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Abstract

This paper is written in fulfilment of the requirements of Math 262A: Quantum
Theory from a Geometric Perspective taught at Harvard in the Fall 2023 semester by
Prof. Dan Freed. In this paper, we develop the basic theory of Clifford algebras and
the (s)pin groups, and build up to the result that the natural map ρ : Spinn → SOn

gives us an explicit realization of the universal cover of SOn for n ≥ 3.
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1 A Little Superalgebra

1 A Little Superalgebra

Throughout, we work over a fixed field k of characteristic other than 2. We assume that
all algebras are unital and associative.

1.1 Super Vector Spaces

Lemma/Definition 1.1.1. On a vector space V over k, the following pieces of data are
equivalent:

(a) a Z/2-grading: subspaces V 0, V 1 ⊂ V such that V is the internal direct sum of V 0

and V 1, i.e. such that the natural map V 0 ⊕ V 1 → V is an isomorphism;
(b) an endomorphism αV : V → V such that α2

V = 1V ; and
(c) a lift of the k-module structure on V to a k[x]/(x2 − 1)-module structure.

A k-vector space V with this additional structure is called a super vector space over k.
Further:

• The endomorphism αV of (b) above is called the grading morphism of the super
vector space V .

• Elements of V 0∪V 1 are called homogeneous and for a nonzero homogeneous v ∈ V ,
we define the parity of v to be i ∈ Z/2 if v ∈ V i, and denote it by |v|.

Proof. For (a) ⇔ (b), from a Z/2-grading V 0, V 1 ⊂ V , define αV := 1V 0 ⊕ −1V 1 , and
from an αV , recover V i for i ∈ Z/2 as (−1)i-eigenspaces of αV .

1 The structures in (b)
and (c) are clearly equivalent. ■

Definition 1.1.2. Let V,W be super vector spaces over k. A morphism of super vector
spaces T : V → W is a k-linear map that satisfies the following equivalent conditions:

(a) T respects the Z/2-grading, i.e. T (V i) ⊂ W i for i ∈ Z/2;
(b) T commutes with the grading morphisms, i.e. that TαV = αWT ; and
(c) T lifts to a k[x]/(x2 − 1)-module homomorphism.

We denote by SVeck be the category of super vector spaces over k.

Remark 1. When char k = 2, the accepted definition is the one in (a).

Definition 1.1.3. If V and W are super vector spaces over k, then their tensor product
V ⊗W acquires a super vector space structure via

(V ⊗W )k =
⊕
i+j=k

V i ⊗W k

for i, j, k ∈ Z/2. This amounts to taking αV⊗W = αV ⊗ αW . If we define the swap map

sVW : V ⊗W → W ⊗ V, v ⊗ w 7→ (−1)|v|·|w|w ⊗ v

for homogeneous v ∈ V and w ∈ W , then this gives SVeck the structure of a symmetric
monoidal category with the unit being k, thought of as a super vector space with k0 = k
and k1 = 0.

1The diagonalizability of an endomorphism αV satisfying α2
V = 1 needs char k ̸= 2. A simple coun-

terexample where this fails in char k = 2 is provided by taking V = k2 and αV :=

[
1 1
0 1

]
.
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1 A Little Superalgebra

1.2 Superalgebras

Definition 1.2.1.

(a) A superalgebra A over k, or a k-superalgebra, is a super vector space A over k that
is a k-algebra such that the k-linear multiplication map A⊗A → A is a morphism
of super vector spaces, i.e. such that

AiAj ⊂ Ai+j

for i, j ∈ Z/2.
(b) A morphism of k-superalgebras f : A → B is a k-algebra homomorphism that is also

a linear map of super vector spaces over k.

We let SAlgk denote the category of k-superalgebras.

(c) Let A be a k-superalgebra. The supercommutator of two elements x, y ∈ A is defined
for homogeneous x and y as

[x, y] := xy − (−1)|x||y|yx

and extended to be bilinear. The center of A is defined to be

Z(A) := {x ∈ A : [x, y] = 0 for all y ∈ A}.

A superalgebra A is said to be supercommutative if Z(A) = A.
(d) If A and B are two k-superalgebras, then the tensor product A ⊗ B obtains the

structure of a superalgebra determined by the rule

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|(a1a2 ⊗ b1b2)

for homogeneous a1, a2 ∈ A and b1, b2 ∈ B. The resulting k-superalgebra is called
the super tensor product of A and B and is denoted A⊗̂B.

Here’s a universal property satisfied by the supertensor product, the proof of
which is clear:

Lemma 1.2.2. Let A and B be k-superalgebras. Then there are natural k-superalgebra
morphisms ιA : A → A⊗̂B and ιB : B → A⊗̂B given by ιA(a) = a ⊗ 1 and ιB(b) =
1 ⊗ b. These have the property that if a ∈ A and b ∈ B are any elements, then their
supercommutator in A⊗̂B vanishes, i.e.

[ιA(a), ιB(b)] = 0.

Further, A⊗̂B is universal with respect to this property, i.e. if C is any k-superalegbra
and φA : A → C and φB : B → C morphisms of k-superalgebras such that for all a ∈ A
and b ∈ B we have that

[φA(a), φB(b)] = 0,

then there is a unique k-superalgebra morphism φ : A⊗̂B → C such that φA = φ ◦ ιA
and φB = φ ◦ ιB.
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1 A Little Superalgebra

Example 1.2.3. If V =
⊕

n∈Z V
(n) is any Z-graded k-vector space, then writing

V 0 :=
⊕
n∈Z

V (2n) and V 1 :=
⊕
n∈Z

V (2n+1)

gives V the structure of a super vector space. This gives a natural forgetful functor
GrVeck → SVeck.

