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Abstract

In this paper, I discuss the representation theory, and fill out the character table, of the unique
nonabelian group of order pq for primes p < ¢ with ¢ = 1 (mod p). The first section of the paper
recalls the basic properties of semidirect products, and then classifies all groups of order pq for primes
p < ¢, proving that there are exactly two isomorphism classes—one Z/pqZ = Z/pZ X Z/qZ and, only
when ¢ =1 (mod p), one nonabelian semidirect product group G = Z/qZ x Z/pZ. Then, I give two
concrete ways to realize G: as a subgroup of the symmetric group &, and as an index-(¢ — 1)/p
subgroup of Aff(A'F,), the group of affine transformations of the affine line over the field with ¢
elements of order g(q — 1). Next, I discuss the conjugacy structure of G, and finally, I fill out the
character table of G, using tools from Chapters 1 to 3 of [1], specifically induced representations and
Frobenius reciprocity. This was an enlightening computation for me, because this was what really
made the representation theory of finite groups “click” for me.
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1 Introduction

We begin by recalling basic properties of the semidirect product, as in [2] §5.5. Let H and K be groups
and U : K — Aut(H), k — U be a group homomorphism. Then the semidirect product group H xy K
is defined to be the set {(h,k) : h € H,k € K} with law of composition

(h, k) - (W, K') = (R (h), kK').

This law of composition makes H xy K a group with identity e = (emy,ex) and inverses given by
(h, k)™t = (U1 (h71), k™). The maps H — H xg K : h+ (h,ex) and K — H xg K : k +— (eq, k)
are injective homomorphisms, allowing us to identify H and K as subgroups H, K < H xg K. Further,
under this identification, we have that

(1) H<4H xyg K,

(2) HNK = {e},

(3) [H »y K| = |H|-|K],
(4) for any h € H and k € K we have that khk=! = Uy (h) € H xg K,
(5) there is a split short exact sequence {¢} - H — H xy K — K — {e}, and conversely every split

short exact sequence {e} - H - G — K — {e} identifies G = H xy K for some ¥ : K — Aut(H).

This is actually a generalization of the direct product:

Lemma 1. For a semidirect product H Xy K, the following are equivalent:
(1) The identity set map H x K — H xg K is a group homomorphism (and hence an isomorphism).
(2) The map ¥ : K — Aut(H) is trivial.
(8) The subgroup K < H xg K is normal.

If different nontrivial ¥ give the same group up to isomorphism, then it is denoted by H x K.
We identify semidirect products in practice using the Recognition Theorem.

Theorem 1 (Recognition Theorem). Suppose G is a finite group with subgroups H, K < G s.t.

(1) H<G,

(2) HN K = {e}, and

(3) 1G] = |H| - |K].
Then G is the semidirect product of H and K. If U : K — Aut(H) is given by k — (h + khk™1), then
we have G = H xy K.

Proof Sketch. Consider the set map H xg K — G : (h,k) — hk. Tt is immediate to see that this is a
homomorphism. Condition (2) tells us that this map is injective, and then condition (3) tells us that it
is an isomorphism. |

Using the above recognition theorem and some Sylow theory, it is possible to classify all groups
of order pq for primes p < q.

Theorem 2 (Classification of Groups of Order pq). Suppose G is a finite group of order |G| = pq for
distinct primes p < q. Then

(1) ifptq—1, then G X Z/pZ x 7/qZ = Z/pqZ is cyclic,
(2) if p| q—1, then either G = Z/pqZ is cyclic, or it is the unique nontrivial semidirect product
Z/qZ x 7] pZ.

Proof. Let G be a group of order pq for primes p < ¢q. Let s, and s, denote the number of Sylow
p-subgroups and Sylow g-subgroups of G respectively. Sylow’s Third Theorem tells us that

s¢=1 (mod ¢) and s, | p.

This is only possible if s, = 1. This tells us that there is a unique (and hence normal) subgroup H < G
of order q. Again, Sylow’s Third Theorem tells us that

sp =1 (mod p) and s, | g.

Therefore, either s, =1 or s, = q.




2 Two Realizations of G

(1)

(2)

If s, = 1, then G also has a unique normal subgroup K < G of order p. Since (p,q) = 1, we
must have H N K = {e}. Then H and K satisfy hypotheses of Theorem [I| and Lemma [1} so that
G2HxK=>~Z7/qZ x 7.]pZ.

