
Chapter 1. Lecture Notes

1.7 06/24/24 - Ideals, Irreducible Components, Degree II

Today, I want to review some algebra to express our observations from last time in a cleaner
way.

1.7.1 Crash Course on Ideals

Definition 1.7.1. Let R be a ring. An ideal of R is an additive subgroup I ⇢ R such that
for all f 2 I and g 2 R, we have fg 2 I.

The terminology historically comes from thinking of ideals as “ideal numbers”. In
the 19th century, people came to realize that in some natural rings in number theory, such as
Z[
p
�5], unique factorization into prime numbers failed. Kummer and Dedekind salvaged this

by saying that in these number rings, or in what are now known more generally as Dedekind
domains, we do get a unique factorization of numbers into prime ideal numbers, i.e. these
objects behave the way prime numbers “ideally” would.

If I ⇢ R is an ideal, we can define an equivalence relation on R called congruence
modulo I, by saying f ⇠ g i↵ f � g 2 I. The set of equivalence classes R/I then admits a
structure of a ring such that then natural surjection R ! R/I is a ring homomorphism (and
this determines the ring structure on R/I completely). This ring R/I is called the quotient of
the ring R by the ideal I.

Example 1.7.2.

(a) In any ring R, the set I = {0} ⇢ R is an ideal called the zero ideal. Similarly, I = R, i.e.
all of R, is also an ideal. We say an ideal I ⇢ R is a proper ideal if I is a proper subset of
R, i.e I ( R.

(b) Given a ring R and an element f 2 R, we define the principal ideal generated by f to be
the ideal (f) := {g 2 R : f | g}. An ideal I ⇢ R is said to be a principal ideal if I = (f)
for some f 2 R; in general, this f is not unique. (E.g. (2) = (�2) in Z.) Note that (0) is
the zero ideal, whereas (1) = R; more generally, (u) = R i↵ u 2 R is a unit.

(c) More generally, given any subset S ⇢ R, the ideal generated by S is the ideal

(S) =

(
nX

i=1

aisi : ai 2 R, si 2 S

)
⇢ R.

This is the smallest (with respect to inclusion) ideal containing S, or equivalently the
intersection of all ideals containing S.

(d) Any additive subgroup S ⇢ Z is of the form (n) for some unique n 2 Z�0. In particular,
these are all the ideals in Z. (Proof: if S \ Z>0 = ;, then S = (0); else, there is a least
n 2 S \ Z>0 by the well-ordering principle, and then S = (n).) A ring R is said to be a
principal ideal ring if every ideal of R is principal; a domain R that is a principal ideal ring
is called a principal ideal domain, abbreviated PID.

In general, principal ideals don’t determine generators (e.g. in R = Z/6, we have
(2) = (4)); however, in domains18, principal ideals determine generators up to units.

18Fascinatingly, this is not quite a characterization of domains. Other rings, such as local rings, also satisfy
this property. I do not know of a complete characterization of rings with this property.
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Lemma 1.7.3. If R is a domain and f, g 2 R, then (f) = (g) i↵ there is a unit u 2 R⇥

such that f = ug. In other words, a principal ideal in R is determined by, and determines,
its generator up to units.

Proof. One direction is clear (which, and why?). For the other direction, by assumption, there
are u, v 2 R such that f = ug and g = vf . Then f(uv � 1) = 0, so since R is a domain, one
of f and uv � 1 is zero. If f = 0, then g = vf = 0, and 0 = 1 · 0. Otherwise, uv = 1 implies
u 2 R⇥. ⌅

Proposition/Definition 1.7.4. For a ring R and a proper ideal P ⇢ R, the following are
equivalent:

(a) If f, g 2 R, then fg 2 P implies either f 2 P or g 2 P .
(b) The quotient ring R/P is a domain.

A proper ideal P ⇢ R satisfying these equivalent conditions is called a prime ideal.

Example 1.7.5.

(a) A ring R is a domain i↵ (0) ⇢ R is a prime ideal.19

(b) An ideal I ⇢ Z is prime i↵ either I = 0 or I = (p) for some prime integer p.
(c) In general, if R is any ring, then and 0 6= f 2 R, then f is a prime element i↵ (f) is a

prime ideal.