2

Example 1.2.4. In virtue of the previous example, associated to any (ungraded) vector
space V , we have three superalgebras: the tensor algebra TV , the symmetric algebra
SymV , and the exterior algebra ΛV . Of these, only the last is supercommutative.

Example 1.2.5. If X is any topological space, then the cohomology algebra H∗(X, k)
with coefficients in any field k equipped with the cup product is a supercommutative
k-superalgebra.

Finally, we’ll need the notion of the graded opposite. Recall that if A is an
(ungraded) k-algebra, then the opposite Aop is defined to be the k-algebra with the same
underlying vector space but multiplication given by µop = µ ◦ sAA where sAA : A⊗ A →
A⊗ A is the (ungraded) swap map. The same can now be done with superalgebras:

Definition 1.2.6. Let A be a k-superalgebra. Then the opposite superalgebra to A,
denote Â is the k-algebra with the same underlying super vector space structure but
multiplication given by µ̂ = µ ◦ sAA, where sAA : A⊗A → A⊗A is now the graded swap
map, i.e. multiplication in Â is defined for homogeneous x, y ∈ A by the rule

µ̂(x, y) := (−1)|x||y|yx.

2As an aside, this amounts to the restriction of a Gm,k-representation to the subgroup {±1} ⊂ Gm,k.
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2 Clifford Algebras

2 Clifford Algebras

2.1 Quadratic Spaces

As before, k is a field with char k ̸= 2.

Lemma/Definition 2.1.1. On a vector space V over k, the following pieces of data are
equivalent:

(a) a symmetric k-bilinear form ⟨·, ·⟩;
(b) a quadratic form on V , i.e. a map q : V → k that is

i. homogeneous of degree two, i.e. such that for all v ∈ V and t ∈ k we have
q(tv) = t2q(v), and

ii. such that the polarization map

V × V → k, (v, w) 7→ q(v + w)− q(v)− q(w)

is a k-bilinear form on V .

A k-vector space V with this additional structure is called a quadratic space over k, often
denoted (V, q). Further, in this case:

(a) An element v ∈ V is said to be isotropic if q(v) = 0.
(b) The quadratic space (V, q) is said to be nondegenerate if the corresponding bilinear

form ⟨·, ·⟩ is, which is to say that the linear map

V → V ∗, v 7→ ⟨v, ·⟩

is isomorphism.

Proof. From ⟨·, ·⟩, we get q as q(v) := ⟨v, v⟩, and from q we recover ⟨·, ·⟩ by the parallelo-
gram identity

⟨v, w⟩ = 1

2
(q(v + w)− q(v)− q(w)) . (1)

■

Definition 2.1.2. Let (V, qV ) and (W, qW ) be quadratic spaces over k. A morphism of
quadratic spaces T : (V, qV ) → (W, qW ) is a k-linear map T : V → W that satisfies the
following equivalent conditions:

(a) T preserves the symmetric bilinear forms on V and W , i.e. for all v, v′ ∈ V , we
have

⟨v, v′⟩V = ⟨Tv, Tv′⟩W ,

(b) T satisfies T ∗qW = qV , which is to say that for all v ∈ V we have

qW (Tv) = qV (v).

The equivalence of (a) and (b) is clear from the parallelogram identity (1) (recall
that we’re in char k ̸= 2). We denote by Quadk the category of quadratic spaces over k,
and FDQuadndk the category of finite dimensional nondegenerate quadratic spaces over k.

Remark 2. As is well-known, over fields k with char k = 2, the notions of symmetric
bilinear forms and quadratic forms are distinct. In this case, a quadratic space is defined
to be a pair (V, q) of a vector space with a quadratic form on it.

5



2 Clifford Algebras

Lemma 2.1.3. Let (V, q) ∈ FDQuadndk , where char k ̸= 2. Then the quadratic form q on
V can be diagonalized: there is a basis v1, . . . , vn of V (where dimV = n) such that

⟨vi, vj⟩ = q(vi)δij

for 1 ≤ i, j ≤ n.

Proof. If V ̸= 0, there is some v ∈ V such that q(v) ̸= 0 (else by the parallelogram
identity, ⟨·, ·⟩ ≡ 0); define this to be v1. Then it is easy to see that ⟨v⟩⊥ ⊕ ⟨v⟩ →∼ V , and
that the restriction of q to ⟨v⟩⊥ is nondegenerate as well, so we are done by induction. ■

Definition 2.1.4.

(a) The automorphism group of the quadratic space (V, q) in Quadk is called the or-
thogonal group of (V, q), denoted O(V, q), i.e.

O(V, q) := AutQuadk(V, q).

(b) When V is finite dimensional, we define the special orthogonal group SO(V, q) of
(V, q) to be the subgroup of orientation-preserving automorphisms3 of O(V, q):

SO(V, q) := O(V, q) ∩ SL(V ).

