
Chapter 1. Lecture Notes

1.3 06/14/24 - Parametric Curves

Today we’ll discuss parametrization of curves, and what you can do with them.

Example 1.3.1. Given a field k and u, v, w, z 2 k with not both u,w zero, you can look at the
subset given parametrically by

C := {(ut+ v, wt+ z) : t 2 k} ⇢ A
2

k.

This is the line C` defined by the polynomial

`(x, y) := wx� uy � wv + uz 2 k[x, y].

Conversely, any line ` can be similarly parametrized (this uses that ` is not constant!).

Example 1.3.2. For any field k, the parametrization (t, t2) traces the parabola y � x2 = 0.

Example 1.3.3. Take k = R and the subset

C := {(t2, t2 + 1) : t 2 R} ⇢ A
2

R
.

This is the ray defined by y � x � 1 = 0 and x � 0. This example shows that a “quadratic”
parametrization can give rise to a linear curve, and the image of a parametrization of this sort
need not be an entire algebraic curve, even if it is part of one.

One might argue that the above phenomenon occurs only because t2 cannot be negative
in R, i.e. that R is not algebraically closed. However, as the following example shows, the same
thing can happen also over any field.

Example 1.3.4. For any field k, the subset

C :=

⇢✓
t+ 1

t+ 3
,
t� 2

t+ 5

◆
: t 2 k r {�3,�5}

�
⇢ A

2

k

traces out the hyperbola defined by

f(x, y) = 2xy + 5x� 4y � 3 2 k[x, y],

except for the point (1, 1), i.e.
C = Cf r {(1, 1)}.

As we shall see, this is the typical situation–that over an algebraically closed fied k, a
rational parametrization of an algebraic curve C can miss at most one point–more on that next
time.

Here’s one example of a thing we can do with parametrizations.

Theorem 1.3.5 (Primitive Pythagorean Triples). IfX,Y, Z 2 Z are pairwise coprime positive
integers such that X2 + Y 2 = Z2, then there are coprime integers m,n of di↵erent parity
such that m > n > 0 and either (X,Y, Z) or (Y,X,Z) is (m2 � n2, 2mn,m2 + n2).

Of course, this result can be used to produce or characterize all Pythagorean triples,
not just primitive ones (how?).
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Proof. Over any field k (of characteristic other than 2 for simplicity), we can parametrize the
circle C defined by x2+y2�1 2 k[x, y] by projection from the point (�1, 0). In other words, for
each t 2 k, we may look at the line through (�1, 0) with slope t, which is given by the vanishing
of y � t(x+ 1), and consider its intersection with the circle C. We can now solve the system of
equations

x2 + y2 � 1 = 0

y � t(x+ 1) = 0

by substituting the expression for y from the second line in the first to get

0 = x2 + t2(x+ 1)2 � 1 = (x+ 1)
�
(1 + t2)x� (1� t2)

�
.

One of the roots of this quadratic equation is the expected x = �1, and, as long as 1 + t2 6= 0,
the other root is

x =
1� t2

1 + t2
,

which yields the point ✓
1� t2

1 + t2
,

2t

1 + t2

◆
2 C.

This recipe tells us that, in fact, this is a parametrization of all of C–except the point (�1, 0)
itself, i.e. ⇢✓

1� t2

1 + t2
,

2t

1 + t2

◆
: t 2 k, 1 + t2 6= 0

�
= C r {(�1, 0)}.

Make sure you understand this! Of course, this is the familiar “half-angle” parametrization of
the circle, i.e. we have the trigonometric identities

cos ✓ =
1� tan2 ✓/2

1 + tan2 ✓/2
and sin ✓ =

2 tan ✓/2

1 + tan2 ✓/2
.

See Figure 1.6.

Figure 1.6: Parametrizing the circle x2 + y2 = 1.
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Now, let’s specialize to the case k = Q. If X,Y, Z are as in the statement, then the
point

(x, y) :=

✓
X

Z
,
Y

Z

◆
2 C(Q)r {(�1, 0)},

so there is a t 2 Q such that
✓
X

Z
,
Y

Z

◆
=

✓
1� t2

1 + t2
,

2t

1 + t2

◆
.

Then 0 < t < 1 because X,Y > 0. Write t = m/n for some positive coprime integers m,n with
m > n > 0 to get

✓
X

Z
,
Y

Z

◆
=

✓
1� t2

1 + t2
,

2t

1 + t2

◆
=

✓
m2 � n2

m2 + n2
,

2mn

m2 + n2

◆
.

If m and n are of opposite parity, then the expression on the right is in lowest terms (check!)
and hence we conclude that

(X,Y, Z) = (m2 � n2, 2mn,m2 + n2)

as needed. If m and n are both odd, then

gcd(m2 � n2,m2 + n2) = gcd(2mn,m2 + n2) = 2,

from which we conclude that

2X = m2 � n2,

2Y = 2mn,

2Z = m2 + n2.

In this case, we can take

m0 :=
m+ n

2
and n0 :=

m� n

2
,

which are again coprime, of di↵erent parity (check!), such that m0 > n0 > 0 and

(Y,X,Z) =
�
(m0)2 � (n0)2, 2m0n0, (m0)2 + (n0)2

�
.

