Bertrand's Postulate

Dhruv Goel gmg39

Bertrand's Postulate Why All of Maths is Cool™

Dhruv Goel gmg39

TMS Peer Talks, Easter '25

14 May, 2025

Dramatis Personae

Bertrand's Postulate

> Dhruv Goel gmg39

Theorem

For each $n \in \mathbb{Z}_{\geq 2}$, there is a prime p with n .

Figure: Some chill guys. Src: Wikipedia.

Theorem (Chebyshev)

For each $n \in \mathbb{Z}_{\geq 2}$, there is a prime p with n .

Proof idea:

- (1) Consider $N = \binom{2n}{n}$. If $\not\exists p$, then $p \mid N \Rightarrow p \leq n$.
- (2) Study asymptotic growth as $x \to \infty$ of the *Chebyshev* ϑ -function $\vartheta: \mathbb{R}_{\geq 1} \to \mathbb{R}_{\geq 0}$ given by

$$\vartheta(x) = \sum_{p \le x} \log p.$$

- (3) Combine (1) and (2) to bound N and hence n from above; say $n \leq B$ for some $B \in \mathbb{R}_{>1}$.
- (4) Check up to B "by hand".

Bertrand's Lemma (1) Postulate

Chebyshev ϑ -function

For $x \in \mathbb{R}_{>1}$, let $\vartheta(x) := \sum_{p \leq x} \log p$. Then for all $x \in \mathbb{R}_{>1}$,

Dhruv

gmg39

where $C := \log 4 \sim 1.386...$

Proof

(a) For $m \in \mathbb{Z}_{\geq 1}$, have $\vartheta(2m+1) - \vartheta(m+1) < Cm$. Indeed, if $M = \binom{2m+1}{m}$, then $2M < (1+1)^{2m+1}$. If $m+1 , then <math>p \mid M$, and so

(c) If n = 2m + 1 for $m \in \mathbb{Z}_{>1}$, then $\vartheta(n) = (\vartheta(2m+1) - \vartheta(m+1)) + \vartheta(m+1) < Cm + C(m+1) = C(2m+1).$

(d) If $x \in \mathbb{R}_{>1}$, then $\vartheta(x) = \vartheta(|x|) < C|x| \le Cx$.

 $\vartheta(x) < Cx$.

 $\vartheta(n) = \vartheta(n-1) < C(n-1) < Cn$.

(b) When $x = n \in \mathbb{Z}_{>1}$ by induction. If n = 1, 2, clear. If $n \ge 3$ and $2 \mid n$, then

m+1

 $\vartheta(2m+1) - \vartheta(m+1) = \sum_{m=0}^{\infty} \log p \le \log M < Cm.$

Bertrand's Postulate Dhruv Goel

gmg39

Lemma (2)

16 - 77

If $n \in \mathbb{Z}_{\geq 1}$ and $N = \binom{2n}{n}$, then (a) We have

$$\log N \ge Cn - \log(2n).$$

(b) For any prime p,

$$v_p(N) \le \log_p(2n) = \frac{\log 2n}{\log n}.$$

Proof.

(a) N is the largest term in the expansion of $(1+1)^{2n}$, so

$$2^{2n} \le 2 + {2n \choose 1} + \dots + {2n \choose n-1} \le 2nN.$$

(b) By Legendre's formula $v_p(n!) = \sum_{k=1}^{\infty} |n/p^k|$, we have

$$v_p(N) = \sum_{k=1}^{\infty} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \cdot \left\lfloor \frac{n}{p^k} \right\rfloor \right).$$

Each summand is at most 1, and the summand is zero for $k > \log_n(2n)$.

Suppose $n \geq 5$, and $\not\exists p$. If $N = \binom{2n}{n}$, then for any prime p we have $p \mid N \Rightarrow p \leq n$.

(a) In fact, $p \mid N \Rightarrow p \leq (2/3)n$. Indeed, if (2/3)n , then

$$1 \leq \frac{n}{p} < \frac{3}{2} \text{ and } 2 \leq \frac{2n}{p} < 3 \text{ and } p^2 > \frac{4}{9}n^2 > 2n,$$

SO

$$v_p(N) = \left\lfloor \frac{2n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 2 - 2 = 0.$$

(b) If $p^2 \mid N$, then $2 \log p \le v_p(N) \log p \le \log 2n$ by (2b), and so $p \le \sqrt{2n}$. Therefore,

$$\sum_{p^2|N} v_p(N) \log p \le \sqrt{2n} \log 2n.$$

(c) We have $\log N=\sum_{p\parallel n}\log p+\sum_{p^2\mid N}v_p(N)\log p\leq \vartheta((2/3)n)+\sqrt{2n}\log 2n.$ By (1) and (2a), we have

$$Cn - \log 2n \le \log N < \frac{2}{3}Cn + \sqrt{2n}\log 2n,$$

so $n \leq B := 467$. But here, 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, and 631 work.

Applications:

- (1) Primes form a complete sequence: any positive integer is a sum of distinct primes (and possibly 1).
- (2) For $n \in \mathbb{Z}_{\geq 2}$, the harmonic number $H_n = \sum_{k=1}^n k^{-1}$ is not an integer.

Addenda:

(1) The prime number theorem $(\pi(x) = \sum_{p \le x} 1 \sim x (\log x)^{-1})$ implies

$$\forall \varepsilon > 0, \, \exists \, N \in \mathbb{Z}_{\geq 1} : \forall n \geq N, \exists \, p : n$$

(2) It also implies $\vartheta(x) \sim x$. If RH, then error is $\mathcal{O}(x^{1/2+\varepsilon})$ for any $\varepsilon > 0$.

Takeaways:

- (1) Bertrand's Postulate/Chebyshev's Theorem (c.f. Part III Analytic Number Theory)
- (2) The Millenium Problems (or open problems in general) aren't too far away.
- (3) You can't separate mathematics (or science) from history.
- (4) This place (Trinity College, Cambridge) is awesome.
- (5) All of Maths is Cool[™]