Example 2.1.5. Let (V, q) be a quadratic space. For a non-isotropic v ∈ V , define the
reflection in the hyperplane perpendicular to v to be the linear map ρv : V → V defined by

ρv(w) = w − 2
⟨v, w⟩
⟨v, v⟩

v,

for w ∈ V . Then the map ρv ∈ O(V, q)∖ SO(V, q), and indeed det ρv = −1.4

Finally, we will need:

Definition 2.1.6. For quadratic spaces (V, qV ) and (W, qW ), their orthogonal direct sum,
denoted

(V ⊕W, qV ⊕ qW )

is the quadratic space with underlying vector space V ⊕W and quadratic form given by

(qV ⊕ qW )(v, w) = qV (v) + qW (w) (2)

for v ∈ V and w ∈ W . This admits natural maps of quadratic spaces (V, qV ), (W, qW ) →
(V ⊕W, qV ⊕ qW ) with the property (2), or equivalently that for all v ∈ V and w ∈ W
that ⟨v, w⟩ = 0, and is universal with respect to these properties.

3Note that you do not need to choose an orientation to talk about orientation-preserving automor-
phisms.

4Since ρv(v) = −v, if we complete v to a basis v = v1, v2, . . . , vn for V , then we have

(det ρv)(v1 ∧ · · · ∧ vn) = −v ∧
(
v2 − 2

⟨v, v2⟩
⟨v, v⟩

v

)
∧ · · · ∧

(
vn − 2

⟨v, vn⟩
⟨v, v⟩

v

)
= −v1 ∧ · · · ∧ vn,

so that det ρv = −1.
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2 Clifford Algebras

2.2 Clifford Algebras: Definition and the Canonical Filtration

In what follows, it will be helpful to have a slight generalization of the notion of a
quadratic space.

Definition 2.2.1.

(a) A generalized quadratic space is a triple (V,A, q), where V is a vector space over k,
and A is an associative k-algebra, and q is an A-valued quadratic form on V , i.e. a
map q : V → A that is homogeneous of degree two and such that the polarization
map is an A-valued k-bilinear map on V . As before, this is equivalent to the data
of an A-valued symmetric k-bilinear form on V .

(b) A morphism of generalized quadratic spaces (V,A, qV ) → (W,B, qW ) is the data of
a linear map T : V → W and a k-algebra homomorphism φ : A → B such that the
diagram

V A

W B

qV

T φ

qW

commutes, i.e. such that for all v ∈ V we have qW (Tv) = φ(qV (v)).

This gives us the category GQuadk of generalized quadratic spaces over k.

Example 2.2.2. Any ordinary quadratic space (V, q) over k is of course a generalized
quadratic space by taking A = k, and this gives us a fully faithful embedding of categories
Quadk ↪→ GQuadk.

Example 2.2.3. Suppose that A is a k-algebra. Then the squaring map sqA : A → A
defined by

sqA(x) := x2

for x ∈ A is an A-valued quadratic form on the underlying vector space of A. Hence,
there is a forgetful functor F : Algk → GQuadk given by taking A to (A,A, sqA). As we
shall now see, this functor admits a left adjoint.

Definition 2.2.4. The Clifford algebra functor Cl : GQuadk → Algk is the left adjoint to
the forgetful functor F : Algk → GQuadk. Explicitly, given a generalized quadratic space
(V,A, q) over k, the Clifford algebra Cl(V,A, q) is an associative k-algebra along with a
morphism of generalized quadratic spaces ι : (V,A, q) → F (Cl(V,A, q)), i.e. a k-linear
map ι : V → Cl(V,A, q) and a k-algebra homomorphism φ : A → Cl(V,A, q) such that
for all v ∈ V ,

ι(v)2 = φ(q(v)), (3)

which is universal with respect to this property and functorial in (V,A, q). Put another
way, we have for any quadratic space (V,A, q) and associative k-algebra B a natural
isomorphism

HomGQuadk ((V,A, q), F (B)) →∼ HomAlgk(Cl(V,A, q), B).

Clearly, if Cl(V,A, q) exists, it is unique up to unique isomorphism of k-algebras
commuting with the morphism ι : (V,A, q) → F (Cl(V,A, q)). One can construct Cl(V,A, q)
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2 Clifford Algebras

explicitly as the quotient of TV ∗k A, the free k-product of the tensor algebra TV of V
and A by the two-sided ideal generated by elements (v ⊗ v) ∗ 1− 1 ∗ q(v) for v ∈ V , and
this suffices to show existence.5

The restriction of Cl to the full subcategory Quadk is still called the Clifford
algebra functor Cl : Quadk → Algk, and the Clifford algebra associated to a quadratic
space (V, q) is denoted Cl(V, q). The above construction gives us a quotient map π :
TV ↠ Cl(V, q), which will be of use sometimes. We shall see in Theorem 2.2.6 below
that the map ι in this case is an injection, so we shall henceforth suppress the notation
ι and identify V with its image in Cl(V, q). The defining equation (3) implies that for
v, w ∈ V , we have in Cl(V, q) that

v · w + w · v = 2⟨v, w⟩, (4)

and (4) implies (3) by taking v = w (and using that 2 ∈ k×).

Example 2.2.5. We have a functor Z : Veck → Quadk given by taking a vector space
V to the quadratic space (V, 0) with zero quadratic form. The composite functor Cl ◦Z :
Veck → Algk is clearly isomorphic to the exterior algebra functor Λ.

The exterior algebra ΛV has more structure than just being an associative k-
algebra: it is Z-graded and filtered. We next investigate the existence of such additional
structure on general Clifford algebras. Given the natural map V ↪→ Cl(V, q), we get a
filtration F r Cl(V, q) on Cl(V, q) with

0 ⊆ F 0Cl(V, q) ⊆ F 1Cl(V, q) ⊆ · · · ,

where for r ≥ 0, the subspace F r Cl(V, q) is generated by elements of the form
v1 · · · vs for s ≤ r and v0, . . . , vs ∈ V . Clearly, this is the image of the usual filtration
F •TV on TV under the quotient map π : TV → Cl(V, q). This filtration on Cl(V, q) gives
the structure of a filtered k-algebra, and hence we may look at the associated graded
k-algebra GrCl(V, q).

