
Chapter 1. Lecture Notes

1.8 06/26/24 - Smoothness, Multiplicity, Tangent Lines

Today, we will talk about smoothness of algebraic curves. What should smoothness mean–i.e.
what should it mean to say that a curve C ⇢ A

2

k
is smooth at a point P 2 C? One definition

is that at each point, we have a well-defined tangent direction, i.e. that the curve is well-
approximated by a linear polynomial. Certainly, whatever this notion is, it should be invariant
under a�ne changes of coordinates, so we may focus on the case when P = (0, 0), and then
considering a few examples naturally leads us to the following definition.

Definition 1.8.1.

(a) A polynomial f(x, y) 2 k[x, y] is said to be homogeneous of degree d � 0 if in the
ring k[x, y, t], we have the polynomial identity

f(tx, ty) = tdf(x, y).

This is equivalent to saying that in an expression of the form f(x, y) =
P

i,j�0
ai,jxiyj

with ai,j 2 k, we have ai,j = 0 unless i + j = d. For each d � 0, the set of all
polynomials in k[x, y] of degree d will be denoted by k[x, y]d.

(b) Any f(x, y) 2 k[x, y] can be written uniquely as

f = f0 + f1 + · · ·+ fd,

where d = deg f � 0, and for each i with 0  i  d, the polynomial fi 2 k[x, y] is
homogeneous of degree i. If 0 6= f , then there is a unique smallest index i0 such that
fi0 6= 0; in this case, we define the multiplicity of f at the origin O = (0, 0), written
mO(f), and the initial part of f , written in(f), to be, respectively,

mO(f) = i0 and in(f) := fi0 .

Example 1.8.2. If f(x, y) = y2 � x3, then mO(f) = 2 with in(f) = y2.

We say that a function F : A2

k
! k is homogeneous of degree d � 0 if for all (p, q) 2 A

2

k

and t 2 k, we have F (tp, tq) = tdF (p, q). If a polynomial f 2 k[x, y] is homogeneous of
degree d � 0, then so is the associated function Ff , and the converse holds if k is infinite.
Note that the zero polynomial 0 2 k[x, y] is homogenous of degree d for every d � 0, and for
each d � 0, the subset k[x, y]d ⇢ k[x, y] is a vector subspace of dimension d + 1 with basis
xd, xd�1y, · · · , xyd�1, yd, with k[x, y] =

L
d�0

k[x, y]d. Finally, if f 2 k[x, y]d and g 2 k[x, y]e,
then fg 2 k[x, y]d+e. This structure on k[x, y] is called the structure of a graded k-algebra.

Lemma 1.8.3. If k = k, then for any d � 0 and f 2 k[x, y]d, there are homogeneous
linear polynomials `1, . . . , `d 2 k[x, y]1 such that f = `1`2 · · · `d. If f is nonzero, then these
factors are uniquely determined up to reordering and nonzero scalars.

Proof. Write f =
P

d

i=0
aixd�iyi. If f 6= 0, let i0 be the least index such that ai0 6= 0. Since

k = k, we can factor the polynomial f(t, 1) =
P

d

i=i0
aitd�i of degree d� i0 as

f(t, 1) =
dX

i=i0

ait
d�i = ai0

d�i0Y

j=1

(t� ↵j)

for some ↵j 2 k, and then taking a�1

i0
`1 = `2 = · · · = `i0 = y and `i0+j = x � ↵jy for

j = 1, . . . , d� i0 su�ces. Uniqueness is clear because k[x, y] is a UFD, and each `j is prime. ⌅
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Definition 1.8.4.

(a) Given a curve C ⇢ A
2

k
, we define the multiplicity of C at the origin O = (0, 0) to be

mO(C) := mO(fC),

where fC 2 k[x, y] is any minimal polynomial for C. If in(fC) = `1 · · · `m is the
factorization of in(fC) into linear factors as in Lemma 1.8.3, where m := mO(C),
then we define the tangent lines to C at O to be the lines Lj := C`j for j = 1, . . . ,m.
(These need not all be distinct, and are independent of the choice of fC .) Finally,
the tangent cone to C at O is define to be

TCO C := Cin(f) = L1 [ L2 [ · · · [ Lm.

(b) Given a curve C ⇢ A
2

k
and an arbitrary point P 2 A

2

k
, we define the multiplicity of

C at P to be
mP (C) := mO(�

�1C),

where � : A2

k
! A

2

k
is any a�ne change of coordinates such that �(O) = P . We

define the tangent lines to C at P to be the lines �(Lj) for j = 1, . . . ,m where
m = mP (C), and similarly the tangent cone to C at P to be

TCPC = �(TCO(�
�1C)).

