = d(t− t(y)), the result follows immediately from the corresponding result for nonzero
f ∈ K.

■

3.4 Invariance of Residue

Let’s now move to Theorem 3.6. For this, fix as before a point x ∈ X. For convenience, let
,m, ̂, m̂, K̂ denote X,x,mX,x, ̂X,x, m̂X,x, K̂x respectively. For the invariance theorem, we need
to analyze the differentials of K̂, but it turns out that ΩK̂/k is too large for this purpose. The right

thing to look at in this case is the quotient Ω̂.

Definition 3.10. In the above setting, let Ω̂ := Ω̂x := ΩK̂/k/
⋂

N≥0 m̂
Nd̂.

With this, we can now differentiate term-by-term; this we really did already in Lemma 3.9, but
we did not have a coordinate-invariant notion of a differential in the completed setting there.

Lemma 3.11. Let t be a uniformizer, and let ψt : K̂ →∼ k((t)) be the isomorphism above. Then
for any f ∈ K̂, we have in Ω̂ the identity

df = f ′
tdt,

where f ′
t := ψ−1

t ∂tψt. In particular, Ω̂ is a 1-dimensional K̂-vector space spanned by dt.

In the following, we will make the identification ψt implicitly to simplify the notation. Then, given
any f ∈ K, if f =

∑
n≫−∞ ant

n, then f ′
t =

∑
n≫−∞ nant

n−1. This equality df = f ′
tdt clearly holds

(already in ΩK̂/k) if an = 0 for all but finitely many n; the point of this lemma is to show that it

remains true in general in Ω̂.

Proof. We have to show that df − f ′
tdt ∈ m̂Nd̂ for each N ≥ 0. For this, fix an N and write

f = g + tNh, where g =
∑

−∞≪n<N ant
n and h ∈ ̂. A straightforward computation shows that

df − f ′
tdt = (dg − g′tdt) + tN (dh− h′

tdt).

Since, as observed before the proof, g is Laurent polynomial in t and hence dg− g′tdt = 0, this shows
that df − f ′

tdt ∈ m̂Nd̂.
This shows that Ω̂ is spanned by dt; it only remains to show that Ω̂ is not zero, and for this it

suffices to show that there is a k-derivation D : K̂ → K̂ that is not identically zero such that its
extension to ΩK̂/k → K̂ vanishes identically on

⋂
m̂Nd̂. But now the map D given by Df := f ′

t

is such a map. Indeed, this is a k-derivation taking t 7→ 1, such that the extension to ΩK̂/k takes

d̂ to ̂. It follows that the extension takes m̂Nd̂ to m̂N for each N ≥ 0, and hence
⋂

m̂Nd̂ to⋂
m̂N = 0, where in the last step we have used the Krull Intersection Theorem on the Noetherian

local ring ̂.
■

From now on, by a differential on K̂ we will mean, by default, an element of Ω̂, and use the
K-embedding ΩK/k ↪→ Ω̂. Given this, for any uniformizer t we can define a k-linear map

Rest : Ω̂ → k

given by writing any element ω ∈ Ω̂ as ω = fdt for some unique f ∈ K̂ (using Lemma 3.11),
expanding ψt(f) =

∑
n≫−∞ ant

n and then defining Rest(ω) := a−1. Here are some basic properties
of this operation:

Lemma 3.12. In the above setting, fix a uniformizer t.
(a) The map Rest : Ω̂ → k is k-linear, and Rest(ω) = 0 if ω ∈ ΩK/k with v(ω) ≥ 0.

(b) For any g ∈ K̂, we have Rest(dg) = 0.
(c) For any g ∈ K×, we have

Rest
(
g−1dg

)
= v(g).

10



3 Serre Duality

Proof. The statement (a) is clear, as is (b) thanks to Lemma 3.11, since the coefficient of t−1 in g′t
is zero. For (c), write g = tnu, where n = v(g) and u ∈ ×; then

g−1dg =

(
nt−1 + u−1 du

dt

)
dt.