Theorem 2.2.6. Let (V, q) be a quadratic space. The associated graded k-algebra of
the Clifford algebra of (V, q) is naturally isomorphic to the exterior algebra of V , i.e. we
have a functorial isomorphism of graded associative k-algebras

ΛV ∼= GrCl(V, q).

Further:

(a) The above isomorphism commutes with the natural maps V →∼ Λ1V and V
ι−→

F 1Cl(V, q) → Gr1Cl(V, q). In particular, the natural map ι : V → Cl(V, q) is
injective.

(b) The Clifford algebra Cl(V, q) is a finite-dimensional k-algebra, and indeed

dimCl(V, q) = 2dimV .

Proof. Since GrCl(V, q) is an associative k-algebra with the property that the natural
map j : V → GrCl(V, q) described above satisfies j(v)2 = 0 for all v ∈ V , the universal

5As is, however, usual with adjoint functors of this sort, or equivalently universal properties, there is
no one “correct” construction of the Clifford algebra–all constructions are equally valid.
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2 Clifford Algebras

property defining ΛV gives us a graded k-algebra homomorphism ΛV → GrCl(V, q). To
go the other direction, we produce a Clifford action on ΛV . For any v ∈ V , we get two
endomorphisms of ΛV : we have exterior multiplication by v, i.e. v ∧−, which we denote
by λv, and contraction with the covector ⟨v, ·⟩, which we denote by ιv; this latter is the
unique odd derivation of ΛV that satisfies

ιv(w) = ⟨v, w⟩

for v, w ∈ V . It is immediate to see that for any v ∈ V , we have λ2
v = ι2v = 0 and that

λv · ιv + ιv · λv = q(v) · 1ΛV ∈ End(ΛV ).

It follows that the linear map V → End(ΛV ) given by v 7→ λv + ιv extends to a k-
algebra homomorphism η : Cl(V, q) → End(ΛV ). The equation (λv + ιv)(t) = tv for
v ∈ V and t ∈ k = Λ0V shows that the map V → End(ΛV ), and hence V → Cl(V, q)
also, is injective. The map Cl(V, q) → ΛV given by ξ 7→ η(ξ)(1) is then a k-algebra
homomorphism which is easily seen to be filtered, and hence descends to a k-algebra
morphism GrCl(V, q) → GrΛV ∼= ΛV , which is the inverse of the above map. Now, the
result in (a) is clear from the constructions, and the result in (b) follows from

dimCl(V, q) = dimGrCl(V, q) = dimΛV = 2dimV .

■

Remark 3. The above statement is still true in char k = 2; for a proof, see [1, Prop. 1.2].

Remark 4. The linear isomorphism Cl(V, q) → ΛV given by ξ 7→ η(ξ)(1) is often called the
symbol map, and its inverse is called the quantization map. Note that these are not algebra
isomorphisms. Given a quadratic space (V, q), we can define for t ∈ k the quadratic form
qt on V to be t · q, and this gives us a family of quadratic spaces (V, qt), with the family
of Clifford algebras Cl(V, qt), which are all isomorphic to Cl(V, q) for t ̸= 0 (when k = C,
say) degenerating at t = 0 to the exterior algebra Cl(V, q0) = Cl(V, 0) = ΛV . Because
of this, the Clifford algebra Cl(V, q) is often called a quantum deformation of the exterior
algebra ΛV .

2.3 Clifford Algebras as Superalgebras

Any Clifford algebra Cl(V, q) has the structure of a k-superalgebra. There are several
ways of thinking about this structure:

(a) Explicitly define Cl0(V, q) to be the span of v1 · · · v2r for vi ∈ V and r ≥ 0, and
Cl1(V, q) to be the span of v1 · · · v2r+1 for vi ∈ V and r ≥ 0. Equivalently, this is
the superalgebra structure induced on Cl(V, q) by that on TV under the projection
π because the ideal ⟨v ⊗ v − q(v)⟩v∈V is generated by elements in (TV )0.

(b) By the functoriality of the Clifford algebra construction, we get for any quadratic
space (V, q) a natural group homomorphism

O(V, q) → AutAlgk Cl(V, q).

In particular, the negation map −1 ∈ O(V, q) gives rise to a Clifford algebra auto-
morphism α : Cl(V, q) → Cl(V, q) such that α2 = 1V . This is a grading morphism.
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2 Clifford Algebras

Supercommutativity of this superalgebra is equivalent to q = 0, and hence
Clifford algebras (other than exterior algebras) are not supercommutative in general.
If T : (V, q) → (V ′, q′) is a morphism of quadratic spaces, then the induced map of
Clifford algebras Cl(T ) : Cl(V, q) → Cl(V ′, q′) is clearly a morphism of k-superalgebras.
In this way, the the Clifford algebra functor Cl can be lifted to a functor to SAlgk. The
importance of this additional structure comes from:

Lemma 2.3.1. For quadratic spaces (V, qV ) and (W, qW ), there is a natural isomorphism
of k-superalgebras

Cl(V ⊕W, qV ⊕ qW ) → Cl(V, qV )⊗̂Cl(W, qW ).

