Chapter 2. Exercise Sheets

2.5 Exercise Sheet 5

2.5.1 Standard Exercises/Numerical and Exploration

Exercise 2.5.1. Given a nonempty finite set S C P? of points in P%, let d(S) be the smallest
degree of a curve C C ]P’% through S, i.e. such that C' O S. Let’s investigate the relationship
between S, its size n := #5, and the integer d(S).

(a) Show that if n € {1,2}, then d(S) = 1.

(b) Show that if n € {3,4}, then d(S) € {1,2}. When does each case hold?

(c) Show that if n =5, then d(S) € {1,2}, or equivalently that given any five distinct points
P,...,P5¢c Pi, there is at least one (possibly reducible) conic C' C IP’% passing through
each P;.

(d) Show that, in general, we have

)

1 < d( S) < ’7V9+28n’3—‘
where [-] denotes the ceiling function. (Hint: When does a system of N linear equations
in M variables always have a solution that is not identically zero?)

(e) (Cramer’s Theorem) Show that the bound in (d) is sharp in general: for each n > 1, come
up with a collection S of n points such that d(S) equals the upper bound from (d). Can
you characterize the sets S for which this equality holds? What possible intermediate
values of d(S) are possible?

Exercise 2.5.2. Let k be a field.

(a) Suppose chk # 2, and consider the collection of 9 points S := {(i,j) € AZ : 0 <i,j < 2}.
How many distinct cubic curves C' C Ai pass through S? (Hint: by Exercise d),
there is at least one such C. Does your answer change if the question is about projective
cubics instead? Does the choice of base field matter? Can you come up with an analog if
chk =27)

(b) Can you formulate an analog of (a) for a configuration of n? points

S = {(17.7) EA%OSZ,]STL*l},
where n > 2 is any integer (say when ch k = 0 for convenience)?

Exercise 2.5.3 (More on Pascal). (Adapted from [3| Exercise 5.31].) If in Pascal’s Theorem, we
let some adjacent vertices coincide (the side being tangent), then we get many new theorems.

(a) State and sketch what happens if P, = P», P3 = Py and Ps = F;.
(b) Let P = P, and the other four points be distinct. Deduce a rule for constructing a
tangent to a given conic at a given point, using only a straight-edge.

Exercise 2.5.4. Let C' C IF’% be a curve of degree d over an algebraically closed field k.

(a) Make sense of the following statement: a “general” line L C IP’% intersects C' in exactly d
distinct points.
(b) Given a “general” point P € P?, how many lies through P are tangent to C?

(Hint: How is this exercise is related to Exercises [2.5.8] [2.5.9] and [2.5.10f For (b), you may
suppose for convenience that ch k = 0. What happens in positive characteristic?)

Exercise 2.5.5. Let k be an algebraically closed field, and let C' C IP’% be a smooth cubic curve.

(a) Show that C has exactly 9 inflection points. The set of inflection points on C' is usually
denoted by C[3]. (Hint: Exercise You may assume ch k # 2,3 for convenience.)
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(b) Show that C[3] is not contained in a line, but any line passing through any two points in
C'[3] passes through a third point in C[3]. Why does this not violate the Sylvester-Gallai
Theorem?

(¢) Suppose that chk # 3. Show that by a projective change of coordinates, we can bring
C'[3] to be the nine points

0:1:¢],[€:0:1],[1:£:0],
where ¢ runs over the three roots of > +1 =0 in kﬂ
(d) Keeping the hypothesis that ch k # 3, show that every cubic curve passing through the 9
points from (c) has the equation

Fr=ANX3+Y3+ 23 +3uXYZ € k[X,Y, Z]

for some A := [\ : pu] € P}. This curve is singular iff A is either [0 : 1] or [1 : £] where
€341 = 0. In each of these cases the curve Cy := Cp, degenerates into a product of three
lines. If C} is irreducible, then the flexes of Cy are exactly the 9 points above.

(e) Conclude, using either (b) or both (c) and (d), that if k¥ = C, then

#(CBINCR)) <3,

i.e. at most three of the flexes of a complex smooth cubic curve can be real. Come up
with a curve C' for which this bound is achieved. Can this intersection have fewer than 3
points? Can it have exactly 27

Exercise 2.5.6. If f,g € k[z,y] are nonconstant polynomials and P € A2, then

ir(f,g9) 2 mp(f)-mp(g).

When does equality hold? (This is a very hard exercise, and you may not be able to do it with
the tools we have developed so far; nonetheless, it is very valuable to work out special cases.
Try doing the case when f or g is linear. Next, try the case when mp(f) =1 or mp(g) = 1.
Finally, see how far you can extend your techniques to the next (or general) case; once you've
done that, see [3] §3.3, Theorem 3] or [I5] Theorem 7.4].)

2.5.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.5.7 (Braikenridge-Maclaurin Theorem/Converse to Pascal’'s Theorem). If the intersec-
tion points of opposite sides of a hexagon lie on a straight line, then the vertices of the hexagon
lie on a conic.

Exercise 2.5.8. (Adapted from [3] Exercise 5.26].) If C' C Pi is a curve of degree n > 1, and
Pe ]P’i a point of multiplicity m := mp(C) > 0, then for all but finitely many lines L through
P, the line L intersects C' in n — m distinct points other than P.

Exercise 2.5.9. Given a curve C C IP’% and a point P € ]P’i, there is at least one tangent line L
to C that does not pass through P.

Exercise 2.5.10 (Dual Curve). Let C' C P2 be a curve. Let
C* :={L € P#* : L is tangent to C' at some point P € C'} C P2*.

Then C* C Pi* is a curve, and C** = C. (Hint: Can you work out a few examples in low
degrees? What is the relationship between the degrees of C' and C*?)

9That these roots are distinct uses ch k # 3.
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