Chapter 2. Exercise Sheets

2.2 Exercise Sheet 2

2.2.1 Numerical and Exploration

Exercise 2.2.1. Show that if k is any field of characteristic zero (e.g. kK =R or k = C), then the
affine curve C' = Cy C A7 defined by the vanishing of the polynomial

flz,y) =y* — 2 + z € k[z,y)

cannot be parametrized by rational functions, using the following proof outline.

(a) Suppose to the contrary that it can, and use this to produce polynomials f,g,h € k[t]
that satisfy all of the following properties simultaneously:

(i) h # 0 and not all of f, g, h are constant,
(ii) the polynomials f, g, h are coprime as a triple, i.e. that (f,g,h) = (1) in k[¢], and
(iii) g%h — f3 + fh2 =0.
(b) Verify the following matrix identities over the ring k[t] (or equivalently field K = k(t)):

-3/ +n? W — hg
AT B Sn I I 3 B A A I
g 2gh A A hf' = fh| = ol

g° +2fh fg —qaf

Here f’ denotes the formal derivativ of f with respect to t, and similarly for ¢’ and h'.
(¢) Show that the 2 x 3 matrix
fog h
f/ g/ h/

has full rank, i.e. that at least one of gh! — hg', hf' — I/, f¢' — gf' € k[t] is nonzero.
(Hint: Exercise a).)

(d) Use (b), (c), and basic linear algebra over the field K = k(¢) to conclude that there are
relatively prime polynomials p(t), ¢(t) € k[t] with ¢(t) # 0 satisfying

—3f2+h? gh' — hy'
qt) - 2gh =p(t)- [hf = fW|. (2.1)
g +2fh g —gf

(e) Show that the polynomials —3f2 + h?,2gh, g*> + 2fh € k[t] are coprime as a triple, i.e. in
k[t], we have that
(=312 + 1% 2gh, g% + 2fh) = (1).

Conclude that p(t) is a nonzero constant.

(f) Use the equation (a)(iii) and the matrix equation to derive a contradiction. (Hint:
do some case-work on the possible relationships between the degrees of f, g and h.)

(g) Why do the polynomials —3f2 + h?, 2gh and g% + 2fh show up in this proof? What goes
wrong in the above proof if you try to repeat it for f(x,y) = y? — 2% — 22 € k[z,y] instead?
(We showed in Examplemthat this curve admits a rational parametrization.)

(h) Where in the proof did you use chk = 07 Investigate what happens in positive charac-
teristic. Is the result still true? If not, can you come up with a parametrization? If yes,
then does the same proof work? If the result is true but the proof doesn’t work, can you
come up with a different proof?

41f you haven’t seen this notion before, then define it.
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This proof due to Kapferer has been adapted from [I4]; with minor modifications, the same
proof shows that any over a field k with chk = 0, any smooth projective curve of degree at
least 3 cannot be parametrized by rational functions. For a different proof of this specific case
using Fermat’s method of infinite descent, see [5, §1.2.2]. In modern algebraic geometry, the
more general result (in arbitrary characteristic) is often seen as a consequence of the Riemann-
Hurwitz formula.

Exercise 2.2.2. Let C. C A% denote the Cassini curve of eccentricity e € (0,00) (see Example
1.2.12)). For concreteness, you may take C, := CY,, where

felz,y) = ((x - 1)2 + y2) ((x + 1)2 + y2) —ete Rz, y].

Show that:

(a) The curve C, consists of two piece if 0 < e < 1 and one piece if e > 1.
(b) The curve C. is Smoot}ﬂ if and only if e # 1.
(¢) For e > 1, the unique oval in C, is conve iff e > /2.

Exercise 2.2.3 (More Parametric Curves). Using the proof strategy from Example [1.3.10| and
Remark [1.3.11] or otherwise, come up with Cartesian equations defining the parametric curves
given by the following parametrizations.

(a) (t* 42t — 3,13+ 2t — 5)

(b) tt2+1) t(t2—1)

th+1 7 trt+1

Now come up with a few examples of your own devising, and repeat the same. Can you write
a program that does these (somewhat tedious) calculations for you?

Exercise 2.2.4 (Resultants). For those who know a little linear algebra, this exercise provides a
different perspective on the resultant of two polynomials than is presented in the Ross set on
this topic (which you should now solve if you haven’t done so previously!).

For a field K and for each integer N > 0, let K[ty C K][t] denote the subspace
of polynomials of degree strictly less than N, so that dimy K[|y = N. Given polynomials
f,g € KJt] of degree m,n > 0 respectively, we can investigate whether or not f and g have a
common factor in K[t] as follows.

(a) Consider the linear map ¢ : K[t], X Kl[t]m — K[t|m4n given by é(u,v) := uf +vg. Show
that f and g have a common factor in K[t of positive degree iff the map ¢ is not injective.

(Hint: use that K[t] is a UFD.)
(b) Show that if we choose the ordered basis

t"1,0), (t"72,0),...,(1,0), (0,t™ 1), (0,#™2),...,(0,1)

of the domain and
thrnfl tm+n72 1

®Here the word “piece” means “connected component”.
SWhat does that mean?
"What does that mean?
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()

of the range, then the matrix representative of ¢ with respect to these bases is

ao 0 e 0 bo 0 0
ax ag cee 0 by bo 0
as a1 0 b2 bl 0
. . . agp . bo
Syl(f,9) == : o
am a’m—l .. : bn bn—l DY :
0  an - : 0 b,
: : C Qo1 N
i 0 0 - am 0 0 - bn |

where f(z) = apt™+- - -+am and g(z) = bot™ +- - - +b,,. This matrix is called the Sylvester
matrix of f and g.