In Exercise 2.3.3, you are invited to find all prime ideals of the ring k[x, y] when k is
algebraically closed. Finally, we will need one more fact about ideals.

Proposition 1.7.6. Let R be a ring and I ⇢ R be a proper ideal (i.e. I 6= R). Then there
is a prime ideal Q ⇢ R containing I.

Proof. Let C be the partially ordered set of all proper ideals of R containing I ordered by
inclusion; this is nonempty because I 2 C. If (I↵) is an ascending chain of ideals in C, thenS

↵
I↵ ⇢ R is also a proper ideal of R (check!); this proves that every chain in C has an upper

bound, and hence C has a maximal element Q (this element need not be unique). We claim
that Q is prime. Indeed, if it were not, then there would p, q 2 R such that pq 2 Q but neither
p 2 Q nor q 2 Q. Then we claim that Q + pR is a strictly larger ideal in C; that it contains
I is clear, that it is strictly larger follows from p /2 Q, and that it is proper follows from the
following argument. If Q + pR = R, then we can write 1 = s + pt for some s 2 Q and t 2 R.
Multiplying by q yields q = qs+pqt, but qs 2 Q (because s 2 Q) and pqt 2 Q (because pq 2 Q)
and hence q 2 Q, which is a contradiction. ⌅

In fact, this maximal element Q of C as in the above proof if actually a maximal ideal
of R, i.e. an ideal not contained in any other proper ideals of R (almost by definition!), and it
is a general fact, which we showed in this proof, that any maximal ideal is prime.

1.7.2 Irreducible Components and Degree II

Let’s return to the theory of curves; recall that we are over an algebraically closed field k. The
idea here is that if C ⇢ A

2

k
is a curve, then the vanishing ideal I(C) of C defined in Definition

19Here, and always, we use the convention that domains are nonzero.

37



Chapter 1. Lecture Notes

1.6.11 is an ideal of the ring k[x, y], and, in fact, by Theorem 1.6.12, a principal ideal.

Definition 1.7.7. Given a curve C ⇢ A
2

k
, a minimal polynomial of C is a generator of the

principal ideal I(C) ⇢ k[x, y].

Note that any minimal polynomial must necessarily be reduced (why?). By Lemma
1.7.3, any two minimal polynomials of C di↵er by multiplication by units in k[x, y], i.e. nonzero
scalars–this is why we sometimes speak of “the minimal polyomial”. If C = Cf for a nonconstant
f 2 k[x, y] then a minimal polynomial of C can be taken to rad(f). This gives us a perfect
translation between alegbra and geometry. For instance, we can use this to define the degree of
curve.

Definition 1.7.8 (Degree). Given a curve C ⇢ A
2

k
, the degree of C is defined to be the

degree of any minimal polynomial for C.

You may verify that if k = k, then this definition agrees with Definition 1.2.2. Similarly,
Corollary 1.6.13 can be restated as

Corollary 1.7.9 (Hilbert’s Nullstellensatz for Curves, Version III). Over an algebraically closed
field k, there is a bijective correspondence

{curves C ⇢ A
2

k
} {pr. ideals of k[x, y] gen. by nonconst. reduced f 2 k[x, y]}

given by sending a curve C to I(C) and an ideal I to Cf for any generator f of I. Under
this correspondence, the curve C is irreducible i↵ I(C) is a prime ideal.

Finally, from unique factorization in k[x, y], we also obtain a decomposition for curves.

Theorem 1.7.10 (Unique Factorization/Irreducible Decomposition for Curves). If k = k, then
given any curve C ⇢ A

2

k
, there is an integer n � 1 and irreducible curves C1, . . . , Cn ⇢ A

2

k

such that Ci 6= Cj for i 6= j and

C = C1 [ C2 [ · · · [ Cn.