Proof. The algebra Cl(V, qV )⊗̂Cl(W, qW ) is an associative k-algebra and the linear map

V ⊕W → Cl(V, qV )⊗̂Cl(W, qW ), (v, w) 7→ v ⊗ 1 + 1⊗ w

has the property that
(v ⊗ 1 + 1⊗ w)2 = (qV ⊕ qW )(v, w),

where cross terms cancel by the definition of the super tensor product on the right side.
Therefore, by the universal property, there is a k-algebra morphism

Cl(V ⊕W, qV ⊕ qW ) → Cl(V, qV )⊗̂Cl(W, qW ). (5)

extending this linear map. On the other hand, the inclusions

(V, qV ), (W, qW ) ↪→ (V ⊕W, qV ⊕ qW )

induce k-superalgebra morphisms

Cl(V, qV ),Cl(W, qW ) ↪→ Cl(V ⊕W, qV ⊕ qW )

with the property that for ξ ∈ Cl(V, qV ) and ζ ∈ Cl(W, qW ) the supercommutator between
ξ and ζ vanishes, i.e.

[ξ, ζ] = 0 ∈ Cl(V ⊕W, qV ⊕ qW ).

To see why this is true, note that it hoods for ξ ∈ V and ζ ∈ W from Equation (4),
and follows in general from that special case and the fact that V (resp. W ) generates
Cl(V, qV ) (resp. Cl(W, qW )) as a k-algebra. It follows from Lemma 1.2.2 that there is a
unique k-superalgebra morphism

Cl(V, qV )⊗̂Cl(W, qW ) → Cl(V ⊕W, qV ⊕ qW )

that commutes with the maps ιCl(V,qV ) and ιCl(W,qW ), and this is the inverse to the mor-
phism (5). ■

Remark 5. The opposite superalgebra to a Clifford algebra of a quadratic space (V, q) is
that of (V, q−1) := (V,−q), i.e.

Ĉl(V, q) = Cl(V,−q).

Finally, we’ll need:
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2 Clifford Algebras

Lemma 2.3.2. Let (V, q) ∈ FDQuadndk . If ξ ∈ Cl(V, q) satisfies [ξ, v] = 0 for all v ∈ V ,
then ξ ∈ k. In particular, the center Z(Cl(V, q)) = k.

Proof. Writing ξ = ξ0 + ξ1 for ξi ∈ Cli(V, q), the condition [ξ, v] = 0 says that

ξ0v = vξ0 and ξ1v = −vξ1 for all v ∈ V . (6)

By Lemma 2.1.3, we can produce a basis v1, . . . , vn of V such that q(vi) ̸= 0 for i = 1, . . . , n
but ⟨vi, vj⟩ = 0 for i ̸= j. Using this basis, we can write ξ0 = η0 + v1η

1 where the even η0

and odd η1 only involve v2, . . . , vn. In particular, by orthogonality, we have

[v1, η
0] = [v1, η

1] = 0.

Setting v = v1 in (6) gives us and using this supercommutativity, we get

v1η
0 − v21η

1 = η0v1 + v1η
1v1 = (η0 + v1η

1)v1 = v1(η
0 + v1η

1) = v1η
0 + v21η

1

so that
η1 = q(v1)

−1v21η
1 = 0.

Therefore, ξ0 = η0 doesn’t involve v1. Proceeding inductively, we conclude that ξ
0 doesn’t

involve any vj, and hence ξ0 ∈ k. Similarly, we write ξ1 = ζ1+v1ζ
0 for odd ζ1 and even ζ0

involving only v2, . . . , vn, and from this conclude as before that ζ0 = 0. This shows that
ξ1 doesn’t involve v1, and, as before, inductively, that ξ

1 doesn’t involve any vj. But ξ
1 is

odd, so the only way this can happen is if ξ1 = 0. This tells us that ξ ∈ k as needed. ■

Remark 6. This result is not true when the quadratic space (V, q) is not nondegenerate.
For instance, if q = 0 so Cl(V, q) = ΛV , then for any u, v ∈ V , the element ξ := 1 + uv ∈
ΛV satisfies for any w ∈ V that

[1 + uv, w] = 0.

2.4 Examples: Clp,q and ClCn

Let k = R. The nondegenerate quadratic forms, or equivalently nondegenerate bilinear
forms on finite-dimensional R-vector spaces are classified completely by their signature
(p, q), where p, where p ≥ 0 (resp. q ≥ 0) is the maximal dimension of a subspace to
which the restriction of the form is negative definite (resp. positive definite). For any
pair (p, q) of nonnegative integers, we consider the vector space Rp+q with quadratic form

q

(
p+q∑
i=0

xiei

)
= −

p∑
i=0

(xi)2 +

p+q∑
i=p+1

(xi)2,

and denote the corresponding Clifford algebra by Clp,q. These are, up to isomorphism,
the only finite-dimensional Clifford algebras coming from nondegenerate real quadratic
spaces.6

6If a quadratic form over R is degenerate, then we can split off an orthogonal summand where it is
zero, and we know by Lemma 2.3.1 what the structure of the resulting Clifford algebra looks like as well.
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2 Clifford Algebras

Similarly, if k = C, then all nondegenerate quadratic forms on finite-dimensional
C-vector spaces of the same dimension are isomorphic; for concreteness, we choose for
n ≥ 0 the complex vector space Cn with quadratic form

q

(
n∑

i=0

xiei

)
= −

n∑
i=0

(xi)2

and denote the result Clifford algebra by ClCn . As before, these are the only complex
Clifford algebras coming from nondegenerate complex quadratic spaces.

