
Chapter 1. Lecture Notes

1.5 06/19/24 - Irreducibility I and Unique Factorization I

Last time, we showed that if C ⇢ A
2

k
is an algebraic curve over an algebraically closed field k,

then C is nonempty (and, in fact, infinite). Let’s record this fact here, since I left some of it to
you as an exercise.

Lemma 1.5.1. If k is an algebraically closed field, then any curve C ⇢ A
2

k
is infinite.

Henceforth, we will always assume that our base field k is algebraically closed; this
will simplify life for us tremendously. If time permits, we will return to non algebraically closed
fields towards the end of the course.

1.5.1 Irreducibility I

Today I want to spend some more time relating the algebra of k[x, y] to the geometry of curves
in A

2

k
. Consider the following parallel definitions:

Definition 1.5.2. Let R be a ring.

(a) An element f 2 R is said to be irreducible if it is not zero, not a unit, and if f = gh
for some g, h 2 R, then either g or h is a unit.

(b) An element f 2 R is said to be a prime if it is not zero, not a unit, and if f |gh for
some g, h 2 R, then either f |g or f |h.

Definition 1.5.3. A curve C ⇢ A
2

k
is said to be irreducible if whenever C = D[E for curves

D,E ⇢ A
2

k
, then either D = C or E = C.

Remark 1.5.4. The condition in Definition 1.5.2(b) says that a nonzero f 2 R is prime i↵ the
principal ideal (f) ⇢ R generated by f is a prime ideal. If R is an integral domain, then every
prime is irreducible, but the converse need not hold in general–see Exercise 2.3.2. The converse
does, however, hold if R is a UFD; see Proposition 1.5.8.

What is the relationship between the irreducibility of a polynomial and that of the
curve defined by it? In light of Proposition 1.1.7, one could reasonably make

Conjecture 1.5.5. Give a nonconstant polynomial f 2 k[x, y], the algebraic curve Cf

defined by f is irreducibe i↵ f is.

However, a moment’s reflection shows that this cannot be correct as stated. For
instance, if f(x, y) = x2, then f is not irreducible, but the algebraic curve Cf is a line, which is
irreducible thanks to Exercise 2.1.7 (how?). One correct salvage of this statement would be

Theorem 1.5.6. If an f 2 k[x, y] is irreducible, then Cf is irreducible, and conversely if
C ⇢ A

2

k
is an irreducible curve, then there is an irreducible f 2 k[x, y] such that C = Cf .

Our next order of business is to develop tools to prove Theorem 1.5.6.
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1.5.2 Unique Factorization I

The first fact we would need is that k[x, y] is UFD. Let’s recall the definition of such a ring.

Definition 1.5.7. A ring is said to be a unique factorization domain, abbreviated UFD, if R is
a domaina, if every nonzero nonunit in it is a product of finitely many irreducible elements,
and the decomposition into irreducible factors is unique up to order and multiplication by
units. In other words, a domain R is a UFD if given any nonzero nonunit f 2 R, there is
an integer n � 1 and irreducible elements f1, . . . , fn 2 R such that

f = f1f2 · · · fn

and if there is some other integer m � 1 and irreducible elements g1, . . . , gm 2 R such that

f = f1f2 · · · fn = g1g2 · · · gm,

then we must have n = m, a bijection � : {1, . . . , n} ! {1, . . . , n} and units c1, . . . , cn 2 R⇥

such that for all i with 1  i  n we have cigi = f�(i).

aThis means the same thing as “integral domain”.

A field is vacuously a UFD–there are no nonzero nonunits. Here’s one way to identify UFD’s.

Proposition 1.5.8. Let R be a domain. Then the following are equivalent:

(a) R is a UFD.
(b) Every nonzero nonunit in R is a product of finitely many irreducible elements and

each irreducible element is prime.
(c) Every nonzero nonunit in R is a product of finitely many prime elements.

Proof.

(a) ) (b) We only need to show that every irreducible in a UFD is prime; I leave this to the reader.
(b) ) (c) Clear.
(c) ) (a) Since primes are irreducible, all that remains to be shown is uniqueness of factorization.

For this, we first show that if (c) holds, then every irreducible element is prime: indeed,
if f 2 R is irreducible and we write f = p1 · · · pn for some integer n � 1 and primes
p1, . . . , pn, then irreducibility of f tells us (how?) that n = 1 and f = p1 is prime. We
show uniqueness of the irreducible decomposition of a nonzero nonunit f 2 R by inducting
on the minimal number n � 1 of irreducible factors in such a decomposition. For the base
case n = 1, our f = f1 itself is irreducible, so if f = g1 · · · gm for some m � 1 and
irreducibles gj 2 R, then irreducibility of f tells us (how?) that m = 1 and f = g1.
Inductively, if we have for some m � n � 2 that

f = f1 · · · fn = g1 · · · gm,

then primality of g1 tells us that g1 | fj for some j with 1  j  n, so let c1 2 R be such
that c1g1 = fj . Now fj is irreducible and g1 is not a unit, so c1 must be a unit. Therefore,
cancelling f1 from both sides, we are left with

f1 · · · fj�1fj+1 · · · fn = (c�1

1
g2)g3 · · · gm,

so we are done by induction (how?).