The result follows, since u−1 ∈ × and du/dt ∈  (Lemma 3.9(b)) tells us along with part (a) that

Rest

(
u−1 du

dt
dt

)
= 0.

■

Remark 3.13. In fact, the function v : ΩK/k → Z extends to a function v : Ω̂ → Z, and then we

have Rest(ω) = 0 if ω ∈ Ω̂ with v(ω) ≥ 0, slightly generalizing the statement in (a). Similarly, the
statement in (c) holds for all g ∈ K̂×. However, we do not need this in what follows, so this can be
safely left as an exercise to the diligent reader.

We are now ready to prove the main result of this section.

Theorem 3.6 (Invariance of Residue). The residue of a meromorphic differential at a point is
well-defined: if x ∈ X and ω ∈ ΩK/k, if t, u ∈ K are uniformizers at x, and

ω =
∑

n≫−∞

ant
ndt =

∑
m≫−∞

bmu
mdu,

then a−1 = b−1.

Proof. Let ω0 :=
∑

m≥0 bmu
mdu, so that

ω =
∑

−∞≪m<0

bmu
mdu+ ω0

with v(ω0) ≥ 0. Then b−1 = Resu(ω) and by Lemma 3.12(a) we have

a−1 = Rest(ω) =
∑

−∞≪m<0

bm Rest(u
mdu).

Since Rest(u
−1du) = 1 by Lemma 3.12(c), it suffices to show that Rest(u

−ndu) = 0 for n ≥ 2. When
ch k = 0, we can use that

u−ndu = d

(
u1−n

1− n

)
along with Lemma 3.12(b) to finish the proof. In positive characteristic, we may multiply u by a
scalar to write u as

u = t(1 + α1t+ α2t
2 + · · · )

for some αi ∈ k. Then for each n ≥ 1 we have

u−n = t−n(1 + β1t+ β2t
2 + β3t

3 + · · · ),

where βj ∈ Z[α1, . . . , αj ] for each j ≥ 1 (so, for instance, β1 = −nα1 and β2 =
(
n+1
2

)
α2
1 − nα2).

Next,
du = (1 + 2α1t+ 3α2t

2 + · · · )dt
and hence

u−ndu = t−ndt · (1 + γ1t+ γ2t
2 + · · · )

for some γj ∈ Z[α1, . . . , αj ] for each j ≥ 1. Then

Rest(u
−ndu) = γn−1.

Now, by what we have already shown, γn−1(α1, . . . , αn−1) = 0 whenever the αi lie in a field of
characteristic zero; this shows that the polynomial γn−1 is identically zero, independent of the
characteristic. ■

Briefly, in the last step, we have used what is called the “principle of prolongation of algebraic
identities” to go from zero characteristic to positive characteristic.
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3.5 The Residue Theorem

The final piece of the puzzle now remaining is the Residue Theorem; again we closely follow [2].

Theorem 3.7 (Residue Theorem). For any ω ∈ ΩK/k, we have∑
x∈X

Resx ω = 0.

The proof strategy will be to first show this for the curve X = P1
k using explicit calculations, and

then reduce to this case by studying morphisms X → P1
k for arbitrary X.

Lemma 3.14. If X = P1
k, then for any ω ∈ ΩK/k we have∑

x∈X

Resx ω = 0.

