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Abstract

The purpose of this note is to record four proofs of the result that the only archimedean
local fields are R and C, or slightly more generally that the only complete archimedean
valued fields are R or C (Gelfand-Tornheim-Ostrowski).
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In this section we review the definitions of absolute values and prove Ostrowski’s Theorem for
Q. In the next section, we review the basics of normed vector spaces over valued fields. In the
last two sections we give a proof of the claimed result.

Definition 1.1.
(a) An absolute value on a field K is a function
| : ‘ K — RZO

such that
(i) for all z € K, we have |z| =0 iff z =0,
(i) for all z,y € K, we have |zy| = |z| - |y|, and
(iii) for all z,y € K, we have |z +y| < |z| + |y|.
If the absolute value |- | on K further satisfies that
(iii’) for all x,y € K, we have |z + y| < max{|z|,|y|},
then it is said to be non-archimedean; else, it is said to be archimedean.
(b) For a field K, then trivial absolute value is the one given by |z| =1 for all z € K*. An
absolute value other than this one is said to be nontrivial.
(¢) A walued field is a pair (K, |- |), where K is a field and | - | an absolute value on K it is
said to be (non)-archimedean (resp. (non)trivial) according to whether |- | is.

We will henceforth drop the pedanticity and adopt usual conventions of implicit no-
tation. An absolute value on a field gives it the structure of a topological field. Clearly, the
restriction of an absolute value to a subfield defines an absolute value on it. If (K,|-|) is a
valued field, then for any root ¢ of unity in K we have || = 1, and so | — x| = |z| for all x € K.

Example 1.2.

(a) On K = C (and hence on any subfield), the function | - | given by a + ib — va? + b? for
a,b € R defines an archimedean absolute value, calle dthe standard absolute value.

(b) When K = Q and p is a prime, then the function |- |, given by x p~ (@) when z € Q¥
is an absolute value called the p-adic absolute value on Q

Lemma/Definition 1.3. Let K be a field and | - | and | - | two absolute values on K. The
following are equivalent:

(a) There is a ¢ € Ry such that |- |'=|- |

(b) The induced topologies on K coming from |- | and | - |" are the same.

(c) For all z € K, we have |z| < 1 iff |z| < 1.

When these conditions are satisfied, we say that |- | and |- | are equivalent. We say that two
valued fields (K, |- |x) and (L, |- |r) are isomorphic if there is a field isomorphism o : K — L
such that the absolute value o*| - |1 given on K by x + |ox|f, for z € K is equivalen to |- |k.

Proof.
(a) = (b) Clear.
(b) = (c) If (K,|-]) is a valued field, then for x € K we have |z| < 1 iff lim,,_,o 2" = 0.

(c) = (a) If either of |- | and | |’ is trivial, then so is the other and ¢ = 1 works. Else there is an
z € K such that |z| > 1, and we need to show that for all y € K* we have

logly| _ log|yl
log|z|  log|z|"

"Here v, () denotes the highest power of p dividing .
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If the left side were less than the right, then there would be m,n € Z with n > 0 such
that m/n squeezes in between them; but then x := y™2~" has the property that |z| > 1
but |z|" < 1. This is sufficient by symmetry.

Lemma 1.4. A valued field (K, |-|) is nonarchimedean iff |-| is bounded on the image of Z in K.
In particular, if K has positive characteristic, then any absolute value on it is non-archimedean.

Proof. 1f K is nonarchimedean, then in fact |n| < 1 for all n in the image of Z in K. Conversely,

suppose that the image of Z is bounded in absolute value, say by B € R+y. We need to show
that if z,y € K* with © +y # 0 and |z| < |y, then |z +y| < |y|. For all n € Z>1,

n
n
" < (Z>
=0

Extracting n'® roots and taking the limit as n — oo yields the result. |

z|"|y|" " < B(n + 1)[y[™.

Theorem 1.5 (Ostrowski). Any nontrivial absolute value |- | on Q is equivalent to exactly one
| - |p, where p is either a prime or oco.

Proof. Suppose first that | - | is non-archimedean, so that by we have that |n| < 1 for all
n € Z. The ideal {n € Z : |n| < 1} C Z is evidently prime, and it is nonzero because | - | is
nontrivial. Therefore, there is a unique prime p such that for n € Z we have |n| < 1 iff p | n,
and this easily implies (using, e.g.,|1.3{(c)) that | - | is equivalent to | - |.

It only remains to analyze the archimedean case in which there is b € Z>2 such that
|b| > 1. Let b be the smallest such integer, and let ¢ € Ry be such that |b| = b°. It suffices to
show that for all n € Z>;, we have |n| = n®. Let n € Z>; be given.

