
Chapter 1. Lecture Notes

1.9 06/28/24 - Derivations, Intersection Multiplicity

Today, we’ll prove the Jacobi Criterion (Theorem 1.8.8), and start talking about intersection
multiplicity for two curves.

1.9.1 Derivations and the Jacobi Criterion

We want to first discuss an algebraic way to di↵erentiate things, for which we introduce deriva-
tions.

Definition 1.9.1. Let k be a field, and R be a ring containing k. A k-derivation on R is a
k-linear map D : R ! R satisyfing the Leibniz rule, i.e. a map D : R ! R such that

(a) for all a, b 2 k and f, g 2 R, we have D(af + bg) = a ·D(f) + b ·D(g), and
(b) for all f, g 2 R, we have D(fg) = D(f) · g + f ·D(g).

The set of all k-derivations of R is denoted by Derk(R).

Remark 1.9.2. The definition works also if k is any ring–then R can be any k-algebra, i.e. a ring
with a homomorphism ⇢ : k ! R. Note that Derk(R) is an R-module and a k-Lie algebra.21

Note that if D 2 Derk(R), then D(c) = 0 for all c 2 k. This follows from

D(1) = D(12) = D(1) · 1 + 1 ·D(1) = 2D(1),

so that D(1) = 0 and D(c) = c ·D(1) = 0. Therefore, a k-derivation on R captures the notion
of di↵erentiating elements of R, where elements of k function as “constants”.

Example 1.9.3. If R = k[x], then the operation
P

i�0
aixi 7!

P
i�1

iaixi�1 is a k-derivation on
R, denoted @x or @/@x. Note that if c 2 R is any element, then the operation f 7! c · @xf is
also a derivation of R. More generally, if R = k[x1, x2, . . . , xn], then the operations @xj are all
derivations on R, and hence so are

P
n

j=1
cj@xj . In fact, these are all the k-derivations of R.

Theorem 1.9.4. Let k be a field, and let R = k[x1, . . . , xn] be the polynomial ring over R
in n � 1 variables x1, . . . , xn. Then

Derk(R) =
nM

j=1

R · @xj .

In other words, given any c1, c2, . . . , cn 2 R, there is a unique k-derivation D : R ! R
such that D(xj) = cj for each j = 1, . . . , n.

Proof. It follows from the Leibniz rule that if D : R ! R is any derivation and f 2 R, then

D(f) =
nX

j=1

@xj (f) ·D(xj).

Therefore, a k-derivation D of R is determined by D(xj) for j = 1, . . . , n, showing uniqueness.
Conversely, if c1, . . . , cn are given, taking D =

P
n

j=1
cj@xj works, showing existence. ⌅

21As usual, if you don’t know what this means, you can ignore it. If you do, what is the Lie algebra structure
on Derk(R)?
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It is now possible to derive algebraically the multivariable chain rule for polynomials.
Let’s do a special case–the only case we will need–to illustrate the process.

Lemma 1.9.5. Let � : A2

k
(x0, y0) ! A

2

k
(x, y) be an a�ne change of coordinates of the form

(x, y) = �(x0, y0) = (ax0+by0+p, cx0+dy0+q), where a, b, c, d, p, q 2 k satisfy ad�bc 6= 0. If
�⇤ : k[x, y] ! k[x0, y0] denotes the associated ring homomorphism, then for any f 2 k[x, y],
we have

@x0(�⇤f) = a · �⇤(@xf) + c · �⇤(@yf) and

@y0(�
⇤f) = b · �⇤(@xf) + d · �⇤(@yf).

In particular, given any Q 2 A
2

k
and f 2 k[x, y], we have

@xf |Q = @yf |Q = 0 , @x0(�⇤f)|��1(Q) = @y0(�
⇤f)|��1(Q) = 0.

The more traditional way to express the change of variables formula from Lemma 1.9.5
is to write

@f

@x0
=

@f

@x
· @x
@x0

+
@f

@y
· @y

@x0
and

@f

@y0
=

@f

@x
· @x
@y0

+
@f

@y
· @y
@y0

,

written which way, this formula is valid for other types of changes of coordinates as well.