If s, = ¢, then we must have p | ¢ — 1. Let K be any Sylow p-subgroup. Then Theorem [1] tells us
that G = H xg K for some homomorphism ¥ : K — Aut(H). To analyze such ¥, pick generators
H = (a) with |a| = ¢ and K = (b) with |b| = p. Now the map H x¢ K — G : (h,k) — hk is an
isomorphism, so every element of G can be written as a’b’ for some 0 < i < g—1land0<j<p-—1.
The conjugate bab~' € H, so that bab~! = a* for some \ € Fy. If A =1, then a and b commute,
so that we have G = H x K, which would imply s, = 1, which is not the case we are in. Therefore,
A € F ~ {1}. Then we must have

a:b”ab—p:a}‘pé)\pzleﬂ?qx’

which means that A € F has order exactly p. This completely determines the Cayley table, so
that we get that G has presentation

G:<a,b‘aq:bp:e, babil:a)‘>.

To see that a different choice of A would not change the isomorphism type: pick any other element
say p € F; of order p. Since the subgroup of elements of F* of order dividing p is cyclic, we get
that g = A\* for some 1 < k < p—1. Then picking the generator ¢ = b* of K instead of b, we would
get the presentation with cac™! = a*; and this tells us that the all different nontrivial ¥ give the
same semidirect product.

The nontrivial semidirect product is given by ¥ : Z/pZ — Aut(Z/qZ) = F; = Z/(q — 1)Z

sending 1 to any element of order p in ;. This gives the group presentation

G:<a,b‘aq:b”=e, bab_lza)‘>,

where A € F;* has order p. One concrete way to get such a A is to pick a primitive root 7 mod ¢ and

g-1

then take A\ =r"7» .

Remark 1. For convenience, I henceforth use the letter ¢ to denote (¢ — 1)/p, so that ¢ = pt + 1, and we
can choose A = 7.

2
(1)

Two Realizations of G

Firstly, G can be realized as a subgroup G < &, as follows. Since a has order ¢, we try a — o :=
(1,2,3,--- ,q). Then bab~!' = a* forces us to send b > 7 := (j — 1+ (j — 1)A (mod q)); note
that 7 is indeed a permutation with inverse 771 = (j — 1+ (j — 1)A™! (mod q)). If we choose a
primitive root r mod ¢ so that A = 7, then 7 keeps 1 fixed, and decomposes into a product of ¢
cycles of length p as follows

t—1
=07+ 1,0 1, O g,
j=0
This realizes G as a subgroup
G=(oT1) <6,
Another way to realize G is as an index-t subgroup of Aff(A'F,). Recall that for any field F, the
group
AF(A'F) = {z = ax + B : A'F — A'F|a, B € F,a # 0}

is the group of affine transformations of the affine line over the field F. It can also be realized as

a subgroup Aff(A'F) < GLo F via (2 — az + 3) — [g ﬂ . If F is a finite field F = F,, then the

order | Aff(A'F,)| = (¢—1)q. Sitting inside it is the subgroup of affine transformations = — ax+ 8
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with a € Fy of order p in F, i.e. satisfying o = 1 € F,. Again, it is immediate to see that

the map G — Aff(A'F,) given by a — (z + x + 1) and b — (x — Az) is an injective group
homomorphism, realizing

G < Aff(A'F,)
as a normal subgroup G < Aff(A'F,) with quotient cyclic of order ¢, generated by the class of
x +— rx for any primitive root r mod q.

3 Conjugacy Structure

The next step is to find the conjugacy structure of the group G = (a,bla? = VP = e,bab™! = a*), where
A € F has order p. Recall that every element of GG can be written uniquely as a’t/ for0<i<qg-—1
and 0 <j<p-1.

(1) Let’s figure out the center Z(G). Suppose a't’ € Z(G) for some 0 <i<g—1land0<j<p-—1.
Then _
a't = ot il = it N
so that i =4i+1— XM (mod q) = M =1 (mod ¢) = j = 0 since A has order p in F)*. Then
al = ba'b™t = o,

so that ¢ = A (mod ¢) and hence ¢ = 0. This means that Z(G) = {e}, i.e. the center of G consists
of the identity alone.