⌅

Let’s now do some parametrizations of higher degree curves.

Example 1.3.6 (Cuspidal Cubic). For any field k, consider the set

C := {(t2, t3) : t 2 k} ⇢ A
2

k.

If we let
f(x, y) := y2 � x3 2 k[x, y],

then it is clear that
C ⇢ Cf .

To go the other direction, suppose we have a point (p, q) 2 Cf . If p = 0, then q = 0 as well, and
then (p, q) = (t2, t3) for t = 0. Else, if p 6= 0, then it is easy to see (check!) that (p, q) = (t2, t3)
for t := q/p. This tells us that

C = Cf .

Again, what we are doing geometrically is that we are parametrizing points of the cuspidal
cubic by the slope of the line joining the point to the cusp.
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Example 1.3.7 (Nodal Cubic). For any field k, consider the curve Cf defined by the vanishing
of

f(x, y) = y2 � x3 � x2 2 k[x, y].

This is a nodal cubic with a node at (0, 0). For any t 2 k, consider the line of slope t through
the node, which has the equation y � tx = 0. We may now solve the system of equations

y2 � x3 � x2 = 0

y � tx = 0

as before by subsituting the second line into the first to get

0 = t2x2 � x3 � x2 = x2(�x+ t2 � 1).

This is a cubic equation with a “double root” at x = 0; this captures the fact that the point
(0, 0) is a node (how?). The third root is then the unique point of intersection of this line with
the curve Cf other than the origin, and has x-coordinate x = t2 � 1 and hence coordinates

(x, y) = (t2 � 1, t3 � t2).

This is easily seen to be (check!) a parametrization of Cf , i.e.

Cf = {(t2 � 1, t3 � t2) : t 2 k}.

The above examples lead us to ask the following natural questions:

Question 1.3.8. Does every curve C ⇢ A
2

k
admit a rational parametrization? In other

words, given any curve C ⇢ A
2

k
, are there rational functions u(t), v(t) 2 k(t) such that

C = {(u(t), v(t)) : t 2 k r S},

where S ⇢ k is the finite set of poles of u(t) and v(t)?

Question 1.3.9. Is every subset of A2

k
given parametrically by rational functions an alge-

braic curve? In other words, given any u(t), v(t) 2 k(t) and S as before, can we always
find an f(x, y) 2 k[x, y] such that

{(u(t), v(t)) : t 2 k r S} = Cf?

The answer to Question 1.3.8 is “yes” if C is a line (Example 1.3.1), “almost yes”
if C is a conic, and “no, in general” if C has higher degree. Here’s what the “almost yes”
means: it means that if C is a conic and C(k) 6= ;, then given any point P 2 C(k), there is a
parametrization of C(k)rP (by projection from the point P to any line not containing P , as in
the proof of Theorem 1.3.5), and in some cases we may have a complete parametrization of C(k)
as well6, as in Example 1.3.2. For curves of higher degree, the situation is drastically di↵erent:
most curves of higher degree (in some sense of the word) do not admit rational parametrizations.
However, proving this is beyond our tools at the moment. The simplest example of a curve that
does not admit a rational parametrization is probably given by taking

f(x, y) := y2 � x3 + x 2 k[x, y]

6This happens precisely when C rC contains a k-rational point, where C ⇢ P
2
k is the projective closure of C.

If you don’t know what this means, you can ignore it now.
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when ch k 6= 2. In Exercise 2.2.1, you will be guided through a proof of this result, at least
when ch k = 0.

The answer to Question 1.3.9 is also “no”, at least the way it is currently stated, as
Examples 1.3.3 and 1.3.4 illustrate. However, the claim actually admits a very nice salvage; as
it turns out, we can always find an f such that C ⇢ Cf , and at least when k is algebraically
closed (a notion to be discussed soon), either C is all of Cf or all of Cf except perhaps one
point. We will not prove this general statement here, although see Remark 1.3.11.

Given u and v, finding such an f as in Question 1.3.9 amounts to “eliminating” t from
the system of equations

u(t)� x = 0

v(t)� y = 0.

This is the beginning of a vast subject called elimination theory; we won’t get into the general
theory here, and only discuss specific examples. Let’s start with one.

Example 1.3.10 (Student Example). For any field k, consider the curve given parametrically as

C = {(t3 � 2t2 + 7, t2 + 1) : t 2 k} ⇢ A
2

k.