Proof. We’ll show the first identity; the proof of the second is similar. Since �⇤ is a ring
isomorphism, in light of Theorem 1.9.4, it su�ces to show that the map

D : k[x, y] ! k[x, y] defined by D(f) = (�⇤)�1@x0(�⇤f)

is a k-derivation, and that D(x) = a and D(y) = c. This last part is easy: indeed,

D(x) = (�⇤)�1@x0(�⇤x) = (�⇤)�1@x0(ax0 + by0 + p) = (�⇤)�1a = a,

and similarlyD(y) = c. To check that thisD is a derivation, note that condition (a) in Definition
1.9.1 is clear because �⇤, @x0 and (�⇤)�1 are all k-linear, and condition (b) follows from the check
that for all f, g 2 k[x, y] we have

D(fg) = (�⇤)�1@x0(�⇤(fg))

= (�⇤)�1@x0(�⇤f · �⇤g)

= (�⇤)�1 [@x0(�⇤f) · �⇤g + �⇤f · @x0(�⇤g)]

=
�
(�⇤)�1@x0(�⇤f)

�
· (�⇤)�1�⇤g + (�⇤)�1�⇤f ·

�
(�⇤)�1@x0(�⇤g)

�

= D(f) · g + f ·D(g).

The second statement follows from the first by the same linear algebra as before, since again
a b
c d

�
has nonzero determinant, i.e. is an invertible matrix. ⌅

We are now ready to prove the Jacobi criterion, which we restate here for convenience.
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Theorem 1.8.8 (A�ne Jacobi Criterion). Suppose we are given a curve C ⇢ A
2

k
and a point

P = (p, q) 2 A
2

k
. Let f 2 k[x, y] be a minimal polynomial for C. Then

(a) P 2 C i↵ f |P := f(p, q) = 0, and in this case
(b) P is a singular point of C i↵

@f

@x

����
P

=
@f

@y

����
P

= 0.

(c) If P 2 C is a smooth point, then the tangent line TPC is defined by the vanishing of

@f

@x

����
P

(x� p) +
@f

@y

����
P

(y � q) 2 k[x, y].

Proof. The statement in (a) is clear. First , let’s prove (b) and (c) for P = O = (0, 0). If we
write f = f1 + f2 + · · · + fd, where d = deg f and each fj is homogeneous of degree j (note
P 2 C is equivalent to f0 = 0), then

f1 = �x+ µy

for some �, µ 2 k. Then
@xf = �+ @xf2 + · · ·+ @xfd,

and for each j � 2, we have @xfj |P = 0, whence @xf |P = �. Similarly, @yf |P = µ. Therefore,

mP (C) � 2 , f1 = 0 , � = µ = 0 , @x(f)|P = @y(f)|P = 0.

Since
f1 = @xf |P · (x� 0) + @yf |P · (y � 0),

the result of (c) is also clear. In general, let � : A2

k
! A

2

k
be an a�ne change of coordinates

such that �(O) = P . It is easy to see then that �⇤f is a minimal polynomial for ��1C, and so
we have

mP (C) � 2 , mO(�
�1C) � 2

, @x0(�⇤f)|O = @y0(�
⇤f)|O = 0

, @xf |P = @yf |P = 0

as needed, where in the last step we have used Lemma 1.9.5. The proof of (c) is similar, but
can be simplified even more by noting that it su�ces to consider a change of coordinates of the
simple form (x, y) = �(x0, y0) = (x0 + p, y0 + q); the details are left to the reader. ⌅

From this criterion, we can derive many important results. Here are a couple.

Theorem 1.9.6. A plane curve is singular at the points of intersection of its components.
In particular, an a�ne curve is smooth i↵ its components are both individually smooth
and pairwise disjoint.

Proof. Let f, g be two distinct irreducibles, and suppose C = Cf [Cg = Cfg; the general case is
similar. By Theorem 1.8.8, it su�ces to show that if P 2 Cf\Cg, then @x(fg)|P = @y(fg)|P = 0,
but this is clear because, for instance, we have

@x(fg)|P = @x(f)|P · g|P + f |P · @x(g)|P = 0

because f |P = g|P = 0. ⌅

Recall now our base assumption that k is algebraically closed.
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Theorem 1.9.7. If C ⇢ A
2

k
is any curve, then C has only finitely many singular points.