Proof. Let t be a local coordinate on P1
k, so that K = k(t), and ΩK/t = Kdt. Write ω = f(t) dt for

f(t) ∈ k(t). By expanding f(t) in partial fractions (and using that k = k), it suffices to show the
result when f(t) = tn or f(t) = (t− a)−n for n ≥ 1 and a ∈ k. In the first case, f has a unique pole
at t = ∞; using the local coordinate u = 1/t near this point, we see that ω = u−n−2du, and hence
Res∞ ω = 0. Similarly, if f(t) = (t− a)−n and n = 1, then there are poles at t = a and t = ∞ with
residues 1 and −1 respectively, and if n ≥ 2, then there is a unique pole at t = a with residue 0; in
all cases, we are done. ■

Now let X,Y be any curves, and φ : X → Y a nonconstant separable morphism of curves. If
K = k(X) and L = k(Y ) are the corresponding function fields, then the morphism φ expresses K/L
as a finite separable extension, from which we get a corresponding isomorphism

K ⊗L ΩL/k →∼ ΩK/k.

The trace map TrKL : K → L is L-linear, and therefore also gives rise to a corresponding trace map
TrKL ⊗ idΩL/k

: ΩK/k
∼= K ⊗L ΩL/k → L⊗L ΩL/k

∼= ΩL/k, which we will denote also by

TrKL : ΩK/k → ΩL/k.

For instance, if Y = P1
k with coordinate t, so that φ = t considered as a function on X is a separating

transcendence basis for K/k, and any ω ∈ ΩK/k can be written as f dt for some f ∈ K, then

TrKL (ω) = TrKL (f dt) = TrKL (f) dt.

The last remaining step is.

Lemma 3.15. In the above set-up, for any ω ∈ ΩK/k and y ∈ Y we have

Resy Tr
K
L ω =

∑
x∈φ−1(y)

Resx ω.

We shall prove this lemma momentarily; first, we prove Theorem 3.7 assuming this result.

Proof of Theorem 3.7, assuming Lemma 3.15. Any curve X admits a nonconstant separable mor-
phism to Y = P1

k (e.g. take a uniformizer at a point x ∈ X and consider it as a rational function on
X); let φ : X → Y denote one such morphism, and consider the finite separable extension of function
fields as above with K = k(X) and L = k(Y ) ∼= k(t). Now φ takes the generic point of X to that of
Y , and hence takes closed points of X to closed points of Y , and the corresponding map on closed
points is surjective. Therefore, dividing the sum into fibers, we conclude that for any ω ∈ ΩK/k we
have ∑

x∈X

Resx ω =
∑
y∈Y

∑
x∈φ−1(y)

Resx ω.

By Lemma 3.15, this last sum can be written as∑
y∈Y

Resy Tr
K
L ω,

and this is zero because of Lemma 3.14 applied to the form TrKL ω. ■

It remains only to prove Lemma 3.15.
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Proof of Lemma 3.15. Fix a y ∈ Y , and let L̂y denote the y-adic completion of L, i.e. the completion
of L with respect to the valuation vy. By the standard theory of extensions of Dedekind domains
in finite separable extensions, we know that the valuations of K dividing vy correspond bijectively
to the points x ∈ φ−1(y) in the sense that for each x ∈ φ−1(y) there is an integer ex ≥ 1 such that
vx|L = ex · vy, the completion K̂x is an extension of L̂y of degree ex, and there is an isomorphism

K̂y := K ⊗L L̂y
∼=

∏
x∈φ∈(y)

K̂x,

whence
∑

x∈φ−1(y) ex = [K : L].4 From this, it follows that for any f ∈ K we have

TrKL (f) = Tr
K̂y

L̂y
(f) =

∑
x∈φ−1(y)

TrK̂x

L̂y
(f).

Now if u ∈ L is a separating transcendence basis over k, then u◦φ ∈ K is a separating transcendence
basis as well, and the map

TrKL : ΩK/k → ΩL/k takes f d(u ◦ φ) 7→ TrKL (f) du.

Therefore, to show the result, it suffices to show that for any y ∈ Y , any point x ∈ φ−1(y) over y,
and any f ∈ K, we have

Resy Tr
K̂x

L̂y
(f) du = Resx f d(u ◦ φ) ,

where TrK̂x

L̂y
(f) ∈ L̂y, and we are considering TrK̂x

L̂y
(f) dt to be an element of L̂y ⊗L ΩL/k

∼= Ω̂y.

