
Chapter 2. Exercise Sheets

2.2 Exercise Sheet 2

2.2.1 Numerical and Exploration

Exercise 2.2.1. Show that if k is any field of characteristic zero (e.g. k = R or k = C), then the
a�ne curve C = Cf ⇢ A

2

k
defined by the vanishing of the polynomial

f(x, y) = y2 � x3 + x 2 k[x, y]

cannot be parametrized by rational functions, using the following proof outline.

(a) Suppose to the contrary that it can, and use this to produce polynomials f, g, h 2 k[t]
that satisfy all of the following properties simultaneously:

(i) h 6= 0 and not all of f, g, h are constant,

(ii) the polynomials f, g, h are coprime as a triple, i.e. that (f, g, h) = (1) in k[t], and

(iii) g2h� f3 + fh2 = 0.

(b) Verify the following matrix identities over the ring k[t] (or equivalently field K = k(t)):


f g h
f 0 g0 h0

�
·

2

4
�3f2 + h2

2gh
g2 + 2fh

3

5 =


f g h
f 0 g0 h0

�
·

2

4
gh0 � hg0

hf 0 � fh0

fg0 � gf 0

3

5 =


0
0

�
.

Here f 0 denotes the formal derivative4 of f with respect to t, and similarly for g0 and h0.
(c) Show that the 2⇥ 3 matrix 

f g h
f 0 g0 h0

�

has full rank, i.e. that at least one of gh0 � hg0, hf 0 � fh0, fg0 � gf 0 2 k[t] is nonzero.
(Hint: Exercise 2.2.11(a).)

(d) Use (b), (c), and basic linear algebra over the field K = k(t) to conclude that there are
relatively prime polynomials p(t), q(t) 2 k[t] with q(t) 6= 0 satisfying

q(t) ·

2

4
�3f2 + h2

2gh
g2 + 2fh

3

5 = p(t) ·

2

4
gh0 � hg0

hf 0 � fh0

fg0 � gf 0

3

5 . (2.1)

(e) Show that the polynomials �3f2 + h2, 2gh, g2 + 2fh 2 k[t] are coprime as a triple, i.e. in
k[t], we have that

(�3f2 + h2, 2gh, g2 + 2fh) = (1).

Conclude that p(t) is a nonzero constant.
(f) Use the equation (a)(iii) and the matrix equation (2.1) to derive a contradiction. (Hint:

do some case-work on the possible relationships between the degrees of f, g and h.)
(g) Why do the polynomials �3f2 + h2, 2gh and g2 + 2fh show up in this proof? What goes

wrong in the above proof if you try to repeat it for f(x, y) = y2�x3�x2 2 k[x, y] instead?
(We showed in Example 1.3.7 that this curve admits a rational parametrization.)

(h) Where in the proof did you use ch k = 0? Investigate what happens in positive charac-
teristic. Is the result still true? If not, can you come up with a parametrization? If yes,
then does the same proof work? If the result is true but the proof doesn’t work, can you
come up with a di↵erent proof?

4If you haven’t seen this notion before, then define it.
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This proof due to Kapferer has been adapted from [14]; with minor modifications, the same
proof shows that any over a field k with ch k = 0, any smooth projective curve of degree at
least 3 cannot be parametrized by rational functions. For a di↵erent proof of this specific case
using Fermat’s method of infinite descent, see [5, §I.2.2]. In modern algebraic geometry, the
more general result (in arbitrary characteristic) is often seen as a consequence of the Riemann-
Hurwitz formula.

Exercise 2.2.2. Let Ce ⇢ A
2

R
denote the Cassini curve of eccentricity e 2 (0,1) (see Example

1.2.12). For concreteness, you may take Ce := Cfe , where

fe(x, y) :=
�
(x� 1)2 + y2

� �
(x+ 1)2 + y2

�
� e4 2 R[x, y].

Show that:

(a) The curve Ce consists of two pieces5 if 0 < e < 1 and one piece if e � 1.
(b) The curve Ce is smooth6 if and only if e 6= 1.
(c) For e > 1, the unique oval in Ce is convex7 i↵ e �

p
2.