(c) Given a curve C ⇢ A
2

k
and point P 2 A

2

k
, we have mP (C) � 1 i↵ P 2 C, in which

case we say that P is a smooth point of C i↵ mp(C) = 1. The curve C is said to be
smooth if every P 2 C is a smooth point. A point P 2 C that is not a smooth point
is called a singular point or multiple point of C.a

aOutside of mathematics, the terms “singular” and “multiple” are usually antonyms; in this case,
they are not, because “singular” here means “exceptional” or “extraordinary” (see Theorem 1.9.7), while
“multiple” means “of higher (i.e. > 1) multiplicity”.

Note that a smooth point on a curve has a unique tangent line, which we will denote by
TPC. The coordinate-invariance of smoothness and multiplicity is baked into the definition–if
we can show that it is well-defined. To do this, we need that if � : A2

k
! A

2

k
is an a�ne change

of coordinates such that �(O) = O, then for any polynomial f 2 k[x, y] we have mO(f) =
mO(�⇤(f)). By considering the homogeneous parts separately, this reduces to showing

Lemma 1.8.5. If � : A2

k
! A

2

k
is an a�ne change of coordinates such that �(O) = O, and

if 0 6= f 2 k[x, y] is homogeneous of degree n � 0, then so is �⇤(f).

Proof. Note that � is of the form �(x0, y0) = (ax0 + by0, cx0 + dy0) for some a, b, c, d 2 k with
ad� bc 6= 0. The claim is clear when n = 0, since then f is a nonzero constant and �⇤(f) = f .
When n = 1, we have f = �x+ µy for some �, µ 2 k, not both zero, and then

�⇤(f) = �(ax0 + by0) + µ(cx0 + dy0) = (a�+ cµ)x0 + (b�+ dµ)y0.

Now, since one of � and µ is not zero, and since ad� bc 6= 0, it follows easily that at least one of
a�+cµ and b�+dµ is nonzero (this is basic linear algebra, but can also be shown directly–how?).
Therefore, we are done in this case. If n � 2, then by Lemma 1.8.3, we can write f = `1 · · · `n
for some `j homogeneous of degree 1; then we are done by the case n = 1 and the observation
�⇤(f) = �⇤(`1)�⇤(`2) · · ·�⇤(`n). This finishes the proof when k = k (which is the only case we
care about), but in general, we can use Theorem 1.4.5 to reduce to this case. ⌅
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Example 1.8.6. The parabola C defined by f(x, y) = y�x2 2 k[x, y] has is smooth at the point
(1, 1) 2 A

2

k
with tangent line L defined by the vanishing of y � 2x+ 1 = 0.

Example 1.8.7. A curve C is said to have a simple node at P i↵ mP (C) = 2 and C has two
distinct tangent lines at P . For instance, the curve C defined by f(x, y) = y2�x2(x+1) 2 k[x, y]
over a field k with ch k 6= 2 has a simple node at the origin, with tangent lines L1, L2 defined
by the vanishing of y± x, and tangent cone TO(C) = L1 [L2. (What happens when ch k = 2?)

Of course, this definition is not very convenient when we want to locate all singular
points of a given curve C. For this, we need a more convenient criterion. This is provided by

Theorem 1.8.8 (A�ne Jacobi Criterion). Suppose we are given a curve C ⇢ A
2

k
and a point

P = (p, q) 2 A
2

k
. Let f 2 k[x, y] be a minimal polynomial for C. Then

(a) P 2 C i↵ f |P := f(p, q) = 0, and in this case
(b) P is a singular point of C i↵

@f

@x

����
P

=
@f

@y

����
P

= 0.

(c) If P 2 C is a smooth point, then the tangent line TPC is defined by the vanishing of

@f

@x

����
P

(x� p) +
@f

@y

����
P

(y � q) 2 k[x, y].

Wait, what? What are these partial derivative symbols? Why can we do this over any
field k? We’ll discuss this more next time, but for now let’s work out an example to see how
conveniently Theorem 1.8.8 allows us to locate singular points of a curve C.

Example 1.8.9. If f(x, y) = y � x2, then @f/@y ⌘ 1 tells us that f is smooth everywhere. At
the point P = (t, t2), the tangent line to C is given by the vanishing of

�2t(x� t) + 1(y � t) = y � 2tx+ t2 2 k[x, y].

Note that when ch k = 2, this tangent line is always horizontal–which is incredibly weird. In
general, weird stu↵ happens to curves of degree p in characteristic p–watch out for this over the
next few weeks!

Example 1.8.10. If f(x, y) = y2 � x3, then the system of equations we need to solve for the
singular points of C is

y2 � x3 = 0,

�3x2 = 0,

2y = 0,

which in any characteristic has the unique solution (x, y) = (0, 0) (check!). Therefore, the
unique singular point of C is the origion O, where C has the unique tangent line y = 0, i.e. the
x-axis.
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