(2) The class equation of G looks like

pg =1+mp+ng
for some integers m and n with 0 < m < ¢g—1and 0 < n < p— 1. Reducing mod p, we get
that n = —1 (mod p), so that we must have n = p — 1. Then m = t. Therefore G has exactly
1+ m+n = p+t distinct conjugacy classes, and hence irreducible representations.

(3) Let’s find out the conjugacy classes. For that, pick a primitive root » mod ¢ so that A\ = rt.
The relation bab=! = @™ tells us that conjugating by b (and also of course by a) doesn’t change
the congruence class of j modulo ¢ for an element in G of the form a”, so that the ¢ conjugacy
classes of order p are those of a™ for 0 < j < t — 1. The conjugacy class of a” comprises of

J t+j (p—1)t+j . .
at e a” . Again, the relations

a(a't)a™t = a1 bl and ba'b)b~t = oMb,

tell us that conjugating by any element of G doesn’t change the exponent of b in an element of G,
so that the p — 1 classes of order ¢ are those of b* for 1 < i < p — 1. Therefore, a complete set of
representatives of conjugacy classes is given by

_ 2 =2 t—1
e, b, b, WP L aa",a" - ,a"  and a”

4 Character Table

Finally, let’s fill in the character table of G. We expect there to be exactly p + ¢t distinct irreducible
representations of G. We know the first one: the trivial representation. In fact, we know much better:
the normal subgroup H = (a) < G has quotient G/H = (b) = Z/pZ, which has p distinct 1-dimensional
irreducible representations Uy for 0 < k < p—1, where b acts on U; as C;,f for ¢, = exp(2mi/p) a primitive
p™ root of unity. Pulling these back to G gives p distinct 1-dimensional irreducible representations Uy, of
G; further, these are all the 1-dimensional representations of G, since a given 1-dimensional representation
must factor through the abelianization of G and hence be trivial on the classes of powers of a. Therefore,
the character table looks so far like:

G 1 q D
(a,bla?,bP bab~a""") | e bt a’
1<i<p-1]|0<j<t—1
Uk ki
O<k<p—1 1 S 1




4 Character Table

Observe that in these terms, the representation Uy is the trivial representation of G.

We’re now missing ¢ representations, say Vp,---,V;—1 of dimensions dy,...,d;—1 > 2, respec-
tively. Then [I] Equation 2.19 p 17 gives

p—1 t—1 t—1
pa=) 174> di=p+) di
k=0 =0 =0
where each dy € {p,q} by [I] Problem 2.38 p. 25. Therefore, this equation looks like

pq = p + mp* + ng®

for some integers 0 < m,n with m +mn = t. Since ¢ > p, we must have n = 0 and m = ¢. Therefore,
dy=dy =---=di_1 = p, i.e. all the remaining representations have dimension p. How do we nail these
t representations down?

Let’s first see if we can squeeze anything more out of the orthonormality of characters. For any
k:0<k<p—1land/{:0</¢<t—1, wehave that

1 i i
0= {xwv) = - p+Zcp v, () +Z><w

=1

Summing over all k, we get that

p—1 -
Z%%E:Cmew H-+§:Xw
k=0 i=1
p—1 p—1 t—1
="+ > xv.()D G F 4 xw(d
i=0 k=0 3=0

t—1
=p|p+Y xv(@”)],
j=0

since the sum of all k' roots of unity in any order is zero. This means that for each k: 0 < k <p —1,

p—1
ZCp_ZkXVi, (bl) =0
i=1

Fix a particular j : 1 < j < p — 1. Multiplying the above equality by (gk and summing over all k gives

0720’“24 Fxve (07) ZXV (v") Zc“ ik = ZXV ) - iy = pxv, (b)),

so that in fact for each £: 0 < ¢ <t—1andi:0<i<p—1wegetthat xy,(b°) = 0. This is expected,
because the character of any irreducible representation of dimension at least 2 takes the value 0 on some
conjugacy class, from [I] Problem 2.39 p. 25. Therefore, the character table looks like:

G 1 q D
{a,bla?,b? bab~ta=") || e bt a”’
1<i<p—-1|0<j<t—1
Uk ki
0<k<p-1 1 » 1
Vi ;
0<r<t—1 p 0

