
Chapter 2. Exercise Sheets

2.6 Exercise Sheet 6

2.6.1 Numerical and Exploration

Exercise 2.6.1 (Brianchon’s Theorem). Let C ⇢ P
2

k
be a smooth conic, and (L1, . . . , L6) an

ordered six-tuple of pairwise distinct lines tangent to it. For i = 1, . . . , 6, let Pi := Li \ Li+1,
where L7 := L1, and for 1  i < j  6, let Mij denote the line joining Pi and Pj .

(a) Show that the lines M14,M25 and M36 are concurrent. See Figure 2.3.
(b) How many such distinct configurations can you produce from an unordered set of 6 distinct

lines L1, . . . , L6?
(c) Explore what happens when some of the lines L1, . . . , L6 “collide”–what theorems can you

obtain then?

(Hint: Theorem 1.13.5 and Exercise 2.5.10.)

Figure 2.3: Brianchon’s Theorem. Picture made with Geogebra.

Exercise 2.6.2. Suppose that k is an algebraically closed field of characteristic other than 2.
Show that there are, up to projective changes of coordinates, exactly 8 types of pencils of conics
in P

2

k
, as described in Example 1.15.7. Explore what happens when k is not algebraically closed

or has characteristic 2.

Exercise 2.6.3. Solve, by hand, the quartic equation

x4 � 4x3 � 22x2 + 116x� 119 = 0

over an arbitrary field k. In other words, given a arbitrary field k, determine how many roots
this equation has in k and what are their multiplicities are. (Hint: Example 1.15.11.)

Exercise 2.6.4. Suppose that k is a field of characteristic other than 2 or 3.

(a) For each ↵ 2 k, let F↵ := X3 + Y 3 + ↵Z3 2 k[X,Y, Z], and let E↵ := CF↵ be the
corresponding cubic curve. Show that when ↵ 6= 0, the curve E↵ is smooth, and so
becomes an elliptic curve when equipped with the base point O = [1 : �1 : 0].

(b) Find a projective change of coordinates that brings E↵ into Weierstrass normal form, and
use this to find j(E↵) as a function of ↵.

(c) Next, suppose that k = Q. Determine E↵(Q), i.e. the Q-rational points of E↵ for
↵ 2 {±1,±2}. Show that if ↵ is an integer other than ±1,±2, then E↵(Q) is infinite.
Conclude that for each integer ↵ other than ±1,±2, there are infinitely many coprime
triples (X,Y, Z) of integers such that X3 + Y 3 + ↵Z3 = 0.
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(d) Using a computer, determine #E1(Fp), i.e. the number of points on E1 over the finite field
k = Fp with p elements, for all primes p 2 [5, 1000]. What patterns do you observe? Make
conjectures, and prove them. (Hint: Consider the cases p ⌘ 1, 2 (mod 3) separately.)

Exercise 2.6.5. (Adapted from [10, Exercise 1.18].) Consider the elliptic curve E defined in
Weierstrass normal form by

y2 = x3 + 17

over k = Q. Note that E contains the rational points

Q1 = (�2, 3), Q2 = (�1, 4), Q3 = (2, 5), Q4 = (4, 9), and Q5 = (8, 23).

(a) Show that Q2, Q4 and Q5 can be expressed as mQ1 + nQ2 for appropriate choices of
m,n 2 Z.

(b) Compute the points Q6 = �Q1 + 2Q3 and Q7 = 3Q1 �Q3.
(c) Notice that the points Q1, . . . , Q7 and there inverses all have integer coordinates. There is

exactly one more rational point Q8 on this curve that has integer coordinates and y > 0.
Find it.

If you are up for a real challenge, here are a few more things to think about in this example:

(d) Show the claim made in (c) about the set of all integral points on E.
(e) Show that E(Q) ⇠= Z

2, i.e. there are no nontrivial rational torsion points on E and E(Q)
has rank 2. Can some two of the above points Q1, . . . , Q8 be taken to be two generators
for E(Q), and if so, which ones?