Further, if m � 1 is any other integer and D1, . . . , Dm ⇢ A
2

k
irreducible curves such that

Di 6= Dj for i 6= j and
C = D1 [D2 [ · · · [Dm,

then m = n and for all i, we have Ci = D�(i) for some bijection � : {1, . . . , n} ! {1, . . . , n}.

Proof. If f is a minimal polynomial of C, and we write f = f1 · · · fn for some n � 1 and distinct
irreducible f1, . . . , fn 2 k[x, y], then taking Ci = Cfi for 1  i  n gives us the indicated
decomposition, where we are using both that f is reduced and Corollary 1.6.8 to conclude that
Ci 6= Cj for i 6= j (how?). If we have a decomposition C = D1 [ · · · [Dm, and for each j with
1  j  m, we take a minimal polynomial gj 2 k[x, y] for Dj , then each gj is irreducible by
Corollary 1.6.13(a), and for i 6= j, the polynomials gi and gj are not scalar multiples of each
other by the hypothesis that Di 6= Dj . Then the reduced polynomials f and g := g1 · · · gm
define the same curve C, and hence by Corollary 1.6.13(c) are related by nonzero scalars; then
we are done by unique factorization in k[x, y], which is Corollary 1.5.14 (how?). ⌅
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The curves C1, . . . , Cn ⇢ C occuring in such a decomposition are called the irreducible
components of C, and they correspond to the irreducible factors of any minimal polynomial of
C. Finally, we can upgrade Theorem 1.6.6 slightly to get

Theorem 1.7.11 (Finite Intersection Revisited). If C,D ⇢ A
2

k
are two curves that don’t

share any common irreducible components, then the intersection C \D is finite.

Proof. Decompose C = C1 [ · · · [ Cn and D = D1 [ · · · [Dm into irreducible components as
in Theorem 1.7.10. For each pair (i, j) with 1  i  n and 1  j  m, if we take minimal
polynomials fi and gj of Ci and Dj respectively, then fi and gj are irreducible (by Corollary
1.6.13(a)) and Ci 6= Dj implies that fi and gj are not scalar multiples of each other and hence
relatively prime. It follows from Theorem 1.6.6 that each Ci \Dj is finite, and hence so is

C \D =
[

1in

[

1jm

Ci \Dj .

⌅

1.7.3 A Few Examples of Irreducible Curves

That’s enough general theory. Let’s work out a few specific examples.

Example 1.7.12. For any field k, the linearpolynomial ` = x + y + 1 2 k[x, y] is irreducible:
indeed, applying Lemma 1.6.1 to R = k[x] with t = y, it su�ces to show that ` is irreducible
in K[y] where K = k(x), but that is true simply because ` 2 K[y] is a linear polynomial.20

Therefore, the line C` ⇢ A
2

k
is irreducible. The same argument shows that any line in A

2

k
is

irreducible, or many generally, that if f(x, y) 2 k[x, y] is any polynomial that is linear in either
x or y, then f(x, y) is irreducible. For instance, the polynomial f(x, y) = y � x2 2 k[x, y] is
irreducible, so that the parabola C = {(t, t2) : t 2 k} ⇢ A

2

k
is as well.

Example 1.7.13. For any field k, the polynomial f(x, y) := xy�1 2 k[x, y] is irreducible thanks
to Lemma 1.6.1 applied to R = k[x] with t = y–note that although f(x, y) is not monic in
y, it is still primitive. Over k = R, the polynomial f(x, y) = xy � 1 2 R[x, y] defines the
rectangular hyperbola C with two components. Why does this not contradict irreducibility?
Well, firstly: the connection between (topological) irreducibility of curves and polynomials only
works over algebraically closed fields such as k = C: over k = C, the “hyperbola” defined by f is
a topologically a sphere punctured at two points, which is connected. Secondly, the rectangular
hyperbola C ⇢ A

2

R
is still algebraically irreducible:

Lemma 1.7.14. If g(x, y) 2 R[x, y] is a polynomial that vanishes on one branch of the
hyperbola C, (or, in fact, any infinite subset of C) then f | g in R[x, y], so that g must
also vanish on the second branch.

