Chapter 2. Exercise Sheets

2.6 Exercise Sheet 6

2.6.1 Numerical and Exploration

Exercise 2.6.1 (Brianchon's Theorem). Let C' C ]P’% be a smooth conic, and (Lq,...,Lg) an
ordered six-tuple of pairwise distinct lines tangent to it. For ¢ = 1,...,6, let P; :== L; N L;41,
where L7 := L1, and for 1 <i < j <6, let M;; denote the line joining F; and P;.

(a) Show that the lines Mi4, Maos and Msg are concurrent. See Figure

(b) How many such distinct configurations can you produce from an unordered set of 6 distinct
lines Lq,...,Lg?

(c) Explore what happens when some of the lines L1, ..., Lg “collide”—what theorems can you
obtain then?

(Hint: Theorem |1.13.5(and Exercise[2.5.10])

Figure 2.3: Brianchon’s Theorem. Picture made with Geogebra.

Exercise 2.6.2. Suppose that k is an algebraically closed field of characteristic other than 2.
Show that there are, up to projective changes of coordinates, exactly 8 types of pencils of conics
in IP’%, as described in Example|1.15.7} Explore what happens when k is not algebraically closed
or has characteristic 2.

Exercise 2.6.3. Solve, by hand, the quartic equation
ot — 423 — 2222 + 1162 — 119 =0

over an arbitrary field k. In other words, given a arbitrary field k, determine how many roots
this equation has in k& and what are their multiplicities are. (Hint: Example [1.15.11})

Exercise 2.6.4. Suppose that k is a field of characteristic other than 2 or 3.

(a) For each a € k, let F, := X> 4+ Y3 +aZ3 € k[X,Y,Z], and let E, := Cp, be the
corresponding cubic curve. Show that when a # 0, the curve F, is smooth, and so
becomes an elliptic curve when equipped with the base point O = [1: —1: 0].

(b) Find a projective change of coordinates that brings F,, into Weierstrass normal form, and
use this to find j(E,) as a function of a.

(c) Next, suppose that & = Q. Determine E,(Q), i.e. the Q-rational points of E, for
a € {£1,£2}. Show that if « is an integer other than +1,42, then E,(Q) is infinite.
Conclude that for each integer o other than +1,+2, there are infinitely many coprime
triples (X,Y, Z) of integers such that X3 + Y3 4+ aZ3 = 0.
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(d) Using a computer, determine #F;(F)), i.e. the number of points on E; over the finite field
k = F, with p elements, for all primes p € [5,1000]. What patterns do you observe? Make
conjectures, and prove them. (Hint: Consider the cases p = 1,2 (mod 3) separately.)

Exercise 2.6.5. (Adapted from [10] Exercise 1.18].) Consider the elliptic curve E defined in
Weierstrass normal form by
y? = a3+ 17

over k = Q. Note that E contains the rational points
Ql = (_2a3)7Q2 = (_174)7Q3 = (275)7Q4 = (479)7 and Q5 = (8723)

(a) Show that Q2,Q4 and Qs can be expressed as m@Q; + nQy for appropriate choices of

m,n € Z.

(b) Compute the points Qs = —Q1 + 2Q3 and Q7 = 3Q1 — Q3.

(¢) Notice that the points @1, ..., Q7 and there inverses all have integer coordinates. There is
exactly one more rational point Qg on this curve that has integer coordinates and y > 0.
Find it.

If you are up for a real challenge, here are a few more things to think about in this example:

(d) Show the claim made in (c) about the set of all integral points on F.

(e) Show that F(Q) =2 Z?2, i.e. there are no nontrivial rational torsion points on E and E(Q)
has rank 2. Can some two of the above points @1, ..., Qs be taken to be two generators
for F(Q), and if so, which ones?

Exercise 2.6.6. (Adapted from [10] Exercise 2.13].) Let k be a field of characteristic other than
2, let t € k, and consider the projective closure E; C IP% of the locus defined by

y? =2 — (2t — 1)2? + t2z.

(a) Prove that E; is nonsingular iff ¢ ¢ {0,1/4}, in which case (E¢, O) is an elliptic curve over
k with O =[0:1:0]. What is j(F;)?

(b) Show that, in the situation in (a), the point (¢,¢) € E(k) has order 4.

(c) Show that if E C P is any elliptic curve over a field k of characteristic other than 2 or
3 such that there is a point P € E(k) of order 4, then there is a projective change of
coordinates @ : P? — P? such that ®(F) = E; and ®(P) = [t : ¢ : 1] for some ¢ ¢ {0,1/4}.

(d) For a given pair (E, P) as in (c), how many values of ¢ work?

2.6.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.6.7. If k is a field, and S C Pi a finite subset, then there is a line L C IP’% such that
SNL =0, ie. in projective space, a line can be chosen that avoids any finite set of points. Can
we produce two such lines Lq, Lo? Can we produce n such lines for any n > 1?7 Can we produce
infinitely many?

Exercise 2.6.8. Every connected component of a real elliptic curve is a subgroup of it under
the elliptic curve addition law. A real elliptic curve is isomorphic as a group (in fact, as a Lie
grou to the circle group S! := {2z € C: |z| = 1}.

Exercise 2.6.9. Let FF C IP’% be a smooth cubic curve, and let O, 0’ € E be two points. There
is a projective change of coordinates ® : P2 — P% such that ®(E) = E and ®(0) = ®(0’); in

10What’s that?
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particular, as abelian groups, (E,0) = (F,0’). (Hint: For a very strong salvage, consider the
map « : E — E defined as follows. Let Lo o/ intersect E in the third point T', and consider the
map « : E — E which sends a P € E to the third intersection point of the line Lpr with E.)

