
Chapter 1. Lecture Notes

1.4 06/17/24 - Changes of Coordinates, Nonempty Curves

1.4.1 A�ne Changes of Coordinates

Definition 1.4.1. An a�ne change of coordinates is a transformation

� : A2

k(x
0, y0) ! A

2

k(x, y)

of the form
(x, y) = �(x0, y0) = (ax0 + by0 + p, cx0 + dy0 + q),

for some a, b, c, d, p, q 2 k, where ad� bc 6= 0.

Here A2

k
(x0, y0) is just the plane A2

k
, which we think of as having coordinates x0, y0 (and

similarly for A2

k
(x, y)). The ad� bc 6= 0 condition guarantees that � is invertible (why?). A�ne

changes of coordinates comprise of a linear map following by a translation; in particular, the
image �(0, 0) = (p, q) of the “origin” (0, 0) 2 A

2

k
can be any point, i.e. all points look the same

(see also Remark 1.1.18).

Note that such a transformation induces a map on the polynomial rings in the opposite
direction, i.e. we have a ring homomorphism (even a k-algebra homomorphism)

�⇤ : k[x, y] ! k[x0, y0], x 7! ax0 + by0 + c, y 7! cx0 + dy0 + q

which records the same information. For instance, � is an isomorphism i↵ �⇤ is. The reason
for this switching of direction, also called “contravariance,” is that you should think of k[x, y]
as the ring of polynomial functions f : A2

k
! k, so a coordinate transformation � : A2

k
(x0, y0) !

A
2

k
(x, y), or more properly �⇤, takes a function f : A2

k
(x, y) ! k to the function

�⇤f = f � � : A2

k(x
0, y0) ! k

obtained via precomposition. (This is the ultimate root of all contravariance in algebraic geom-
etry.) Of course, thinking of polynomials as functions is not quite right, as you are invited to
explore in Exercise 2.2.6; however, this su�ces to get good intuition.

Here are a few things you can do with these: check that given any point (p, q) 2 A
2

k

and line ` through (p, q), there is an a�ne change of coordinates � : A2

k
(x0, y0) ! A

2

k
(x, y) such

that �(0, 0) = (p, q) and ��1` = Cx, i.e. such that in the coordinate system (x0, y0), the point
(p, q) moves to the origin and the line ` moves to the y-axis Cx. We shall often define things
in this course in good coordinate systems–it is then your job to check that these definitions are
invariant under a�ne changes of coordinates. You are invited to play with the transformation
of conics under a�ne changes of coordinates in Exercise 2.1.6.

1.4.2 Algebraically Closed Fields

As we have seen many times previously, it may very well happen over an arbitrary (even infinite)
field k that the vanishing locus Cf ⇢ A

2

k
of a polynomial function corresponding to a nonconstant

polynomial f 2 k[x, y] is just empty. One example of this situation is when

f(x, y) = xn + a1x
n�1 + · · ·+ an 2 k[x, y],

i.e. that f is a polynomial of x alone. In this case, the corresponding locus Cf is nonempty i↵
this equation has a root in k, in which case Cf is the union of some vertical lines (see Remark
1.1.12). This suggests that the problem lies already in finding solutions to polynomial in one
variable.
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Definition 1.4.2. A field k is said to be algebraically closed if for every nonconstant poly-
nomial f(x) 2 k[x], there is a root of f in k, i.e. there is an ↵ 2 k such that f(↵) = 0.

Example 1.4.3. The fields Q,R and Fq for any q are not algebraically closed (why?).

Here are two facts which I will take for granted–these are important theorems in their
own right, but this course is perhaps not the right place for them.

Theorem 1.4.4 (Fundamental Theorem of Algebra). The field C is algebraically closed.

Theorem 1.4.5. Given any field k, there is an algebraically closed field k0 containing k.

Theorem 1.4.5 says that every field k can be embedded into some algebraically closed
one, although in many di↵erent ways in general.10 This theorem says that we lose little when
passing to algebraically closed fields, even when working in positive characteristic. The “small-
est”11 algebraically closed field containing k is often called the algebraic closure of k, and is
often denoted k; then the condition of being algebraically closed reads k = k. This is notation I
will occasionally slip and use, although we don’t really need to dwell on the notion of algebraic
closures at the moment.

One last thing to think about: can an algebraically closed field be finite? You are
invited to explore this in Exercise 2.2.8. The following lemma might help.

Lemma 1.4.6. Let k be an algebraically closed field. If f(x) 2 k[x] is a polynomial such
that f(↵) = 0 for all ↵ 2 k, then f is the zero polynomial.

Proof. The polynomial f + 1 has no roots in k and is hence a constant polynomial. ⌅

In fact, the condition of being algebraically closed is su�cient but not necessary; this
result is, of course, the one-dimensional analog of Exercise 2.2.6. This result now allows us to
prove nonemptiness results for curves.

Theorem 1.4.7. If C ⇢ A
2

k
is a curve over an algebraically closed field k, then C(k) 6= ;.

Proof. Suppose C = Cf for some nonconstant f(x, y) 2 k[x, y]. Write

f(x, y) = an(x)y
n + an�1(x)y

n�1 + · · ·+ a0(x)

for some integer n � 0 and polynomials a0(x), . . . , an(x) 2 k[x] with an(x) 6= 0. If n = 0, then
f is a polynomial of x alone; since f is nonconstant and k is algebraically closed, we may pick
a root ↵ 2 k of this polynomial and any � 2 k whatsoever to give us the point (↵,�) 2 C.
If n � 1, then Lemma 1.4.6 gives us an ↵ 2 k such that an(↵) 6= 0; then the polynomial
f(↵, y) 2 k[y] is nonconstant, so again, since k is alegbraically closed, there is a root � 2 k of
f(↵, y), giving us again (↵,�) 2 C. ⌅

10This is a subtlety which we will not have the need to discuss right now, and a true discussion of which belongs
to algebra courses anyway.

11What would that mean?
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This statement–every algebraic curve C ⇢ A
2

k
is nonempty–is a characterization of

algebraically closed fields, although not an awfully useful one. In fact, as you can check, the
proof gives us more: the proof above shows that if C is not already the union of finitely many
vertical lines, then for all but finitely many values of a (namely the roots of an(x), if any), the
curve C will intersect the vertical line x = a. In particular, if k is infinite (see Exercise 2.2.8),
then this argument shows that C(k) must be infinite as well. (So we are leaving behind the
nonsense of a curve being finitely many points as well.) In Exercise 2.2.7, you are invited to
discuss whether the complement A2

k
r C of C in A

2

k
is infinite as well. The picture is therefore

somewhat easier to understand over algebraically closed fields than over general fields–this is
the reason that we shall essentially restrict ourselves to working with algebraically closed fields
from now on.

Example 1.4.8. Considering the hyperbola defined by the vanishing of f(x, y) = xy � 1 and
taking the line x = 0 shows that it is not necessarily true than an algebraic curve C intersects
every vertical line. Somehow, the point of intersection of f(x, y) = xy � 1 with x = a “moves
to infinity” as a ! 0; this is a situation we will rectify in projective space, where every curve
will intersect every other. More on that soon!
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