Proof. Let C = C1 [C2 [ · · ·[Cn be the irreducible decomposition of C (Theorem 1.7.10). For
each 1  i < j  n, the intersection Ci \ Cj is finite by Theorem 1.7.11; therefore, it su�ces
to show the result for an irreducible C. Let f 2 k[x, y] be a minimal polynomial for C; then f
is irreducible by Corollary 1.6.13(a). By Theorem 1.8.8, it su�ces to show that the system of
polynomial equations

f = @xf = @yf = 0

has only finitely many solutions in A
2

k
.22 First suppose that @xf 6= 0 (i.e. as a polynomial in

k[x, y]). Since deg @xf < deg f , it follows that either @xf is a nonzero constant (in which case C
is smooth, and we are done), or that f and @xf are relatively prime (since f is prime and @xf
cannot be a nonzero polynomial multiple of f for degree reasons), in which case we are done by
Theorem 1.6.6. Similarly, if @yf 6= 0, we are done.

This finishes the proof when ch k = 0, because if ch k = 0 and f 2 k[x, y] is any
nonconstant polynomial, then one of @xf and @yf is nonzero. Unfortunately, when ch k = p > 0,
there are nonconstant f 2 k[x, y] such that @xf = @yf = 0, such as f = xp + yp. We will show
that this cannot happen if f is irreducible: we will show that even if ch k = p > 0, as long as
f 2 k[x, y] is irreducible, then one of @xf and @yf is nonzero. Indeed, suppose not. Then to
say that @xf = 0 means that if we write f =

P
i,j

ai,jxiyj , then ai,j = 0 unless p | i. Similarly,
@yf = 0 implies that ai,j = 0 unless p | j. Therefore, we conclude that

f =
X

i,j�0

api,pjx
pixpj .

Since k is algebraically closed, for each i, j � 0, we can find a pth root ↵i,j 2 k of api,pj , i.e. an
element such that ↵p

i,j
= api,pj . Then, since we are in characteristic p,

f =
X

i,j�0

↵p

i,j
xpiypj =

0

@
X

i,j�0

↵i,jx
iyj

1

A
p

= gp,

where g :=
P

i,j�0
↵i,jxiyj , contradicting irreducibility of f . This completes the proof when

k = k; in general, we can reduce to this case by Theorem 1.4.5 as before. ⌅

Example 1.9.8. For any field k, consider the circle C defined by f(x, y) := x2+ y2� 1 2 k[x, y].
This has partial derivatives

@xf = 2x and @yf = 2y.

When ch k 6= 2, it follows that this system f = @xf = @yf = 0 has no solutions, so that C
is smooth. When ch k = 2, it seems that @xf = @yf = 0, so that any point on C should be
singular–why does this not contradict Theorem 1.9.7? Well, if we are to follow the proof of
Theorem 1.9.7, we will observe that when ch k = 2, in fact, we have that

f(x, y) = (x+ y + 1)2 2 k[x, y],

so that f is not reduced. In this case, the curve C is just a line with minimal polynomial
g(x, y) = x+ y + 1, which is also smooth. This example shows that when applying the Jacobi
Criterion (Theorem 1.8.8), it is crucial to use a minimal polynomial for your curve. Another way
to think about this is: a “curve” defined by a nonreduced polynomial is singular everywhere.
This can be made precise using the language of schemes; we won’t discuss this in this course.

22Here, I’m being a little sloppy about the distinction between polynomials and polynomial functions–given
that we’re in week 3, I’ll presume you know what I mean and how to make this rigorous.
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1.9.2 Intersection Multiplicity

Given curves C,D ⇢ A
2

k
and a point P 2 C \ D, we want to make precise what we mean by

the intersection multiplicity of C and D at P . Again, whatever this notion means, it should
be invariant under a�ne (or even other kinds of) changes of coordinates, and as we observed
in the previous sections, it is helpful to have this notion already for polynomials and not just
curves–after all, we want to capture nonreduced behavior.