⌅
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The one technique we have seen at Ross so far of showing that a domain is a UFD is
to work with Euclidean functions. Let’s define those now.

Definition 1.5.9.

(a) Let R be a domain. A Euclidean function on R is a map d : Rr {0} ! Z�0 such that
for all A,B 2 R with B 6= 0, there are q, r 2 R such that

A = Bq + r

and either r = 0 or d(r) < d(B).
(b) A domain R is said to be a Euclidean domain if it admits a Euclidean function.

Here are a few key examples.

Example 1.5.10.

(a) For R = K a field, the function d ⌘ 1 is Euclidean.
(b) For R = Z, the function d(n) = |n| is Euclidean.
(c) For R = Z[i] or R = Z[!], the norm function d(↵) = N(↵) is Euclidean.
(d) For R = K[t], the polynomial ring over the field K, the function d(f) = deg f is Euclidean.
(e) For R = K[[t]], the d(f) = ordt f taking a power series to the highest power of t dividing

it is Euclidean.

The key reason we like Euclidean domains is

Theorem 1.5.11. Every Euclidean domain is a UFD.

Proof Sketch. The key idea is that Euclidean functions allow us to perform the Euclidean algo-
ritheorem to produce the greatest common divisor of any two elements, although I do want to
warn you that the proof at this level of generality needs some work. See [2] for a direct proof,
or any algebra textbook. ⌅

The result that we really need, however, is that the ring R = k[x, y] is a UFD. This
cannot be done using Theorem 1.5.11–indeed, the ring k[x, y] is not a Euclidean domain.12 How
do we proceed then?

We will prove

Theorem 1.5.12. If R is a UFD, then so is the polynomial ring R[t].

Remark 1.5.13. In fact, one can check that if R is any ring such that R[t] is a UFD, then so is
R. (Prove this!) This makes the statement in Theorem 1.5.12 an “if-and-only-if” statement.

The way we will we use Theorem 1.5.12 is via

Corollary 1.5.14. If R is a UFD, then so is the polynomial ring R[t1, . . . , tn] for each n � 1.
In particular, for any field k, the ring k[x, y] is a UFD.

12This is because Euclidean domains are principal ideal domains, while k[x, y] is not one. If you don’t know
what this means, you can ignore this comment. If you do know what this means, there are also examples of
principal ideal domains which are not Euclidean, but such rings are harder to come by. The simplest examples I
know of are R = OQ[

p
�19] and R = R[x, y]/(x2 + y

2 + 1), but proving these claims needs some work.
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To prove Theorem 1.5.12, we need some preparation. In what follows, we will fix a
UFD R and let K = FracR be its fraction field, so that K = {p/q : p, q 2 R, q 6= 0}. Also, for
any f 2 R[t] and n � 0, we will denote the coe�cient of tn by [tn]f . The first order of business
is to show that R[t] is a domain.

Lemma 1.5.15.

(a) If R is a domain, then so is R[t].
(b) If p 2 R is prime, then p is also prime in R[t].

Proof.

(a) Write 0 6= f, g 2 R[t] as f =
P

n

i=0
an�iti and g =

P
m

j=0
bm�jtj for some m,n � 0, with

ai, bj 2 R and a0 6= 0 and b0 6= 0. Since R is a domain, [tm+n]fg = a0b0 6= 0, so fg 6= 0.
(b) We can either reduce to (a) by noticing that R[t]/(p) ⇠= (R/p)[t] (how?), or argue directly

as before: if f 2 R[t] is such that p - f and we write f =
P

n

i=0
an�iti for some n � 0 and

ai 2 R with a0 6= 0, then there is some i with 0  i  n and p - ai; let i0 be the smallest
such i. Similarly, if p - g, then write g =

P
m

j=0
bm�jtj as in (a) and pick the smallest j0

with 0  j0  m such that p - bj0 . Then, p - [t(m�i0)+(n�j0)]fg (check!) so that p - fg.

⌅

Definition 1.5.16. A polynomial f 2 R[t] is said to be primitive if the following equivalent
conditions hold:

(a) If ↵ 2 R is such that ↵ | f , then ↵ is a unit.
(b) There is no prime p 2 R such that p | f , i.e. p | [ti]f for all i � 0.
(c) The greatest common divisor of all coe�cients of f is (1).