(a) We show that |n| < n®. Write the base-b expansion of n as n = ag + aib+ - - - + apb® with
k € Z>¢ and ag, ...,ar € {0,1,...,b— 1} such that a; # 0. Then k < log,n, and so

k k k oo
‘n‘ < Z ’az‘ . ’b|z < Zbic _ bkczb—ic < bkczb—ic _ Cbkc < CTLC,
1=0 =0 1=0 1=0

where C := (1 —b~¢)~! € Ry is independent of n. This holds for each n; replacing n by
n" for r € Z>1 and extracting rth roots gives us also that |n| < CY"ne. Taking the limit

as r — oo gives the result.
(b) We show that |n| > n°. Let k := |log,n] € Z so that b¥ < n < b**1. Then

|n| > |bk+1’ o |bk+1 o 7’L| > b(chrl)c o (bk+1 o n)c > b(k:+1)c o (bk+1 - bk)c > Dnc7

where D := b°[1 — (1 —b1)¢] € R>g is independent of n. The same trick as in (a) finishes
the proof.
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Definition 2.1. Let K be a valued field and V a vector space over K. A norm on V is a
function

- =V = Rxo
such that
(i) for all v € V, we have ||v|| =0 iff v =0,
(ii) for all x € K and v € V, we have ||zv| = |z| - ||v||, and

(iii) for all v,w € K, we have ||v + w|| < |jv]| + [|w]| .

A norm on a vector space V over a valued field K gives it the structure of a topological
vector space over K.

Example 2.2.
(a) In the setting of if V' has finite dimension n € Z>; over K and vq,...,v, € V
is a K-basis of V, then the function ||-|| on V given by ||> ;" z;v;|| := max]"; |x;| for
Z1,...,Tn € K is a norm on V called the sup-norm.

(b) If L/K is an extension of valued fields (i.e., a field extension in which the absolute value
on L extends that on K), then the absolute value on L gives its underlying vector space
over K a norm.

Lemma/Definition 2.3. Let K be a valued field, V a vector space over K, and |-|| and |||
two norms on V. The following are equivalent:

(a) There are C, D € R+ such that for all v € V we have C ||[v|| < |Jv|| < D |jv|.
(b) The induced topologies on V' coming from ||-|| and ||-||" are the same.

Proof. The implication (a) = (b) is clear. For (b) = (a), note that if the induced topologies
are same, then there is an 7 > 0 such that for all v € V we have ||v|| < 7 implies |Jv||' < 1. Then
D = r~! works, and this suffices by symmetry. |

Theorem 2.4. Let K be a complete valued field and V' a finite dimensional vector space over
K. Then any two norms on V' are equivalent and V' is complete.

Proof. Evidently, V is complete in the sup-norm with respect to any basis (2.2f(a)) if K is, so
it suffices to prove the first statement. Let n := dimg V. If n = 0, there is nothing to show;
hence suppose n € Z>1, and fix a basis v1,...,v, of K. Let ||| be any given norm on V. We
will show that ||| is equivalent to the sup norm with respect to vy, ..., vy, by producing C' and

D as in[2.3(a).
Let D := 37", ||v;]. Then for any v € V, if we write v = )" | z;v; with z; € K, then

n
loll <> Jil [Jvi]| < D miaxc|a|.
=1

i=1
To produce a C, we proceed by induction on n. When n = 1, the constant C' := ||v1]|
works. Suppose n > 2, and fori =1,...,n, let V; denote the K-span of v1,...,0;—1,Vit1, ..., Up.
By induction V; is complete with respect to the restriction of ||-|| to V; and hence closed in V.

Therefore, S = J,(v; + Vi) C V is a closed subset not containing 0, so there is a C' € Ry
such that w € S implies |jw| > C. Now given any nonzero v € V, write v = > | x;a; and
suppose without loss of generality that |21 = max? | |x;|. The result follows from z'v € S.
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In this section, we present the main results.
Definition 3.1. A local field is a nontrivial valued field that is locally compact.

Lemma 3.2. A local field is complete.

Proof. Tt suffices to note that all closed balls are compact (since all closed balls are homeo-
morphic to one another and K is locally compact), and hence sequentially compact (since K is
metric). Now a Cauchy sequence must eventually lie in a closed ball. |

The key result we are interested in is

Theorem 3.3. An archimedean local field is isomorphic as a valued field to either R or C with
the standard absolute values.