Now picking a uniformizer u for Y at y and t for X at x reduces the problem to the following
local computation5: if L̂ = k((u)) and K̂/L̂ is a finite separable extension with K̂ = k((t)), then for
any f ∈ K̂ we have to show that

Rest(f du) = Resu
(
TrK̂L̂ (f) du

)
.

Note that if e := [K̂ : L̂], then e = vL̂(u) and the extension K̂/L̂ is totally ramified; by scaling u, we
may assume that u is of the form

u = te +
∑
j>e

αjt
j

for some αj ∈ k. In particular, du = u′
tdt with vt(u

′
t) ≥ 0. This allows us one further reduction:

writing f = g + h for a Laurent polynomial g in t and h with vt(h) ≥ 0, then vu
(
TrK̂

L̂
(h)
)
≥ 0 as

well, and so we see that

Rest(f du) = Rest(g du) + Rest(hu
′
t dt) = Rest(g du) + 0,

and

Resu
(
TrK̂L̂ (f) du

)
= Resu

(
TrK̂L̂ (g) du

)
+Resu

(
TrK̂L̂ (h) du

)
= Resu

(
TrK̂L̂ (g) du

)
+ 0,

so it suffices to show the result for the Laurent polynomial g. By linearity, it suffices to show the
result for the monomial f = tn for n ∈ Z.

First suppose that ch k ∤ e (e.g. if ch k = 0), so that the extension is tamely ramified; then there
is a uniformizer t′ of K̂ such that u = (t′)e (see [8, Chapter II, Proposition 12, p. 52-53]), and using
Theorem 3.6 we may replace t by t′ in the whole of the above discussion to assume that u = te (i.e.
αj = 0 for each j > e) and that f = tn for some n ∈ Z, so that

du = ete−1 dt.

Then, on the one hand we have

Rest(f du) = Rest(et
n+e−1dt) =

{
e if n = −e, and

0, else.

On the other hand, 1, t, . . . , te−1 is a basis for K̂/L̂, and so it is easy to see that

TrK̂L̂ (tn) =

{
eun/e, if e | n, and

0, else,

4Here we are using that the base field k is algebraically closed, so there are no nontrivial extensions of the residue fields;
in general, in Lemma 3.15, we need to weight each Resx ω by the degree [κ(x) : κ(y)] of the corresponding residue fields.

5Here we are suppressing the letter φ for convenience.
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and we are done. This finishes the proof in characteristic zero. In positive characteristic, we argue
as in the proof of Theorem 3.6 as follows.

As before, 1, t, . . . , te−1 is a basis for K̂/L̂. For a fixed n ∈ Z and each p with 0 ≤ p ≤ e− 1, we
can write

tntp =

e−1∑
q=0

βn,p,qt
q

for some βn,p,q ∈ k((u)); if we expand βn,p,q =
∑

−∞≪r βn,p,q,ru
r with βn,p,q,r ∈ Z[αj ]j>e, then

TrK̂L̂ (tn) =

e−1∑
p=0

βn,p,p

and

Resu
(
TrK̂L̂ (tn) du

)
=

e−1∑
p=0

βn,p,p,−1.

But now

du =

(
ete−1 +

∑
j>e

jαjt
j−1

)
dt

so that
Rest(t

ndu) = −nα−n

with the convention that αe = 1 and αj = 0 if j < e. The required identity is then

−nα−n =

e−1∑
p=0

βn,p,p,−1.

Therefore, the result follows as before from the “principle of prolongation of algebraic identities”
applied to the polynomial

nα−n +

e−1∑
p=0

βn,p,p,−1 ∈ Z[αj ]j>e.

Namely, this polynomial vanishes identically for all values of αj in characteristic zero, and hence
must be the zero polynomial. This finishes the proof of the lemma, and of all the results in this
article.

■
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