In low dimensions, we can recognize these explicitly: if for integer n ≥ 1 we
let k(n) denote the k-algebra of n × n matrices with values in k, then we have the
isomorphisms of ungraded real algebras

Cl1,0 ∼= R[x]/(x2 + 1) ∼= C,
Cl0,1 ∼= R[x]/(x2 − 1) ∼= R⊕ R,
Cl2,0 ∼= R{i, j}/(i2 + 1, j2 + 1, ij + ji) ∼= H,

Cl0,2 ∼= R{i, j}/(i2 − 1, j2 − 1, ij + ji) ∼= R(2), and

Cl1,1 ∼= R{i, k}/(i2 − 1, k2 + 1, ik + ki) ∼= R(2),

where {·} denotes the free associative algebra generated by the variables inside,
and the last two isomorphisms are given by

i =

[
1 0
0 −1

]
, j =

[
0 1
1 0

]
, and k = ij =

[
0 1
−1 0

]
.

Similarly, we have the isomorphisms of ungraded complex algebras

ClC1
∼= C[x]/(x2 + 1) ∼= C⊕ C, and

ClC2
∼= C{i, j}/(i2 − 1, j2 − 1, ij + ji) ∼= C(2).

12



3 Pin and Spin Groups

3 Pin and Spin Groups

3.1 The Twisted Adjoint Action and the Clifford-Lipschitz Group

We next define an important action of the group of units Cl×(V, q) on Cl(V, q). Recall
from §2.3 that we denote by α the grading morphism of the superalgebra Cl(V, q).

Definition 3.1.1. Given a Clifford algebra Cl(V, q), the twisted adjoint action of the
group of units Cl×(V, q) ⊂ Cl(V, q) on Cl(V, q) is the group homomorphism

Ad : Cl×(V, q) → AutCl(V, q)

defined by
Adξ(ζ) = α(ξ) · ζ · ξ−1.

The importance of this action comes from the following lemma:

Lemma 3.1.2. Let (V, q) be any quadratic space. Then a vector v ∈ V is not isotropic
iff it is invertible in Cl(V, q), in which case we have v−1 = q(v)−1v. In this case, we have
for any other w ∈ V that

Adv(w) = ρv(w).

In particular, we have for any v ∈ V with q(v) ̸= 0 that Adv(V ) ⊂ V .

In English, the twisted adjoint action by a vector v ∈ V on another vector
w ∈ V is the same as reflection in the hyperplane perpendicular to v.

Proof. The first statement is clear, and for the second we have

Adv(w) = α(v) · w · v−1 = −v · w · 1

q(v)
v = − 1

q(v)
(v · w · v).

Now using (4), we have w · v = −v · w + 2⟨v, w⟩, and therefore

Adv(w) = − 1

q(v)

(
−v2 · w + 2⟨v, w⟩v

)
= w − 2

⟨v, w⟩
⟨v, v⟩

v = ρv(w).

■

This motivates the following definition:

Definition 3.1.3. For a quadratic space (V, q), we define the Clifford-Lipschitz group7

Γ(V, q) of (V, q) to be the subgroup of Cl×(V, q) that preserves V under the twisted
adjoint representation:

Γ(V, q) := {ξ ∈ Cl×(V, q) : Adξ(V ) ⊂ V }.

Finally, we define the even Clifford-Lipschitz group Γ0(V, q) by

Γ0(V, q) := Γ(V, q) ∩ Cl0(V, q).
7This group is often called the Clifford group of the quadratic space (V, q); for instance, this is the

terminology used in the seminal paper [2] by Atiyah, Bott, and Shapiro. However, it seems that this
notion was never mentioned or used by William Kingdon Clifford himself, but rather first discovered and
used by Rudolf Lipschitz in 1880/86; see [3, Ch. 17] and the references at the end of that chapter.
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3 Pin and Spin Groups

The previous lemma says that any nonisotropic vector belongs to the Clifford-
Lipschitz group. By definition, the twisted adjoint action gives rise to a representation of
Γ(V, q) on V ; we let ρ : Γ(V, q) → GL(V ) denote this representation. By the computation
in the previous lemma, this agrees with the notation previously established for reflections
on ξ = v ∈ V with q(v) ̸= 0. Note that we have a natural inclusion k× ↪→ Γ(V, q) as
constants, and all these constants act trivially under the twisted adjoint action. The first
result we need is that these are all the elements of the kernel in the nondegenerate case:

Lemma 3.1.4. If (V, q) ∈ FDQuadndk , then the sequence of groups

1 → k× → Γ(V, q)
ρ−→ GL(V )

is exact.

Proof. If ξ ∈ ker ρ, then for all v ∈ V we have α(ξ)v = vξ, and this says exactly that for
all v ∈ V we have [ξ, v] = 0. Hence, ξ ∈ k by Lemma 2.3.2, so ξ ∈ Cl×(V, q)∩k = k×. ■

Next, we find the image of ρ.

3.2 The Spinor Norm and the Fundamental Exact Sequence

Definition 3.2.1. Let (V, q) be a quadratic space.

(a) The ungraded opposite Cl(V, q)op to the Clifford algebra Cl(V, q) is an associative
k-algebra that has a map V → Cl(V, q)op such that v2 = q(v) ∈ Cl(V, q)op, and
hence by the universal property extends to a k-algebra homomorphism

·t : Cl(V, q) → Cl(V, q)op.