What replaces the question mark above?
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5 Induction and Conclusion

The key to answering this question is induction of representations and Frobenius Reciprocity. Recall
that we have a normal subgroup H = (a) < G of order ¢q. This has exactly ¢ distinct 1-dimensional
irreducible representations Wy for 0 < s < ¢ — 1, where a acts on Wy as (; with (, = exp(27i/q) a
primitive ¢*® root of unity. For each £ : 0 < ¢ < t — 1, the restriction Resg V; is p-dimensional, and
therefore decomposes as

ResG Vi =W,,, @ W,,, & & Wi,

for integers 0 < sp1 < 50 < -+ < 50 < g — 1. Since the character of Vp is not identically p, we
must have that 1 < s ;. Since Wy, ~occurs in Resg Vi, Frobenius Reciprocity tells us that V; occurs in

Ind$ W,, . But now

£,p

dimV; = p = |G/H|dim W, , = dim Ind§ W, ,
so that in fact we must have V; = Ind$ W, ,- Hence, it suffices to analyze Ind% W, for 1 < s < q—1.
For any s : 1 < s < g—1, we compute the character Xind¢ w,- We know that it must take value
0 on the class of any power of b, so it suffices to analyize x1nqc w, (a™), for which we use [I] Equation
(3.18) p. 34 to get

Xtmag w, (@) = > xw.(9,"'a" g5),
oce€G/H
a” o=c
where the sum is over cosets o that are preserved under left multiplication by o™, and g, € G is any
representative of o. Since every coset in G/H is preserved by left multiplication by any power of a, we
in fact get that

p—1 p—1 p—1

J PR it+j it+j

XInd§ W, (aw) = ZXWS (bz@r]b )= ZXWS (a” J) = Z(;T "
i=0 i=0 i=0

Since r is a primitive root, we must have s = r* for some u : 0 < u < g — 1. Then, we see that

p—1

J ittutg

XInd§ W, (a”) = Z Cq )
i=0

which depends only on the congruence class u (mod t). Therefore, this gives us exactly ¢ distinct values,
as we expected, for the characters of V; : 0 < ¢ <t — 1. WLOG, we may relabel these so that

—1
i (e it
xv(a™) =Y "¢ ,
=0

and with this, we complete the character table:

G 1 q p
(a,bla?,bP bab~ta~"") | e bt a”’
1<i<p—1|0<j<t—1
Uk ki
0<k<p-1 1 b 1
Ve p—1 ittt
0<e<t—1 p 0 im0 S
Remark 2. In the above calculation, we encounter Gauss’s “periods” of roots of unity: the different

it+L

Zf;ol (""" for 0 < ¢ < t—1. In the special case when p = 2 and ¢ is a Fermat prime ¢ = 22" + 1
for some n > 0, Gauss was able to use these “two-member periods” ¢} + ;™ for 0 < u < 22"-1 _
to prove his famous constructability result for regular polygons, as explained in [3] Chapter 7. These
periods have fascinating properties, especially related to the action of Gal(Q[(,]/Q). For instance, the
product of two such periods can be written as a sum of these, as explained in [3] §7.2. With our tools,
we can recognize this statement following from the complete reducibility of the tensor product of two of
the Vo’s. This can be used to prove, for instance, that the unique quadratic subfield of Q[¢,] is Q[v/q*],
where ¢* = (—1)@=1/2¢.
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Remark 3. The above reasoning explains what the induced representations Indg Wsfor 1 <s<gqg-—1
look like. What about s = 07 It is immediate to check using Frobenius Reciprocity that in fact,

p—1
Ind$ Wy = @ Ug.

k=0
This completes our understanding of induction of representations from H to G.

Remark 4. In the above process, we noticed that for this case of G = H x K, the irreducible repre-
sentations were of two kinds: those pulled back from the quotient G — K and those induced from the
subgroup H < G. Serre’s “Linear Representations of Finite Groups” [4] §8.2 gives a vast generalization
of the above method: it describes the method of “little groups” by Wigner and Mackey that can be used
to classify all irreducible representations of groups of the form G = H xg K for H < G abelian, given
that we know the representations of K.
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