
Chapter 2. Exercise Sheets

2.1 Exercise Sheet 1

2.1.1 Numerical and Exploration

Exercise 2.1.1. For an ordered pair (a, b) of rational numbers, consider the polynomial

fa,b(x, y) := ax2 + by2 � 1 2 Q[x, y].

Let C(a, b) = Cfa,b
⇢ A

2

Q
be the rational a�ne plane algebraic curve defined by fa,b.

(a) Show that C(2/5, 1/5) = ;.
(b) Characterize all primes p such that C(1/p, 1/p) = ;.
(c) Characterize all pairs (a, b) such that C(a, b) = ;.

Exercise 2.1.2.

(a) Play around with graphs of real a�ne plane algebraic curves (RAPACs) on, say, Desmos
or WolframAlpha. What is the coolest thing you can get a graph to do (cross itself thrice,
look like a heart, etc.)?

(b) How many pieces (i.e. connected components) can a RAPAC of degree d = 2 have? How
about d = 3? What about d 2 {4, 5, 6, 7}?

(c) What can you say in general? Can you come up with upper or lower bounds for the
number of pieces?

(d) Does the number of pieces depend on the nesting relations1 between them? Does it depend
on (or dictate) their shapes (e.g. convexity)?2

Exercise 2.1.3.

(a) Let P ⇢ A
2

R
be the polar curve implicitly defined by the equation

r3 + r cos ✓ � sin 4✓ = 0.

Find a nonconstant polynomial f(x, y) 2 R[x, y] such that the curve Cf ⇢ A
2

R
defined by

f contains P , i.e. satisfies P ⇢ Cf .3

(b) What is the degree of your f? What is the smallest possible degree of such an f?
(c) By your choice of f , we have the containment P ⇢ Cf . Is P all of Cf? If so, can you

explain why (perhaps by retracing steps)? If not, how would you describe the extraneous
components of Cf rP? Could you have predicted them? Can you pick an f that provably
minimizes the number of extraneous components?

(d) Repeat the same analysis as in (a) through (c) for other such implicitly defined polar
curves of your own devising.

(e) Can you perform the same analysis as above for the Archimedean spiral, which is the polar
curve implicitly defined by the equation r = ✓?

Draw pictures, or get a computer to draw them for you, but beware–is your software doing
exactly what you think it is?

1What does that mean? What are those?
2Here’s a harder result to whet your appetite: if d = 4 and there is a nested pair of closed ovals, then the

inner oval must be convex and there cannot be more components, although there may be up to 4 non-convex
components in general. You may not be able to prove this now, but you should be able to solve this problem by
the end of the course.

3I like to use the symbol ⇢ to mean “is contained in or equal to”. Others prefer the symbol ✓ to denote the
same thing. I will use the symbol ( when I want to exclude the possibility of equality.
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Exercise 2.1.4. Consider the surface defined by the equation z3+xz�y = 0, pictured in Figure
2.1. The orthogonal projection of this surface to the xy-plane outlines a cuspidal curve.

(a) Find the equation describing this cuspidal curve, and prove the assertion made above.
(b) How does all of this relate to the Cardano formula for the solution to the cubic equation?

Figure 2.1: The surface z3+xz� y = 0 when orthogonally projected onto the xy-plane outlines
a cuspidal curve. Picture made with Desmos 3D.

Exercise 2.1.5. Can you find a way to use the conchoid of Nichomedes (Example 1.2.14) to
trisect a given angle? You may suppose that you know how to construct a conchoid with any
given parameters. (Hint: see Figure 2.2.) Once you’ve done that, use the cissoid of Diocles to
give a compass and ruler (and cissoid) construction of 3

p
2, or of 3

p
a for any given a > 0. How far

can you take this–what else can you do with the cissoid and conchoids of di↵erent parameters?
Why do these constructions not contradict results from Galois theory you may have seen?

Figure 2.2: The Conchoid of Nichomedes and Angle Trisection. Picture made with Desmos and
edited in Notability.
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Exercise 2.1.6. Show that over k = C, every a�ne conic section, i.e. plane curve defined by a
quadratic polynomial of the form

f(x, y) = ax2 + 2hxy + by2 + 2ex+ 2fy + c 2 C[x, y]

for some a, b, c, e, f, h 2 C, not all zero, can be brought by an a�ne change of coordinates into
one and only one of the following forms:

(a) an ellipse/circle/hyperbola defined by x2 + y2 = 1,
(b) a parabola defined by y = x2, or
(c) a pair of lines defined by xy = 0, or
(d) a double line defined by x2 = 0.

Note that the equivalence of the circle x2+ y2 = 1 and hyperbola x2� y2 = 1 in A
2

C
uses that C

contains a square root of �1 (how?). Can you come up with a similar classification over k = R?
What about other fields like k = Fq?

2.1.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.1.7. Let k be a field, C ⇢ A
2

k
be an algebraic curve, and ` ⇢ A

2

k
be a line. Then the

intersection C \ ` ⇢ A
2

k
of C and ` is finite.

Exercise 2.1.8. Given any field k and function f : k ! k, we define its graph to be the subset

�f := V(y � f(x)) = {(x, f(x)) : x 2 k} ⇢ A
2

k.

(a) When k = R and f(x) = sinx, the graph �f ⇢ A
2

R
is an algebraic curve.

(b) When k = R and f(x) = ex, the graph �f ⇢ A
2

R
is an algebraic curve.

(c) In the setting of (b), every line ` ⇢ A
2

R
meets �f in at most two points.

(d) When k = C and f(x) = ex, the graph �f ⇢ A
2

C
is an algebraic curve.

[Possible Hints: For (a), see Exercise 2.1.7. For (b), the exponential function grows very fast,
so that your solution to (a) may not work for (b) thanks to (c). You may either use this growth
to your advantage, or you may first solve (d) and use a little bit of complex analysis.]

Exercise 2.1.9 (Apparently Transcendental Curves).

(a) The curve C1 ⇢ A
2

R
given parametrically as

C1 = {(e2t + et + 1, e3t � 2) : t 2 R}

is an algebraic curve.
(b) The curve C2 ⇢ A

2

R
defined by the vanishing of the function f defined by

f(x, y) = x2 + y2 + sin2(x+ y)

is an algebraic curve.

These examples are a little silly, but they illustrate important points (what?). Can we improve
our definition of a plane algebraic curve to avoid such silliness?

Exercise 2.1.10. Given any g(r, c, s) 2 R[r, c, s], there is a unique polynomial f(x, y) 2 R[x, y]
such that the polar algebraic curve Pg implicitly defined by g (see §1.2.2) is contained in the
algebraic curve Cf defined by f , i.e. satisfies Pg ⇢ Cf .
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