
Chapter 1. Lecture Notes

1.6 06/21/24 - Nullstellensatz, Irreduciblity II, and Unique Fac-
torization II

Last time, we proved that if R is a UFD, then so is R[t]. The same circle of ideas allows us to
compare irreducibles in R[t] and K[t]. Let’s prove two results in this direction, and then return
to the theory of curves to see their applications.

As before, in what follows we will take R to be a UFD and K = FracR to be its
fraction field.

Lemma 1.6.1.

(a) If f 2 R[t] is irreducible and of positive degree, then f is irreducible in K[t].
(b) If f 2 R[t] is primitive and irreducible in K[t], then f is irreducible in R[t].

Proof.

(a) In this case, f is a nonzero nonunit in K[t]. If f = gh for g, h 2 K[t], then Lemma
1.5.18(a) tells us that f̃ = g̃h̃, and then f = (cont(f) · g̃) · h̃. Since f is irreducible in
R[t], either cont(f) · g̃ is a unit in R, in which case g̃ is a (nonzero) constant and hence
g 2 K[t]⇥ by Lemma 1.5.17(a), or simlarly h̃ is a unit in R, in which case h 2 K[t]⇥.

(b) This is Lemma 1.5.18(c), given that the terms “prime” and “irreducible” are inter-
changable in R[t] and K[t] thanks to Proposition 1.5.8 and Theorem 1.5.12.

⌅

In any UFD S, we say that two elements f, g 2 S are relatively prime if there is no
prime p 2 S such that p | f and p | g.

Lemma 1.6.2. If f, g 2 R[t] are relatively prime in R[t], then

(a) they are relatively prime in K[t], and
(b) there are a, b 2 R[t] and 0 6= c 2 R such that af + bg = c.

Proof.

(a) If there is a prime q 2 K[t] such that q | f and q | g in K[t], then by rescaling we can
assume without loss of generality that q 2 R[t] is primitive (how?), and then Lemma
1.5.18(b) tells us that q | f and q | g in R[t], and Lemma 1.5.18(c) tells us that q is prime
in R[t]. This can’t happen if f, g 2 R[t] are relatively prime in R[t].

(b) This is clear from the Euclidean algorithm and backward substitution if R is a field (make
sure you understand this!). In the general case, the first observation and part (a) combine
to tell us that there are a1, b1 2 K[t] and 0 6= c1 2 K such that a1f + b1g = c1. Now we
can simply “clear denominators”: find a 0 6= d 2 R such that a := a1 · d and b := b1 · d
are in R[t], and c := c1d 2 R.

⌅

Example 1.6.3. Take R = Z and f(t) = t3+1 and g(t) = t2� 7. Then we can take a = �7t+1
and b = 7t2 � t+ 49 with c = �342 via the identity

(�7t+ 1)(t3 + 1) + (7t2 � t+ 49)(t2 � 7) = �342 = �2 · 32 · 19.

Note that the same polynomial identity holds over any ring R, but something special happens
over R = Z/2,Z/3 and Z/19: the polynomials f and g end up being not relatively prime. In
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fact, f and g are not relatively prime in Z/p i↵ p 2 {2, 3, 19}. This fascinating observation has
to do with resultants again–see Remark 1.6.5.

Example 1.6.4. Consider the polynomials f(x, y) = x3�12x�y2 and g(x, y) = x2�xy�y2+5
in k[x, y] for some field k (e.g. k = C). Applying the above procedure to R = k[y] with variable
t = x yields

ay = (�2y2 + 17)x+ y(3y2 � y � 22),

by = (2y2 � 17)x2 + y(�y2 + y + 5)x+ (y4 + y3 � 46y2 + 289), and

cy = �y6 � 4y5 + 52y4 + 27y3 � 519y2 + 1445.

On the other hand, applying the above procedure to R = k[x] with variable t = y yields

ax = (�x)y + (x3 � 2x2 � 12x� 5),

bx = xy + (�x3 + x2 + 12x+ 5), and

cx = x6 � 3x5 � 23x4 + 26x3 + 154x2 + 120x+ 25.