This is called the transpose anti-involution, and is given explicitly for r ≥ 0 and
v1, . . . , vr ∈ V by

(v1 . . . vr)
t = vr · · · v1.

(b) The Clifford conjugation map is the anti-involution ·̄ : Cl(V, q) → Cl(V, q) defined by

ξ := α(ξt).

The spinor norm is the map

N : Cl(V, q) → Cl(V, q), ξ 7→ ξ · ξ.

Remark 7. For λ ∈ k ⊂ Cl(V, q), we have α(λ) = λt = λ = λ, and hence N(λ) = λ2.
For v ∈ V ⊂ Cl(V, q), we have vt = v, but α(v) = −v, so that λ = −v and hence
N(v) = −v2 = −q(v). Clifford conjugation on Cl1,0 ∼= C is just complex conjugation, and
the spinor norm the usual complex norm. Similarly, Clifford conjugation on Cl2,0 ∼= H is
quaternionic conjugation, and the spinor norm is the quaternionic norm.

14



3 Pin and Spin Groups

Lemma 3.2.2. Let (V, q) ∈ FDQuadndk .

(a) If ξ ∈ Γ(V, q), then N(ξ) ∈ k×.
(b) If η ∈ Cl(V, q) is such that N(η) ∈ k, then for all ξ ∈ Cl(V, q) we have

N(ξη) = N(ξ)N(η).

In particular, the map
N : Γ(V, q) → k×

defined by (a) is a group homomorphism with the property that N(α(ξ)) = N(ξ)
for all ξ ∈ Γ(V, q).

(c) The image of ρ : Γ(V, q) → GL(V ) is contained in O(V, q), i.e. Γ(V, q) acts by
isometries on (V, q).

Proof.

(a) Note that for ξ ∈ Cl×(V, q) and η ∈ Cl(V, q), we have that

Adξ(η) =
(
Adξ−1(ηt)

)t
. (7)

In particular, if ξ ∈ Γ(V, q), then also ξ ∈ Γ(V, q) with ρξ = ρξ−1 , and hence also
N(ξ) ∈ Γ(V, q). Therefore, by Lemma 3.1.4, it suffices to show that N(ξ) ∈ ker ρ,
and this follows from

ρN(ξ) = ρξ·ξ = ρξ ◦ ρξ = ρξ ◦ ρξ−1 = ρξ·ξ−1 = ρ1 = 1V .

(b) For ξ ∈ Cl(V, q) and η ∈ Cl(V, q) such that N(η) ∈ k, we have

N(ξη) = ξ · η · η · ξ = ξN(η)ξ = N(ξ)N(η).

Finally, we have

N(α(ξ)) = α(ξ)α(ξ) = α(ξ)ξt = α(ξ · α(ξt)) = α(N(ξ)) = N(ξ),

where in the last step we have used (a).
(c) We have for v ∈ V and ξ ∈ Γ(V, q) that

q(ρξv) = −N(ρξv) = −N(α(ξ)vξ−1).

By using that that N(v),N(ξ) ∈ k, we have by (b) that

−N(α(ξ)vξ−1) = −N(α(ξ))N(v)N(ξ−1) = −N(ξ)N(v)N(ξ)−1 = q(v).

■

This result gives us a map ρ : Γ(V, q) → O(V, q). In fact, this map is surjective:

Theorem 3.2.3 (E. Cartan-Dieoudonné). If (V, q) ∈ FDQuadndk with char k ̸= 2 and
dimV = n ≥ 1, then every element of O(V, q) can be written as a product of n or fewer
reflections ρv for non-isotropic V .

Proof. See [4, Thm. 6.6] or [5, Thm. 1.1]. We only remark here that this uses char k ̸= 2
crucially, and there is a(n) (essentially unique) counterexample to this result in char k = 2,
see [4, Ch. 14]. ■
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3 Pin and Spin Groups

From Theorem 3.2.3 and Lemma 3.1.4, for each (V, q) ∈ FDQuadndk , we get the
fundamental exact sequence

1 → k× → Γ(V, q)
ρ−→ O(V, q) → 1.

From this sequence , we also obtain:

Corollary 3.2.4. If (V, q) ∈ FDQuadndk , then the Clifford-Lipschitz group Γ(V, q) is gen-
erated by non-isotropic v ∈ V . In particular,

ρ
(
Γ0(V, q)

)
⊂ SO(V, q).

Proof. For any ξ ∈ Γ(V, q) by Theorem 3.2.3 we can write ρξ = ρv1 ◦ · · · ◦ ρvr for some
r ≥ 0 and non-isotropic v1, . . . , vr ∈ V . Then, we have ξ−1v1 · · · vr ∈ ker ρ, and hence
that ξ−1v1 · · · vr = λ for some λ ∈ k×. Therefore, we get that ξ = (λ−1v1)v2 · · · vr as
needed. For the second part, if we write ξ ∈ Γ0(V, q) as ξ = v1 · · · vr for some r ≥ 0
and non-istropic v1, . . . , vr ∈ V , then ξ ∈ Cl0(V, q) implies that r is even, and hence by
Example 2.1.5, it follows that ρξ = ρv1 ◦ · · · ◦ ρvr ∈ SO(V, q) as needed. ■

3.3 Pin and Spin Groups

Definition 3.3.1. Let (V, q) be a quadratic space.

(a) The pin group Pin(V, q) of (V, q) is the subgroup of the Clifford-Lipschitz group
Γ(V, q) consisting of elements with spinor norm ±1, i.e.

Pin(V, q) := {ξ ∈ Γ(V, q) : N(ξ) = ±1}.