Proof. Let K be an archimedean local field. Since K is archimedean, it has characteristic zero
(1.4). By Ostrowski’s Theorem , the restriction of the absolute value of K to its prime
subfield Q is equivalent to the standard absolute value | - |~. By the completion of Q in K
is isomorphic to R with its standard absolute value. The absolute value on K makes it a locally
compact topological vector space over R (2.2b)), whence [K : R] < co ([3, Theorem 1.22]). By
the Fundamental Theorem of Algebra, this is possible only if K = R or K = C. In the former
case, there is nothing left to show. In the latter case, the absolute value on K defines a norm
on the underlying R-vector space (2.2b)) of K, which by [2.4]is equivalent as a norm to the one
coming from the standard absolute value on C. It follows from [2.3] and [L.3| that it is equivalent
as an absolute value to the standard absolute value on C. |

In fact, the “locally compact” condition is stronger than needed, and we have

Theorem 3.4 (Gelfand-Tornheim-Ostrowski). A complete archimedean valued field is isomor-
phic as a valued field to either R or C with the standard absolute values.

Note that and [3.4] imply We will now give three proofs of the first two of
which are taken from [2]. The final proof, taken from [I], is almost provided in this section as
well, except for one technical detail which we address in the final section.

Proof 1 of[34 ([2, §1.2.9]) Let K be such a field; proceeding as in the proof of [3.3] it remains
to show that K/R is algebraic. For this, for 2 € C, let p,(t) := t? — (2 + 2)t + 2z € R[t] and for
a € K, define the function f : C — R>g by f(z) := |[p.(«)| for z € C. Then f is a continuous
proper map and so attains a minimum value say m € R>g. We will show that m = 0.

Since the level set Z := f~!(m) is compact, there is a 29 € Z of maximal |zg|so. If
m > 0, then pick an ¢ € Ry such thatﬂ le] < m and consider a root w of p,,(t) + &; then

w e C~ R and
|20l00 = VW[ — € < |w]oo,

which implies f(w) > m. We will show that also f(w) < m, which is the required contradiction.

Indeed, for odd n € Z>1, if we factor the polynomial ¢, (t) := p,,(t)" + €™ € R]t] over

C as qu(t) = H?Zl (t — w;) with wy, ..., wa, € C, then after renumbering we may assume that
>This we may do because | - | restricted to R is equivalent to | - |c. If it makes one more comfortable, they

may take € € Qxo.
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w = wy. Since ¢, (t) € R[t], we have that

2n
gn(t)® = pri (t)
=1

and hence

2n
lan(@)]* = T f(wi) > f(w) - m* .
=1

But now also

[gn ()] < [f(z0)[" + [e* = m™ + [e[",

and so )
|an(@)? _ (m" +]e]")? e[\ "
f(w) < m2n—1 = men—1 1+ m :
Taking the limit as n — oo yields the result. |

Proof 2 of[3.4 (2, §1.3.3]) Let K be a complete archimedean valued field. As in the proof of
K contains R in such a way that the restriction of the absolute value on K to R is equivalent
to the standard absolute value on R. We now have two cases:

(a)

(b)

If there is a square root of —1 in K, then in fact K contains C, and by the same argument
as in the proof of the restriction of the absolute value on K to C is equivalent to the
standard absolute value. But then K is a complex Banach algebra which is a field, so that
by the Gelfand-Mazur Theorem ([3, Theorem 10.14]) we have K = C.

If there does not exist a square root of —1 in K, then we consider the quadratic field
extension K|i] := K[t]/(t* + 1), which admits the structure of a C-algebra. In this case,
the norm ||-|| on K[i] given by ||z + iy|| := |z| + |y| may not be an absolute value on KJi,
but it certainly does make K[i] a complex Banach algebra, and then the same argument
as above works.

Proof 3 of[34) (|1, Chapter 3]) We proceed as in Proof 2, but handle the cases differently.

(a)

We proceed very similarly to Proof 1, but taking p,(t) := ¢ — 2 this time, so f(z) = |a—z|.
Let m, Z, zp be as before, and pick € € R+ so that |e] < m. Let w := zp+e, with the sign
chosen so that |w|s > |20]|c0, Which implies f(w) > m. This time, for odd n € Z>1, we set
qn(t) := ps, ()" Fe™ and proceed similarly to that proof to obtain f(w) < m(1+|e|/"m™").
Taking the limit as n — oo finishes the proof.