Exercise 2.6.6. (Adapted from [10, Exercise 2.13].) Let k be a field of characteristic other than
2, let t 2 k, and consider the projective closure Et ⇢ P

2

k
of the locus defined by

y2 = x3 � (2t� 1)x2 + t2x.

(a) Prove that Et is nonsingular i↵ t /2 {0, 1/4}, in which case (Et, O) is an elliptic curve over
k with O = [0 : 1 : 0]. What is j(Et)?

(b) Show that, in the situation in (a), the point (t, t) 2 E(k) has order 4.
(c) Show that if E ⇢ P

2

k
is any elliptic curve over a field k of characteristic other than 2 or

3 such that there is a point P 2 E(k) of order 4, then there is a projective change of
coordinates � : P2

k
! P

2

k
such that �(E) = Et and �(P ) = [t : t : 1] for some t /2 {0, 1/4}.

(d) For a given pair (E,P ) as in (c), how many values of t work?

2.6.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.6.7. If k is a field, and S ⇢ P
2

k
a finite subset, then there is a line L ⇢ P

2

k
such that

S \L = ;, i.e. in projective space, a line can be chosen that avoids any finite set of points. Can
we produce two such lines L1, L2? Can we produce n such lines for any n � 1? Can we produce
infinitely many?

Exercise 2.6.8. Every connected component of a real elliptic curve is a subgroup of it under
the elliptic curve addition law. A real elliptic curve is isomorphic as a group (in fact, as a Lie
group10) to the circle group S1 := {z 2 C : |z| = 1}.

Exercise 2.6.9. Let E ⇢ P
2

k
be a smooth cubic curve, and let O,O0 2 E be two points. There

is a projective change of coordinates � : P2

k
! P

2

k
such that �(E) = E and �(O) = �(O0); in

10What’s that?
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particular, as abelian groups, (E,O) ⇠= (E,O0). (Hint: For a very strong salvage, consider the
map ↵ : E ! E defined as follows. Let LO,O0 intersect E in the third point T , and consider the
map ↵ : E ! E which sends a P 2 E to the third intersection point of the line LP,T with E.)

Finally, here are a couple more really challenging exercises to keep you occupied all
(the rest of) summer.

Exercise 2.6.10 (Division Polynomials). Let R := Z[p, q] be the polynomial ring in two variables
p, q. Take the polynomial f := x3+ px+ q 2 R[x], and let f 0 = 3x2+ p and f 00 = 6x be the first
and second formal derivatives of f with respect to x.

(a) Define the sequence (fn)n�0 of polynomials in R[x] recursively by f0 = 0, f1 = f2 = 1,

f3 := 2f · f 00 � (f 0)2,

f4 := �16f2 + 4f · f 0 · f 00 � 2(f 0)3,

f2n+1 := fn+2 · f3

n � 16f2 · fn�1 · f3

n+1 for n � 2 odd,

f2n+1 := 16f2 · fn+2 · f3

n � fn�1 · f3

n+1 for n � 2 even, and

f2n := fn(fn+2 · f2

n�1 � fn�2 · f2

n+1) for n � 3.

For n � 1, we have

fn =

(
nx(n

2�1)/2 + · · · , for n odd, and

(n/2)x(n
2�4)/2 + · · · , for n even,

where · · · denotes terms of lower degree.
(b) The equation y2 = f defines an elliptic curve E in Weierstrass normal form (over k =

Q(p, q) or over any field k of characteristic other than 2 when given specific p, q 2 k such
that 4p3 + 27q2 6= 0 2 k). In this case,

gcd(fn, f · fn+1 · fn�1) = (1)

when n is odd and
gcd(f · fn, fn+1 · fn�1) = (1)

when n � 2 is even.
(c) If P = (x, y) 2 E, then the coordinates of nP 2 E are given as

nP =

✓
x� 4 · f · fn+1 · fn�1

f2
n

, y · f2n
f4
n

◆

when n is odd and

nP =

✓
x� fn+1 · fn�1

4f · f2
n

, y · f2n
16f2 · f4

n

◆

when n is even.
(d) Now fix an n � 1, and suppose that k is an algebraically closed field with ch k - 2n.