Exercise 2.2.3 (More Parametric Curves). Using the proof strategy from Example 1.3.10 and
Remark 1.3.11 or otherwise, come up with Cartesian equations defining the parametric curves
given by the following parametrizations.

(a) (t4 + 2t� 3, t3 + 2t2 � 5)

(b)

✓
t(t2 + 1)

t4 + 1
,
t(t2 � 1)

t4 + 1

◆

Now come up with a few examples of your own devising, and repeat the same. Can you write
a program that does these (somewhat tedious) calculations for you?

Exercise 2.2.4 (Resultants). For those who know a little linear algebra, this exercise provides a
di↵erent perspective on the resultant of two polynomials than is presented in the Ross set on
this topic (which you should now solve if you haven’t done so previously!).

For a field K and for each integer N � 0, let K[t]N ⇢ K[t] denote the subspace
of polynomials of degree strictly less than N , so that dimK K[t]N = N . Given polynomials
f, g 2 K[t] of degree m,n � 0 respectively, we can investigate whether or not f and g have a
common factor in K[t] as follows.

(a) Consider the linear map � : K[t]n ⇥K[t]m ! K[t]m+n given by �(u, v) := uf + vg. Show
that f and g have a common factor in K[t] of positive degree i↵ the map � is not injective.
(Hint: use that K[t] is a UFD.)

(b) Show that if we choose the ordered basis

(tn�1, 0), (tn�2, 0), . . . , (1, 0), (0, tm�1), (0, tm�2), . . . , (0, 1)

of the domain and
tm+n�1, tm+n�2, . . . , 1

5Here the word “piece” means “connected component”.
6What does that mean?
7What does that mean?
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of the range, then the matrix representative of � with respect to these bases is

Syl(f, g) :=

2

6666666666666664

a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . a0

...
...

. . . b0

am am�1 · · ·
... bn bn�1 · · ·

...

0 am
. . .

... 0 bn
. . .

...
...

...
. . . am�1

...
...

. . . bn�1

0 0 · · · am 0 0 · · · bn

3

7777777777777775

,

where f(x) = a0tm+ · · ·+am and g(x) = b0tn+ · · ·+bn. This matrix is called the Sylvester
matrix of f and g.

(c) The determinant of the Sylvester matrix of f and g is called the called the resultant of f
and g with respect to t, often written Rest(f, g) or simply Res(f, g), so that

Res(f, g) := det Syl(f, g) 2 Z[a0, . . . , am, b0, . . . , bn] ⇢ K.

Show, using some basic linear algebra, that f and g share a common factor in K[t] i↵

Res(f, g) = 0 2 K.

(Hint: the domain and range of � have the same dimension over K.)
(d) Conclude that if K is algebraically closed and a0b0 6= 0, then f and g have a common root

t = t0 2 K i↵
Res(f, g) = 0.

(What happens if a0b0 = 0?) Use this to show that, even if K is not algebraically closed,
and ↵1, . . . ,↵m and �1, . . . ,�n are roots of f and g, respectively, in some extension field
K 0 � K of K, then

Res(f, g) = an0 b
m

0

mY

i=1

nY

j=1

(↵i � �j) = an0

mY

i=1

g(↵i) = (�1)mnbm0

nY

j=1

f(�j).

(e) Let’s do one example computation: show that if m = n = 2 and

f(t) = a1t
2 + b1t+ c1 and

g(t) = a2t
2 + b2t+ c2,

then
Res(f, g) = (a1c2 � a2c1)

2 � (a1b2 � a2b1)(b1c2 � b2c1).

In particular, these quadratic equations have a common root (in K, or if necessary, a
quadratic extension of K) i↵ this polynomial of degree 4 in the coe�cients vanishes.