This time, we show that K[i] can be made into a local field by introducing an absolute value
whose restriction to K is equivalent to the given absolute value. Since this is somewhat
technical and best developed in a slightly different framework, we postpone this to the
next section. Given this, we are done since K[i| is archimedean (by, say, and so by
(a) we have K[i] = C, proving K = R.
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In this section, we discuss generalized absolute values (which [I] calls valuations), and see how
they give a slightly cleaner approach to dealing with absolute values. In particular, we use this
to give a proof of the assertion that if K is a complete valued field which does not have a square
root of —1, then there is an absolute value on K[i] whose restriction to Kis equivalent to the
given absolute value.

Definition 4.1. A generalized absolute value on a field K is a function
H K — RZO
that satisfies properties (i) and (ii) of [1.1| and also that

(iii”) there is a C' € R+ such that for all z € K, we have |z| < 1 implies |1 4+ z| < C.

The infimum of all possible C' in (iii”) is called the Artin constant of |-|.

Equivalently, the Artin constant of |-| is the smallest C' € R~ such that for all z,y € K
we have |z + y| < Cmax{|z|,|y|} (c.f. [1.2(a)). It is clear that if |-| is a generalized absolute
value on a field K, then so is |-|° for each ¢ € R, something which is not true of absolute
values in general.

Lemma 4.2. Let |- | be a generalized absolute value on a field K with Artin constant C'.

(a) We have C' > 1.
(b) The function |-| defines an absolute value iff C' < 2.
(¢) Further, in (b), the resulting absolute value is nonarchimedean iff C' = 1.

Proof.

(a) By (i) and (ii), we have |0] = 0 and |1| = 1. The result follows by taking z = 0 in (iii”).

(b) Clearly, (iii) implies (iii”) with C' = 2. Conversely, if for all x,y € K we have that
|z + y| < 2max{|z|, |y|}, then by induction, for each N € Zx>; of the form 2" for some
n € Z>o and all z1,...,xn € K, we have

le1+ -+ an| < Nm%}:]:nﬂ.
1=

When N is not a power of 2, let n := [logy N so that 277! < N < 2", and fill the empty
spots with zeroes (i.e., set £n41 = -+ = z9n = 0) to obtain the weaker

e+ -+ oy < 2Nm]\z§1x|xi|.
1=

In particular, for any N € Z>1, taking x; = --- = xy gives us |[N| < 2N. Then for any

z,y € K and n € Z>1,
(“) iy
)

Extracting n'! roots and taking the limit as n — oo yields the result.
(c) Clear, since (iii’) is directly equivalent to (iii”) for C' = 1.

lz+y[" <2(n+1) m%gi
1=

< a0+ 1)t (7 )l " < 400+ 1)l + o)
1=

Remark 1. In fact, one can show along very similar lines to (b) that that the Artin constant
C' is actually just C = max{1,|2|}, so that the function |-| defines an absolute value iff |2| < 2
and a nonarchimedean one iff |2| < 1. See [2].
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Now we can finish Proof 3 of 3.4]

Lemma 4.3. Let K be a complete valued field and suppose that there is no square root of —1

in K.

(a)
(b)

There is a A € Ryq such that for all 2,y € K we have |22 + y?| > Amax{|z|?, |y|*}.
There is an absolute value on K [i] whose restriction to K is equivalent to the given absolute
value.

Proof.

(a)

In fact, A := |4|(1 + |4])~! will do. Suppose there is an ag € K such that |ad + 1] < A,
and set

c @i+
[4/(1 = laf + 1))’
so that 0 < e < 1. It is then easy to check that the sequence a, in K defined by
az +1
2ay,

ap+1 = An —
for n > 1 is well-defined, satisfies that for all n > 0
jaz + 1] < ¥ Hag + 1],

and is a Cauchy sequence. Its limit a then satisfies a®> + 1 = 0, i.e., is a square root of —1,
a contradiction to hypothesis.

We will show that the function |-| on K[i] given by z + iy — |22 + 32|Y/2 for 2,y € K
is a generalized absolute value on K. It follows that for some ¢ € R+, the generalized
absolute value x + iy — |22 + 4?|%/? has Artin constant C' < 2, and so by (b) defines
an absolute value, the restriction of which to K is evidently equivalent to the given one.
Indeed, property (i) follows from the fact that there is no square root of —1 in K and
property (ii) uses the Euler identity

(2 —yw)? + (yz + 2w)* = (2 + y°)(z° + w?) € Lz, y, 2, ).
Itremains to show (iii”), so suppose we are given z,y € K such that |22 + 3| < 1. If A

is as in (a), then
max{ |z, [y} < A7V,

Then
Nt+z+iygP=]0+2)2+? <1412 |z|+ 2> + |y < 1+]2]A72 42471
and so (iii”) is satisfied for

C = (1+[2]A72 £ 2A71H)1/2,
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