The determinant of the Sylvester matrix of f and ¢ is called the called the resultant of f
and g with respect to t, often written Res;(f, g) or simply Res(f, g), so that

Res(f,g) := det Syl(f,g) € Z[ag, - .., am,bo, ..., by] C K.
Show, using some basic linear algebra, that f and g share a common factor in K[t] iff
Res(f,g9) =0 € K.

(Hint: the domain and range of ¢ have the same dimension over K.)
Conclude that if K is algebraically closed and agbg # 0, then f and g have a common root
t=1tge K iff

Res(f,g) = 0.
(What happens if agbg = 07) Use this to show that, even if K is not algebraically closed,
and aq,...,qy, and (i, ..., 5, are roots of f and g, respectively, in some extension field

K’ D K of K, then

i=1j=1 i=1 j=1
Let’s do one example computation: show that if m = n = 2 and

f®) = a1t® + byt + ¢, and
g(t) = agt® 4 bat + co,
then
Res(f,g) = (a1c2 — age1)® — (arby — agby)(bica — bacy).

In particular, these quadratic equations have a common root (in K, or if necessary, a
quadratic extension of K) iff this polynomial of degree 4 in the coefficients vanishes.
(Finishing Example) Show that if u(t), v(t) € k[t] are any nonconstant polynomials
which define the parametric curve

C = {(u(t),v(t)) : t € k} C A2

and if
f(z,y) == Resy(u(t) — z,v(t) —y) € k[z,y],

then C' C Cy with equality if % is algebraically closed.
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Exercise 2.2.5 (Discriminants). Given a field K and a polynomial f(¢) € K[t], the discriminant
of f, written disc(f), is the resultant of f and its (formal) derivative f’ with respect to ¢, up to
scalar factors. More precisely, if f(t) = aot™ + - - -+ a,, with a; € K and ag # 0, then we define

(71)m(m—1)/2
disc(f) := ———— - Res(f, f').
ao
Let’s do a few examples.
(a) Show that if f(t) = at? + bt + ¢, with a # 0, then disc(f) = b* — 4ac.
(b) Show that if f(t) = > + pt + ¢, then disc(f) = —4p® — 27¢>. How does this relate to
Exercise|2.1.4]
(c) Show that if over an extension field K’ D K, the polynomial f splits into linear factors as

m

fO)=ao [t — ) € K'[t]

i=1

for some «; € K’, then

disc(f) =ag"> [ (i —aj)

1<i<j<n

(d) Show that the polynomial f(t) has a repeated root over an algebraic closure of K iff
disc(f) = 0. In other words, if there is an a some extension field K’ D K and a polynomial
q(t) € K'[t] such that

f(t) = (t —a)?q(t),

then disc(f) = 0, and conversely, if disc(f) = 0, then we can find such a, K and gq.

2.2.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.2.6. For a field k, let Fun(AZ?, k) be the set of all functions F : A7 — k. Claim: for
any field k, the map
k[z,y] = Fun(AZ, k), f— Fy

which sends a polynomial to the corresponding polynomial function is injective. In other words,
if two polynomials f,g € k[z,y] agree at all points (p,q) € A7, then f = g.

Exercise 2.2.7. If k is any infinite field and C C Az an algebraic curve, then the complement
A2 C
of C in A? is infinite.
Exercise 2.2.8. A field is algebraically closed if and only if it is infinite.
Exercise 2.2.9. For any field k, if f, g € k[t] are polynomials such that
F@®)? + () =1

as polynomials, then f(t) and g(t) are constant. In other words, the “unit circle” C' C A2 does
not admit a polynomial parametrization.

Exercise 2.2.10 (Separability). For any field K and polynomial f(t) € KJt], we say that f is
separable if an algebraic closure of K separates the roots of f, i.e. that disc(f) # 0 € K. (See
Exercise ) Claim: for any field K and f(t) € K|[t], the polynomial f is separable if and
only if it is irreducible as an element of the ring K|[t].
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Exercise 2.2.11 (Wronskians).

(a)

(b)

For any field k and polynomials f, g € k[t] in one variable t over k, we have f¢' = gf’ iff
there are «, 8 € k, not both zero, such that af + 89 = 0. Here, as before, f’ (resp. ¢)
denotes the formal derivative of f (resp. g) with respect to t.

More generally, for any field k, integer n > 1, and polynomials fi,..., f, € k[t] in one
variable t over k, the determinant

fi for I

fi oo N
W(fiyooos fo) =det | . N R

(1) pn-1) o)

1 2 n

vanishes (i.e. we have W (fy,..., fn) = 0 as a polynomial) iff the fi,..., f,, € k are linearly
dependent, i.e. there are ay,...,a, € k, not all zero, such that

arfi+aoafo+ -+ anfn=0.

Here, for any f € k[t] and j > 0, the symbol fU) denotes the " formal derivative of f
with respect to ¢, so that f(©) = f and we have f&) = f/, f@ = " ete.
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