(f) (Finishing Example 1.3.10.) Show that if u(t), v(t) 2 k[t] are any nonconstant polynomials
which define the parametric curve

C = {(u(t), v(t)) : t 2 k} ⇢ A
2

k

and if
f(x, y) := Rest(u(t)� x, v(t)� y) 2 k[x, y],

then C ⇢ Cf with equality if k is algebraically closed.
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Exercise 2.2.5 (Discriminants). Given a field K and a polynomial f(t) 2 K[t], the discriminant
of f , written disc(f), is the resultant of f and its (formal) derivative f 0 with respect to t, up to
scalar factors. More precisely, if f(t) = a0tm+ · · ·+ am with aj 2 K and a0 6= 0, then we define

disc(f) :=
(�1)m(m�1)/2

a0
· Res(f, f 0).

Let’s do a few examples.

(a) Show that if f(t) = at2 + bt+ c, with a 6= 0, then disc(f) = b2 � 4ac.
(b) Show that if f(t) = t3 + pt + q, then disc(f) = �4p3 � 27q2. How does this relate to

Exercise 2.1.4?
(c) Show that if over an extension field K 0 � K, the polynomial f splits into linear factors as

f(t) = a0

mY

i=1

(t� ↵i) 2 K 0[t]

for some ↵i 2 K 0, then

disc(f) = a2n�2

0

Y

1i<jn

(↵i � ↵j)
2.

(d) Show that the polynomial f(t) has a repeated root over an algebraic closure of K i↵
disc(f) = 0. In other words, if there is an ↵ some extension field K 0 � K and a polynomial
q(t) 2 K 0[t] such that

f(t) = (t� ↵)2q(t),

then disc(f) = 0, and conversely, if disc(f) = 0, then we can find such ↵,K and q.

2.2.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.2.6. For a field k, let Fun(A2

k
, k) be the set of all functions F : A2

k
! k. Claim: for

any field k, the map
k[x, y] ! Fun(A2

k, k), f 7! Ff

which sends a polynomial to the corresponding polynomial function is injective. In other words,
if two polynomials f, g 2 k[x, y] agree at all points (p, q) 2 A

2

k
, then f = g.

Exercise 2.2.7. If k is any infinite field and C ⇢ A
2

k
an algebraic curve, then the complement

A
2

k r C

of C in A
2

k
is infinite.

Exercise 2.2.8. A field is algebraically closed if and only if it is infinite.

Exercise 2.2.9. For any field k, if f, g 2 k[t] are polynomials such that

f(t)2 + g(t)2 = 1

as polynomials, then f(t) and g(t) are constant. In other words, the “unit circle” C ⇢ A
2

k
does

not admit a polynomial parametrization.

Exercise 2.2.10 (Separability). For any field K and polynomial f(t) 2 K[t], we say that f is
separable if an algebraic closure of K separates the roots of f , i.e. that disc(f) 6= 0 2 K. (See
Exercise 2.2.5.) Claim: for any field K and f(t) 2 K[t], the polynomial f is separable if and
only if it is irreducible as an element of the ring K[t].
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Exercise 2.2.11 (Wronskians).

(a) For any field k and polynomials f, g 2 k[t] in one variable t over k, we have fg0 = gf 0 i↵
there are ↵,� 2 k, not both zero, such that ↵f + �g = 0. Here, as before, f 0 (resp. g0)
denotes the formal derivative of f (resp. g) with respect to t.

(b) More generally, for any field k, integer n � 1, and polynomials f1, . . . , fn 2 k[t] in one
variable t over k, the determinant

W (f1, . . . , fn) = det

2

6664

f1 f2 · · · fn
f 0
1

f 0
2

· · · f 0
n

...
...

. . .
...

f (n�1)

1
f (n�1)

2
· · · f (n�1)

n

3

7775
2 k[t]

vanishes (i.e. we have W (f1, . . . , fn) = 0 as a polynomial) i↵ the f1, . . . , fn 2 k are linearly
dependent, i.e. there are ↵1, . . . ,↵n 2 k, not all zero, such that

↵1f1 + ↵2f2 + · · ·+ ↵nfn = 0.

Here, for any f 2 k[t] and j � 0, the symbol f (j) denotes the jth formal derivative of f
with respect to t, so that f (0) = f and we have f (1) = f 0, f (2) = f 00, etc.
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