Finally, here are a couple more really challenging exercises to keep you occupied all
(the rest of) summer.

Exercise 2.6.10 (Division Polynomials). Let R := Z[p, g] be the polynomial ring in two variables
p, q. Take the polynomial f := 23+ pr+ ¢ € R[], and let f' = 322 +p and f” = 6x be the first
and second formal derivatives of f with respect to x.

(a) Define the sequence ( fr,)n>0 of polynomials in R[z] recursively by fo =0, fi = fo =1,
fa=2f - f" = (")
f4 = *16][2 +4f . fl . fl/ o 2(f/)37
font1 = fag2 - [2—16f% foo1- f2,, forn >2odd,
fong1 =162 frio- fs — fa-1- ng for n > 2 even, and

fon = fn(fn+2 . nyL—l — fn—2- ffb_'_l) for n > 3.

For n > 1, we have

P na™*=D/2 4 . for n odd, and
"l (n/2)a™=D/2 4 ... for n even,
where - -- denotes terms of lower degree.

(b) The equation y? = f defines an elliptic curve F in Weierstrass normal form (over k =
Q(p, q) or over any field k of characteristic other than 2 when given specific p, ¢ € k such
that 4p> 4+ 27¢% # 0 € k). In this case,

ng(fnaf “fnt1- fn—l) = (1)
when n is odd and
ged(f - fr, frt1 - fa-1) = (1)

when n > 2 is even.
(¢) If P = (z,y) € E, then the coordinates of nP € E are given as

. <x_4~f-f,}gl~fn_1,y.%>

when n is odd and

Jnt1 " fn—1 Jon
"= <x_ iz 16f2~f;%>
when n is even.
(d) Now fix an n > 1, and suppose that k is an algebraically closed field with ch k t 2n.
(1) For P = (z,y) € E, we have nP = O iff the z-coordinate z:(P) of P satisfies f,,(x) =0
when n is odd or satisfies f(z) - f,(x) = 0 when n is even.
(2) When n is odd, the polynomial f, is separable, and when n is even, the polynomial

f+ fn is separable (Exercise|2.2.10).

(3) There are exactly n? points of order dividing n in E, and, in fact, we have
Eln|=Z/n xZ/n.

(Hint: If G is an abelian group of order n? for some n > 1 such that for each divisor
d | n we have #G[d] = d?, where G[d] C G is the subgroup of all points of order
dividing d, then G 2 Z/n x Z/n.)
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Now suppose that p, ¢ € R. How many real roots can f3(z) € R[z] have? Use this to give
another solution to Exercise e).

Exercise 2.6.11 (Elliptic Divisibility Sequences). (Adapted from [9] Exercises 3.34-3.36].) Let k
be a field. A (nondegenerate) elliptic divisibility sequence (EDS) over k is a sequence a = (an)n>1
defined by four initial parameters ay, ag, as, ay with ajasas # 0 subject to the recursive relations

1
3 3
aon+1 = e} (an+2an - anflanJrl) , and
1

2 2
ag2n = ) an(an+2an71 - an72an+1)
aja2

for all n > 2.

(a)

The sequence a defined by a, = n is an EDS. The sequence a defined by a,, = F},, where
F, is the n'" Fibonacci number, is an EDS. More generally, given ai,as,z,y € k, the
sequence a defined by the linear recursive relation

ap = Tap—1 + Yan—2

for n > 2 is an EDS.

If (ap)n>1 is an EDS, then for each m > 1 such that a, # 0, so is the sequence
(amn/am)n>1. An EDS such that a; = 1 is said to be normalized; given any sequence
a we define its normalization a to be given by a, = a,/a; for n > 1. Given a normalized
EDS (an)n>1, we define its discriminant to be

A = agal’ — a%a%Q + 3a3a30 — 20a4a§a; + 3a3al + 16aga§1 + 8aia§a§ +af.

We say that a EDS is singular if the discriminant of its normalization is zero; else it is said
to be nonsingular. Which of the sequences from (a) are nonsingular?

Let E : y?> = 2% + pz + ¢ be an elliptic curve over k, and let P = (x9,%0) € E(k). The
sequence a = (ap)p>1 defined by

Fn(x0) n odd, and
an =
2yo + fn(xo), mn even,

is an EDS, where the polynomials f,, are as in Exercise|2.6.10f What is the discriminant
of (the normalization of) this sequence a,? Is this sequence singular?
The sequence a = (ap)p>1 is an EDS iff for each m > n > r > 0, we have

2 2 2
Um4nAm—nQp = AmA4rAm—rQy — Gpprln—rQop, .

Now suppose that k = Frac R for some integral domain R, and let a = (a,) be an EDS
over k such that ay,ag,as,as € R and such that a | a; for i = 2,3,4 and a3 | a4. Then a
is a divisibility sequence in the sense that each a,, € R and if m,n > 1 are integers, then

m|n=a,|an.
If, further, R is a PID and ged(as, as) = 1, then for all m,n > 1 we have

Aged(m,n) = ng(ama an)v

up to units. In particular, these properties hold for the Fibonacci sequence F,.
Finally suppose that £k = R. Suppose that a is a nonsingular, non-periodic EDS. Then
there is a real number A > 0 such that

o loglanl
m ——-— =
n—o0 n

h.

119