(b) The spin group Spin(V, q) of (V, q) is the subgroup of thepPin group Pin(V, q) con-
sisting of even elements, i.e.

Spin(V, q) := Pin(V, q) ∩ Cl0(V, q).

Definition 3.3.2. Suppose (V, q) ∈ FDQuadndk . Then morphism of exact sequences

1 k× Γ(V, q) O(V, q) 1

1 (k×)2 k× k×/(k×)2 1

sqk N N

defines a morphism N : O(V, q) → k×/(k×)2 also called the spinor norm.

We define for n ≥ 1, the group µn(k) := {λ ∈ k× : λn = 1}, so that
Pin(V, q) := N−1(µ2(k)). By Corollary 3.2.4, the map ρ takes Spin(V, q) to SO(V, q).
From the fundamental exact sequence and the definition of the spinor norm, we obtain
immediately for (V, q) ∈ FDQuadndk the spinor exact sequences

1 µ4(k) Pin(V, q) O(V, q) k×/(µ2(k)(k
×)2)

1 µ4(k) Spin(V, q) SO(V, q) k×/(µ2(k)(k
×)2).

ρ [N]

ρ [N]
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3 Pin and Spin Groups

In [1], the authors call a field k a spin field if k×/(µ2(k)(k
×)2) = {1}; examples

of spin fields include all algebraically closed fields, and some others such as k = R or
k = Fp for p ≡ 3 (mod 4). For spin fields, the maps ρ above are therefore surjections,
and the spinor exact sequences become

1 µ4(k) Pin(V, q) O(V, q) 1

1 µ4(k) Spin(V, q) SO(V, q) 1.

ρ

ρ

If k = R or k = C, then in the sequence of subgroups

Spin(V, q) ⊂ Pin(V, q) ⊂ Γ(V, q) ⊂ Cl×(V, q),

each subgroup is closed in the next one, and the last one is an open subgroup of Cl(V, q),
and hence, by Cartan’s Theorem, this is a sequence of closed (real) Lie subgroups. The
spin groups associated to the Clifford algebras Clp,q are denoted by Spinp,q, and those

to ClCn are denoted by Spinn(C). Note the special case of p = n and q = 0, where
SO(V, q) = SO(V,−q) = SOn. Recall that π0 SOn = 0 for n ≥ 0 and

π1 SOn =


0, n = 1,

Z, n = 2,

Z/2, n ≥ 3.

One main result of this section is:

Theorem 3.3.3. We have the short exact sequence of Lie groups

1 → {±1} → Spinn → SOn → 1.

For n ≥ 2, the cover Spinn → SOn is nontrivial: it is the unique connected degree two
cover of SOn. In particular, for n ≥ 3, the map Spinn → SOn is the universal cover of
the group SOn.

Proof. All that remains to show is that for n ≥ 2, the points ±1 ∈ Spinn can be connected
by a path in Spinn. For this use Lemma 2.1.3 to pick e, f ∈ Rn orthogonal with q(e) =
q(f) = −1. Then the path

γ(t) = (e cos t+ f sin t)(e cos(π − t) + f sin(π − t)) = cos 2t+ ef sin 2t

lies in Spinn and satisfies γ(0) = 1 and γ(π/2) = −1. ■

Remark 8. In closing, we remark that there seems to be some disagreement about the
definition of the (s)pin groups. We have followed the convention in [1, Ch. 1]. The groups
in this convention have the property that over k = C, in the case of the algebra ClCn , we
have the exact sequence

1 → µ4(C) = {±1,±i} → Spinn(C) → SOn(C) → 1,
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so that Spinn(C) is a degree 4 cover of SOn(C). On the other hand, in [2], Atiyah-
Bott-Shapiro define the pin group to be the kernel of the norm homomorphism. In the
negative definite case over k = R (the only case that Atiyah-Bott-Shapiro consider), these
conventions yield the same groups, but in general these notions are distinct. To make
the connection between these conventions precise, let us temporarily use the notation

Pin+(V, q) := kerN = {ξ ∈ Γ(V, q) : N(ξ) = 1} and Spin+(V, q) := Pin+(V, q)∩Spin(V, q).

The version of the spinor exact sequences for these groups is

1 µ2(k) Pin+(V, q) O(V, q) k×/(k×)2

1 µ2(k) Spin+(V, q) SO(V, q) k×/(k×)2,

ρ N

ρ N

and as before, these sequences are not exact on the right in general. Let us
consider two cases in detail:

(a) The case of a definite form over k = C. In this case, these sequences become

1 {±1} Pin+
n (C) On(C) 1

1 {±1} Spin+
n (C) SOn(C) 1,

ρ

ρ

so that Spin+
n (C) is a double cover of SOn(C). A similar reasoning as in the proof

of Theorem 3.3.3 shows that Spin+
n (C) is connected, so that Spin+

n (C) ⊂ Spinn(C)
is an index-2 subgroup and Spin+

n (C)
ρ−→ SOn(C) is a nontrivial double cover.

(b) The case of a negative definite form over k = R. In this case, these sequences
become

1 {±1} Pin+
n On {±1}

1 {±1} Spin+
n SOn {±1}.

ρ N

ρ N

Note that these sequences are not necessarily exact at the rightmost stage, and
indeed, in this case, we have N(On) = N(SOn) = 1 because On can be generated
by reflections in vectors of unit length. Therefore, in this case, we have

Pin+
n = Pinn and Spin+

n = Spinn

as promised.
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