Remark 1.6.5 (Resultants). If we fix integers m,n � 1, and take R = Z[a0, . . . , am, b0, . . . , bn]
with f(t) = a0tm + · · · + am and g(t) = b0tn + · · · + bn, then Lemma 1.6.2 gives us a, b 2 R[t]
and 0 6= c 2 R such that af + bg = c.16 The c of least such degree is (up to a negative
sign perhaps) none other than the resultant Rest(f, g) of f and g with respect to t, essentially
because it is the “universal” polynomial which in the coe�cients which tests the coprimality of
f and g. This is not a hard result, but we won’t need it directly, so I won’t give a proof; you
are invited to prove it (perhaps using the definition from Exercise 2.2.4) if you’d like. Lemma
1.6.2 then gives us the important consequence that the resultant of two polynomials can be
written as a polynomial-linear combination of them with coe�cients in the ring generated by
their coe�cients.

1.6.1 Finite Intersection of Curves, Nullstellensatz, and Irreducibility II

Let’s now return to the theory of curves. One important consequence of Lemma 1.6.2, evident
already from Example 1.6.4 is

Theorem 1.6.6 (Finite Intersection). If k is any field and f, g 2 k[x, y] are nonconstant
relatively prime polynomials, then the intersection Cf \ Cg is finite.

Proof. Applying Lemma 1.6.2 to R = k[y] with variable t = x yields a, b 2 k[x, y] and 0 6= c 2
k[y] such that af + bg = c. Therefore, if (p, q) 2 Cf \ Cg, then c(q) = 0, so q is one of the
finitely many roots of c, and hence can only take on finitely many values. Reversing the roles
of x and y, we conclude that p can only take on finitely many values as well, and hence Cf \Cg

is finite. ⌅

This result generalizes the one from Exercise 2.1.7 (how?). Geometrically, what is
happening is this: the roots of the polynomial c are (or at least include) the projections of
the points in Cf \ Cg to the y-axis, and similarly for the corresponding polynomial in x. This
yields a finite grid of horizontal and vertical lines, the finitely many intersection points of which
contain Cf \Cg. See Figure 1.7 for an illustration of this phenomenon for the polynomials f and
g of Example 1.6.4. We have now arrived at one of the most important results in this theory.

16Technically, you have to check that f(t) and g(t) are relatively prime in R[t], but this follows because they
are the “universal” polynomials–if they were not, then every pair of polynomials over any ring would have a
common factor, which is absurd.
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Figure 1.7: An illustration of Theorem 1.6.6 for the f and g in Example 1.6.4. The red curve
is Cf , the blue curve is Cg, the green lines correspond to the roots of cy, and the orange lines
correspond to the roots of cx. The intersection Cf \Cg is contained in the finitely many points
of the green-orange grid. Picture made with Desmos.

Theorem 1.6.7 (Hilbert’s Nullstellensatz for Curves). If k is an algebraically closed field,
and f, g 2 k[x, y] are nonconstant polynomials, then Cg ⇢ Cf i↵ there is some integer
n � 1 such that g | fn.

Proof. One direction is clear (which?). For the other direction, it su�ces to show that if
q 2 k[x, y] is a prime factor of g, then q | f . If there were a prime factor q for which this were
not the case, then q and f would be relatively prime in k[x, y], and so by Theorem 1.6.6, the
intersection Cq \Cf would be finite. But now, Cq ⇢ Cg ⇢ Cf implies that Cq \Cf = Cq, which
is infinite by the fact that q is nonconstant and Lemma 1.5.1.17 ⌅

Note that the Nullstellensatz–German for “the theorem on the location of zeroes”–uses
crucially that k is algebraically closed. We will henceforth return to our convention that k is
an algebraically closed field. One important corollary we can extract is

Corollary 1.6.8. If f, g 2 k[x, y] are nonconstant polynomials with f irreducible, then
Cg ⇢ Cf implies Cg = Cf .

Proof. By Theorem 1.6.7, there is some n � 1 such that g | fn. Then primality of f (using
Corollary 1.5.14 and Proposition 1.5.8) tells us that f | g, so the easy direction of Theorem
1.6.7 implies that Cf ⇢ Cg as needed. ⌅

We are now ready to prove Theorem 1.5.6, which we restate here.

17This is the only step where we use that k is algebraically closed.

33



Chapter 1. Lecture Notes

Theorem 1.5.6. If an f 2 k[x, y] is irreducible, then Cf is irreducible, and conversely if
C ⇢ A

2

k
is an irreducible curve, then there is an irreducible f 2 k[x, y] such that C = Cf .