Note that 0 is not primitive. Any f 2 K[t] can be written as f = cont(f) · f̃ for some
cont(f) 2 K and primitive f̃ 2 R[t]. If f 6= 0, then cont(f) and f̃ are uniquely determined up
to units in R; then cont(f) is called the content of f , and f̃ is called the primitive part of f ,
defined uniquely only up to units in R.13 Here are some basic properties that we will need:

Lemma 1.5.17. If 0 6= f 2 K[t], then

(a) deg f̃ = deg f ,
(b) cont(f) = f i↵ f is constant,
(c) f 2 R[t] i↵ cont(f) 2 R,
(d) if (c) holds, then f is primitive i↵ cont(f) is a unit in R, and

(e) ˜̃f = f̃ .

Proof. Left to the reader. ⌅

The key result that allows us to relate R[t] and K[t] is

13One way to make this precise is to say that the fractional ideal (cont f) of R and the (integral) ideal (f̃) of
R[t] are uniquely determined. We will not need these notions. When we assert an equality involving cont(f) or
f̃ , that equality will always be assumed to hold up to units.
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Lemma 1.5.18 (Gauss’s Lemma).

(a) If f, g 2 R[t] are primitive, then so is fg. In general, if we have nonzero f, g 2 K[t],

then cont(fg) = cont(f) cont(g) and ffg = f̃ g̃ (up to units). The same holds for any
number f1, . . . , fn of elements with n � 1.

(b) If f, g 2 R[t] are nonzero such that f | g in K[t] and f is primitive, then f | g in R[t].
(c) If f 2 R[t] is primitive and prime in K[t], then f is prime in R[t].

Proof.

(a) The general case follows by induction, so we do the case n = 2. If f, g 2 R[t] are primitive
and if a prime p 2 R were to divide fg, then it would divide either f or g by Lemma
1.5.15(b). In general, given nonzero f, g 2 K[t], we have fg = cont(f) cont(g) · f̃ g̃, and
f̃ g̃ is primitive by the first part, so by the uniqueness of this deomposition we must have
ffg = f̃ · g̃, and hence that cont(fg) = cont(f) · cont(g).

(b) If g = fq for some nonzero q 2 K[t], then cont(g) = cont(f) · cont(q). Since f, g 2 R[t],
Lemma 1.5.17(c) tells us that cont(f), cont(g) 2 R, and since f is primitive, Lemma
1.5.17(d) tells us that cont(f) is a unit, so that cont(q) = cont(g) cont(f)�1 2 R, and
hence by Lemma 1.5.17(c) again we conclude that q 2 R[t].

(c) Suppose f 2 R[t] is primitive and prime in K[t] (and hence nonzero), and suppose f |gh
for some g, h 2 R[t]. Then f | gh also in K[t], and so by primality either f |g or f |h in
K[t], and hence also in R[t] by (b), showing that f is prime in R[t].

⌅

In Lemma 1.5.18(b), we certainly need f to be primitive; a simple counterexample
otherwise is given by taking R = Z and f(t) = 2t and g(t) = t. We are now ready to prove
Theorem 1.5.12.

Proof of Theorem 1.5.12. Suppose R is a UFD and K = FracR. By Proposition 1.5.8(c), it
su�ces to show that every nonzero nonunit f 2 R[t] is a product of finitely many primes. Since
f = cont(f) · f̃ , it su�ces to show that each of cont(f) and f̃ is a product of finitely many
primes in R[t].14

Since 0 6= cont(f) 2 R and R is a UFD, either cont(f) is a unit in R (and hence in
R[t]), or it is a product of one or more primes in R. Since primes in R are primes in R[t] by
Lemma 1.5.15(b), it follows that cont(f) is a product of finitely many primes in R[t].

Now consider the primitive part 0 6= f̃ 2 R[t]. Since K[t] is a UFD, it follows that
either f̃ is a unit in K[t] or it is the product of one or more primes in K[t]. In the former case,
f̃ is constant15 and so since it is primitive, it must be a unit in R (by Lemma 1.5.17(b) and
(d)). In the latter case, f̃ is the product of one or more primes in K[t], say f̃ = f1 · · · fn for
some n � 1, where for 1  j  n, each fj 2 K[t] is prime. Then using Lemma 1.5.17(e) and
Lemma 1.5.18(a), we find that

f̃ = ˜̃f = f̃1 · · · f̃n.

For each j, the element f̃j 2 R[t] is primitive and prime in K[t] (since it is a nonzero constant,
i.e. unit, times the prime fj in K[t]), and so by Lemma 1.5.18(c) is a prime in R[t]. Therefore,
we have exhibited f̃ as a product of one or more primes in R[t], finishing the proof. ⌅

14Note that finitely many also includes zero many–i.e. it is okay for cont(f) or f̃ to be a unit in R[t], but if
both are units in R[t], then so is f = cont(f) · f̃ .

15This is because the only units in K[t] are constants, i.e. elements of K⇥ = K r {0}. If you haven’t seen this
before, prove it!
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