Proof. Either g is zero and we are done, or g is nonconstant, in which case we may consider
Cg(C) ⇢ A

2

C
. By hypothesis, Cg(C) and Cf (C) intersect in infinitely many points, so it follows

from Theorem 1.6.6 that f, g 2 C[x, y] are not relatively prime. Since f 2 C[x, y] is irreducible
by Example 1.7.13, this can only happen if f | g in C[x, y], so that g/f 2 C[x, y] \ R(x, y) =
R[x, y]. ⌅

20This uses that we understand irreducibility in the polynomial ring K[y] in one variable y over a field K really
well.
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In other words, just one branch of the hyperbola C is not an algebraic curve by
itself. This proposition illustrates that sometimes we can prove results over non algebraically
closed fields by using Theorem 1.4.5, and also that curves are incredibly rigid: any polynomial
vanishing on any collection of infinite points of one curve must vanish on all of it. This is a
manifestation of the coarseness of the Zariski topology.

Example 1.7.15. For any field k, the polynomial f(x, y) := y2 � x3 + x 2 k[x, y] is irreducible
as well. There are a few ways to prove this. One way is sketched in Exercise 2.3.1. Another
way to invoke Lemma 1.6.1 again to reduce the problem to showing that y2 � x3 + x 2 K[y]
is irreducible where K = k(x). If it were not irreducible, then it would split into two linear
factors; we can assume without loss of generality that these factors of the form y ± p(x) for
some p(x) 2 K (why?). Then p2 = x3 � x 2 K, and there are many ways to see why this can’t
happen. One possible approach is to note that although x3 � x is not squarefree in general
(when chK = 2), the power of x dividing x3 � x is still exactly one, and in particular odd.
Therefore, if we use that k[x] is a UFD to write p = r/s for some coprime r, s 2 k[x] with s 6= 0,
then r2 = x(x2 � 1)s2 leads to a contradiction to unique factorization.

Again, over k = R, the curve Cf of Example 1.7.15 has two components. Again, how-
ever, Cf (C) is a punctured torus (hence connected, even irreducible) and the two components
visible in Cf (R) are vestiges of slicing this torus and the fact that R is not algebraically closed.
Finally, an argument identical to that in the proof of Lemma 1.7.14 shows that neither of the
pieces of Cf (R) are algebraic curves by themselves.

1.7.4 A Sneak Peek at Curve Intersections

Given two curves C,D ⇢ A
2

k
, in how many points do C and D intersect? Well, they could share

a component and have infinitely many points in common, but at least when they don’t share
a component this intersection is finite (this was Theorem 1.7.11). A little experimenting seems
to suggest that if C and D are curves of degree m and n respectively, then C and D usually
intersect in mn points, but this is not always true. For instance:

(a) When k = R, the parabola Cf defined by f(x, y) = y � x2 and the line C` defined by
`(x, y) = y � x + 1 do not intersect at all, since x2 � x + 1 2 R[x] has no real roots.
However, this problem doesn’t really appear over algebraically closed fields such as k = C.

(b) Even over fields such as k = C, we have to account for tangency. For instance, if we take
f(x, y) = y � x2 again and `(x, y) := y � 2x + 1, then the polynomial x2 � 2x + 1 =
(x � 1)2 2 C[x] still has only one root over C. This is because this line C` is tangent to
the parabola, and should really count as having “intersection multiplicity” two.

(c) Finally, even if we account for intersection multiplicites, we can have asymptotes or parallel
lines. For instance, the lines defined by `1(x, y) := y � x and `2(x, y) = y � x + 1 never
intersect in A

2

k
for any field k because they are “parallel”. To rectify this situation, we

need to account for intersections “at infinity”.

As it turns out, these are the only four problems. Our eventual goal is to show the
theorem of Bézout (Theorem 1.14.1) which says that if k is an algebraically closed field, then
any two projective plane curves C,D ⇢ P

2

k
of degrees m,n � 1 respectively that do not share

a common component intersect in exactly mn points, when counted with multiplicity. Over
the next few lectures, we’ll develop tools to prove this theorem, starting with smoothness and
intersection multiplicity.
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