To produce such an f , perform Euclid’s algorithm on the polynomials

A = t3 � 2t2 + 7� x

B = t2 + 1� y

in the polynomial ring K[t] where K = k(x, y) is the field of rational functions in two variables
x and y. The algorithm runs to give us

A = Bq1 + r1,

B = r1q2 + r2, and

r1 = r2q3,

where

q1 = t� 2, r1 = (y � 1)t� (x+ 2y � 9),

q2 =
1

y � 1
t+

x+ 2y � 9

(y � 1)2
, r2 =

(x+ 2y � 9)2 � (y � 1)3

(y � 1)2
,

and q3 = r1r
�1

2
. We claim that taking

f(x, y) = (x+ 2y � 9)2 � (y � 1)3 2 k[x, y]

su�ces in the sense that at least C ⇢ Cf . To see this, use backward substitution in Euclid’s
algorithm to obtain the polynomial identity

f = P ·A+Q ·B 2 k[x, y, t]

where

P = �(y � 1)t� (x+ 2y � 9), t and

Q = (y � 1)t2 + (x� 7)t+ y2 � 2x� 6y + 19.
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This identity tells us that if for some x, y, t 2 k we have (x, y) = (t3 � 2t2 + 7, t2 + 1), then
A = B = 0 and hence f(x, y) = 0, proving that C ⇢ Cf . Note that

f(x, y) = det

2

66664

1 0 1 0 0
�2 1 0 1 0
0 �2 1� y 0 1

7� x 0 0 1� y 0
0 7� x 0 0 1� y

3

77775
.

(Where on earth did this matrix come from?) In this case, we have in fact that C = Cf when
k is algebraically closed; you are invited to solve the mystery of this matrix and show this
last result in Exercise 2.2.4. Get Desmos to plot the curve C of Example 1.3.10 over k = R.
Geometrically, we are taking the intersection of the surfaces in (x, y, t) space defined by the
vanishing of A and B and projecting the resulting curve to the (x, y)-plane–can you get Desmos
3D to illustrate this?

Here’s a slightly more advanced explanation that I do not expect you to fully under-
stand right now; I include it for the sake of completeness and for when you revisit this topic
later.

Remark 1.3.11. Suppose we are given a parametrization of the form

C = {(u(t), v(t)) : t 2 k r S}

for some rational functions u(t), v(t) 2 k(t) and finite set S of all poles of u(t) and v(t); for the
sake of nontriviality, we’ll assume that S ( k. Write

u(t) =
p(t)

q(t)
and v(t) =

r(t)

s(t)

for some p, q, r, s 2 k[t] with qs 6= 0 and (p, q) = (r, s) = (1). Consider the elements

A := p� xq and B := r � ys

of k[x, y, t] ⇢ K[t] where K = k(x, y). Now consider the ideal (A,B) ⇢ K[t]. Since K[t] is a
Euclidean domain and hence a PID, either (A,B) = (q) for some q 2 K[t] of positive degree,
or (A,B) = (1). In fact, the former case cannot happen, although we don’t quite yet have the
tools to prove this.7 It follows that the Euclidean algorithm can be used as above to produce
P,Q 2 k[x, y, t] and nonzero8 f 2 k[x, y] such that

f = P ·A+Q ·B 2 k[x, y, t]. (1.1)

The polynomial f then cannot be constant: if it were a nonzero constant c, then we
could take any value of t 2 k r S and substitute x = u(t), y = v(t) in (1.1) to produce the
contradiction c = 0. It follows as before that

C ⇢ Cf .

7Here’s a proof: if A and B had a common factor q 2 K[t] of positive degree, then there would be an
↵ 2 K = k(x, y) such that p(↵)� xq(↵) = r(↵)� ys(↵) = 0. Now, we claim that q(↵) 6= 0. Indeed, if q(↵) = 0,
then p(↵) = 0 as well, but already there are m,n 2 k[t] such that mp+ nq = 1, so plugging in t = ↵ would give
0 = 1, which is false. Similarly, s(↵) 6= 0. Therefore, in K(↵), we have

x =
p(↵)
q(↵)

and y =
r(↵)
s(↵)

.

Therefore, k(↵) � k(x, y) is a finite algebraic extension, but that cannot happen because the transcendence
degree of k(x, y) over k is 2. Alternatively, more “elementary” proofs can be given using the theory of Gröbner
bases.

8This uses that (A,B) = (1) in K[t].
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In fact, if f is chosen to be of minimal degree such that an equation like (1.1) holds (e.g. such
as when f is coprime to P and Q–which we always do by cancelling common factors), then this
f is none other than the resultant of A and B with respect to t, i.e. f = Rest(A,B).

Finally, it is not always true that Cf ⇢ C, although if k is algebraically closed then
C is either all of Cf or Cf minus at most one point; we certainly don’t have the tools to prove
this (at least at this level of generality) either.9

9Here’s a proof: the rational parametrization amounts to a morphism

' : A1
k r S ! Cf

which extends by smoothness of P1
k to a morphism

' : P1
k ! Cf ⇢ P

2
k,

where Cf is the projective closure of P2
k. Since, by assumption, ' is not constant, it follows from the general

theory of curves that this morphism is surjective on k-points. Note that any point in S must map to Cf r Cf

by the hypothesis that S is the set of poles of u(t) and v(t). If we let 1 denote the unique k-point of P1
k r A

1
k,

then we have two cases: either '(1) 2 Cf r Cf , in which case it follows that ' : A1
k r S ! Cf is surjective on

k-points, or '(1) 2 Cf , in which case ' : A1
k r S ! Cf is surjective onto Cf (k)r {'(1)}.
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