The goal, therefore, is to find a function

i : (k[x, y]r {0})⇥ (k[x, y]r {0})⇥ A
2

k ! Z�0 [ {1}, (f, g, P ) 7! iP (f, g)

that satisfies some reasonable properties. What properties should we have? Here I list a few.

(1) (Symmetry) iP (f, g) = iP (g, f) for all f, g, P .
(2) (Finiteness for Proper Intersection) iP (f, g) = 1 i↵ f and g have a common component

through P , i.e. there is a q 2 k[x, y] such that q | f and q | g and q|P = 0.
(3) (Non-Intersection) iP (f, g) = 0 i↵ P /2 Cf \ Cg, i.e. either f |P 6= 0 or g|P 6= 0.
(4) (Additivity) iP (f1f2, g) = iP (f1, g) + iP (f2, g) for all f1, f2, g 2 k[x, y]r {0} and P 2 A

2

k
.

(5) (Coordinate Ring Dependence) iP (f, g) = iP (f, g + hf) for all f, g, h 2 k[x, y]r {0}.
(6) (Invariance under ACOCs) If � : A2

k
! A

2

k
is an ACOC, then iP (f, g) = i��1(P )(�

⇤(f),�⇤(g)).
(7) (Normalization) For P = O = (0, 0), we have iO(x, y) = 1.

The amazing result is, then, that these properties characterize intersection multiplicity
uniquely.

Theorem 1.9.9. There is a unique function i satisfying (1)-(7) above.

We’ll sketch a proof next time; today, let’s work out a few examples this time. Firstly,
by (3) and (4), scaling f or g by nonzero scalars does not change the intersection multiplicity.

Example 1.9.10. If f = y2 � x2(x+ 1) and g = x and P = (0, 0), then

iP (y
2 � x2(x+ 1), x) = iP (y

2, x) = 2iP (x, y) = 2.

If g = y � tx for t 2 k, then

iP (y
2 � x2(x+ 1), y � tx) = iP (y � tx, y2 � x2(x+ 1)� (y + tx)(y � tx))

= iP (y � tx, x2(�x+ t2 � 1))

= 2iP (y � tx, x) + iP (y � tx,�x+ t2 � 1)

= 2 +

(
1, if t2 � 1 = 0,

0, else.

This confirms our intuition that each line through P intersects the curve Cf at least twice, with
even higher multiplicity (at most three) i↵ it is tangent to Cf at P .

Example 1.9.11. If C is a smooth curve with tangent line L = TPC at P 2 C such that C 6= L,
and f and ` are minimal polynomials for C and L, then iP (f, `) � 2. Indeed, we can choose a
suitable coordinate system so that P = (0, 0) and ` = y; then f0 = 0 and f1 = y, whence

iP (f, `) = iP (y + (f � y), y) = iP (f � y, y) � 2,

where in the last step we have used that f � y is nonzero and homogeneous of degree at least
2. (How does this result follow?)

48



Chapter 1. Lecture Notes

Example 1.9.12. Let p(x) 2 k[x] be a nonconstant polynomial of x alone, and let f := y� p(x)
and g = y. Then P is a point of intersection of the curves Cf (i.e. the graph of p) and Cg (i.e.
the x-axis) i↵ P = (↵, 0) for some root ↵ of p. To compute the intersection multiplicity at this
point, we factor p(x) = (x � ↵)mq(x) for some integer m � 1 and q(x) 2 k[x] with q(↵) 6= 0,
and then note that

iP (f, g) = iP ((x� ↵)mq(x), y) = m · iP (x� ↵, y) + iP (q(x), y) = m · 1 + 0 = m.

Therefore, the intersection multiplicity of f and g at P is exactly the multiplicity m↵(p) of ↵
as a root of p(x). In particular, we have

X

P2Cf\Cg

iP (f, g) =
X

↵:p(↵)=0

mp(↵) = deg p = (deg f)(deg g).

This is one simple manifestation of Bézout’s Theorem, which we will soon get to. When p(x) = 0,
every point on the x-axis is a point of infinite multiplicity, while if p(x) = c is a nonzero constant,
then there are no points of intersection, althought (deg f)(deg g) = 1; this is because the lines
Cf and Cg are parallel (i.e. meet “at infinity”). We will soon develop tools to make this more
precise.
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