(1) For P = (x, y) 2 E, we have nP = O i↵ the x-coordinate x(P ) of P satisfies fn(x) = 0
when n is odd or satisfies f(x) · fn(x) = 0 when n is even.

(2) When n is odd, the polynomial fn is separable, and when n is even, the polynomial
f · fn is separable (Exercise 2.2.10).

(3) There are exactly n2 points of order dividing n in E, and, in fact, we have

E[n] ⇠= Z/n⇥ Z/n.

(Hint: If G is an abelian group of order n2 for some n � 1 such that for each divisor
d | n we have #G[d] = d2, where G[d] ⇢ G is the subgroup of all points of order
dividing d, then G ⇠= Z/n⇥ Z/n.)
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(e) Now suppose that p, q 2 R. How many real roots can f3(x) 2 R[x] have? Use this to give
another solution to Exercise 2.5.5(e).

Exercise 2.6.11 (Elliptic Divisibility Sequences). (Adapted from [9, Exercises 3.34-3.36].) Let k
be a field. A (nondegenerate) elliptic divisibility sequence (EDS) over k is a sequence a = (an)n�1

defined by four initial parameters a1, a2, a3, a4 with a1a2a3 6= 0 subject to the recursive relations

a2n+1 =
1

a3
1

�
an+2a

3

n � an�1a
3

n+1

�
, and

a2n =
1

a2
1
a2

an(an+2a
2

n�1 � an�2a
2

n+1)

for all n � 2.

(a) The sequence a defined by an = n is an EDS. The sequence a defined by an = Fn, where
Fn is the nth Fibonacci number, is an EDS. More generally, given a1, a2, x, y 2 k, the
sequence a defined by the linear recursive relation

an = xan�1 + yan�2

for n � 2 is an EDS.
(b) If (an)n�1 is an EDS, then for each m � 1 such that am 6= 0, so is the sequence

(amn/am)n�1. An EDS such that a1 = 1 is said to be normalized; given any sequence
a we define its normalization ã to be given by ãn = an/a1 for n � 1. Given a normalized
EDS (an)n�1, we define its discriminant to be

� := a4a
15

2 � a33a
12

2 + 3a24a
1

20� 20a4a
3

3a
7

2 + 3a34a
5

2 + 16a63a
4

2 + 8a24a
2

3a
2

2 + a44.

We say that a EDS is singular if the discriminant of its normalization is zero; else it is said
to be nonsingular. Which of the sequences from (a) are nonsingular?

(c) Let E : y2 = x3 + px + q be an elliptic curve over k, and let P = (x0, y0) 2 E(k). The
sequence a = (an)n�1 defined by

an =

(
fn(x0) n odd, and

2y0 · fn(x0), n even,

is an EDS, where the polynomials fn are as in Exercise 2.6.10. What is the discriminant
of (the normalization of) this sequence an? Is this sequence singular?

(d) The sequence a = (an)n�1 is an EDS i↵ for each m > n > r > 0, we have

am+nam�na
2

r = am+ram�ra
2

n � an+ran�ra
2

m.

(e) Now suppose that k = FracR for some integral domain R, and let a = (an) be an EDS
over k such that a1, a2, a3, a4 2 R and such that a1 | ai for i = 2, 3, 4 and a2 | a4. Then a
is a divisibility sequence in the sense that each an 2 R and if m,n � 1 are integers, then

m | n ) an | am.

If, further, R is a PID and gcd(a3, a4) = 1, then for all m,n � 1 we have

agcd(m,n) = gcd(am, an),

up to units. In particular, these properties hold for the Fibonacci sequence Fn.
(f) Finally suppose that k = R. Suppose that a is a nonsingular, non-periodic EDS. Then

there is a real number h > 0 such that

lim
n!1

log |an|
n2

= h.
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