Proof. If f is irreducible and Cf = Cg [ Ch for nonconstant g, h 2 k[x, y], then Corollary 1.6.8
gives us that Cf = Cg = Ch, showing irreducibility of Cf . Conversely, if C = Cf0 ⇢ A

2

k
is an

irreducible curve for some f0 2 k[x, y], then we claim that there is an irreducible f 2 k[x, y]
and an integer n � 1 such that f0 = fn. If this were not the case, we would be able to write
f0 = gh for nonconstant relatively prime g, h, from which it would follow that C = Cg [ Ch.
Then irreducibility of C would tell us that either C = Cg or C = Ch; suppose, without loss of
generality, that C = Cg. Then Theorem 1.6.7 applied to the containment C ⇢ Cg would imply
that there is some n � 1 such that f0 | gn, which is a contradiction to the factorization f0 = gh
in the UFD k[x, y], since g and h are relatively prime. ⌅

1.6.2 Unique Factorization II

Here’s the picture that we are building to: there is a parallel between the unique factorization
in k[x, y] and of curves in A

2

k
, namely each curve C ⇢ A

2

k
can be decomposed as a finite union

of irreducible curves
C = C1 [ C2 [ · · · [ Cn,

and these are determined uniquely upto ordering the factors. For this, the first question we can
ask is:

Question 1.6.9. To what extent does a curve C ⇢ A
2

k
determine a defining polynomial

f 2 k[x, y], i.e. a polynomial f such that C = Cf?

The answer here is: almost, the only problem being multiplicity. Specifically, consider

Definition 1.6.10. Let R be a UFD.

(a) If a nonzero f 2 R is decomposed as

f = cfm1
1

· · · fmn
n

where c 2 R⇥ is a unit, n � 1 an integer, f1, . . . , fn 2 R irreducibles andm1, . . . ,mn �
1, then we define the radical of f by

rad(f) := f1 · · · fn.

Note that this is well-defined up to units in R.
(b) We say that a nonzero f 2 R is reduced if f = rad(f) (up to units).

Taking R = k[x, y] in this definition and given any nonconstant f 2 k[x, y], the radical
rad(f) is again nonconstant, and we have that

Cf = Crad(f).

Therefore, a curve C cannot distinguish a polynomial from its radical. The Nullstellensatz tells
us, however, that the radical can however be recovered from the curve.
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Definition 1.6.11. Given a curve C ⇢ A
2

k
, the subset

I(C) := {g 2 k[x, y] nonconstant : C ⇢ Cg} [ {0} ⇢ k[x, y]

is called the (vanishing) ideal of C.

We will define the term “ideal” properly next time. The key claim here is then

Theorem 1.6.12. If k is algebraically closed, and f 2 k[x, y] is a nonconstant polynomial,
then a polynomial g 2 k[x, y] is in I(Cf ) i↵ rad(f) | g. In particular, rad(f) is uniquely
determined (up to nonzero scalars) by the curve C.

Proof. If g is nonconstant, then Cf ⇢ Cg implies by Theorem 1.6.7 that for some n � 1, we
have fn | g. Since rad(f) | fn, we are done. Finally, rad(f) is simply the nonzero polnyomial
of least degree in I(C) (up to nonzero scalars). ⌅

We say that rad(f) is a generator I(C), and call it the minimal polynomial of C.

Corollary 1.6.13 (Hilbert’s Nullstellensatz for Curves, Version II). Over an algebraically
closed field k, there is a bijective correspondence

{curves C ⇢ A
2

k
} {nonconstant reduced f 2 k[x, y]}/(nonzero scalars)

given by sending an f to Cf and a curve C to its minimal polynomial.

Under this correspondence,

(a) the curve C is irreducible i↵ its minimal polynomial is, and
(b) the union of curves corresponds to taking the product of the minimal polynomials

(and then the radical).

Also,

(c) Two nonconstant reduced polynomials define the same curve i↵ they are nonzero
scalar multiples of each other.

This result is one of the earliest manifestations of the systematization of the parallels
between algebra and geometry, which is the heart and soul of algebraic geometry. We will
discuss more consequences of this bijective correspondence next time.
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