
Chapter 1. Lecture Notes

1.16 07/15/24 - Max Noether’s Theorem, Proof of Chasles’s
Theorem, Weierstrass Normal Form

The first order of business today is to prove Chasles’s Theorem, for which we will need

Theorem 1.16.1 (Max Noether). Let F,G,H 2 k[X,Y, Z] be relatively prime homogeneous
polynomials of degrees m,n, d � 1 such that F and G are relatively prime. Then H can
be written as

H = AF +BG

for some homogeneous A,B 2 k[X,Y, Z] of degrees d�m, d� n i↵ for each point P 2 P
2

k
,

we have
(H)O

P
2
k,P

⇢ (F,G)O
P
2
k,P

.

This theorem, often called Max Noether’s AF + BG Theorem, or Max Noether’s
Fundamental Theorem, is again an upgraded version of the local-to-global principal Lemma
1.14.2, and says that H is globally a polynomial-linear combination of F,G i↵ it is locally a
polynomial-linear combination of F and G at each point P .

Proof. One direction is clear. For the other, assume that (H)O
P
2
k,P

⇢ (F,G)O
P
2
k,P

for all P 2 P
2

k
,

and suppose by a projective change of coordinates that all points of CF \ CG are in the finite
plane, i.e. not on L1. If f, g, h 2 k[x, y] are the dehomogenizations of F,G,H respectively,
then it follows that h 2 (f, g)OP for all P 2 Cf \ Cg, so from Lemma 1.14.2, it follows that
h 2 (f, g)k[x, y], i.e. h = af + bg for some a, b 2 k[x, y]. Homogenization then yields

ZrH = AF +BG

for some r � 0 and A,B 2 k[X,Y, Z] homogeneous of degrees d+r�m and d+r�n respectively.
The result then follows by induction from the following lemma. ⌅

Lemma 1.16.2. Let F,G 2 k[X,Y, Z] be relatively prime homogeneous polynomials of
degrees m,n � 1 such that CF \ CG \ L1 = ;. If H 2 k[X,Y, Z] is a homogeneous
polynomial of degree d � 1 such that

ZH = AF +BG

for some homogeneous A,B 2 k[X,Y, Z] of degrees d+ 1�m, d+ 1� n respectively, then
there are A0, B0 2 k[X,Y, Z], homogeneous of degrees d�m, d� n respectively such that

H = A0F +B0G.

In other words, if CF and CG do not intersect on the line at infinity, then multiplication
by Z is injective on the quotient ring k[X,Y, Z]/(F,G).

Proof. For P 2 k[X,Y, Z], let P � denote the specialization P � := P (X,Y, 0) 2 k[X,Y, Z]; then
Z | P i↵ P � = 0. Specializing the equation ZH = AF +BG yields

A�F � +B�G� = 0.

Since CF \ CG \ L1 = ;, the polynomials F �, G� 2 k[X,Y ] are relatively prime, and hence
there is a C 2 k[X,Y ] such that A� = CG� and B� = �CF �. In this case, the polynomial
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Chapter 1. Lecture Notes

A�CG has the property that (A�CG)� = A� �CG� = 0, whence there is an A0 2 k[X,Y, Z]
such that A�CG = A0Z. Similarly, there is a B0 2 k[X,Y, Z] such that B+CF = B0Z. These
A0 and B0 work. ⌅

We are now ready to prove Chasles’s Theorem. For simplicity, I will do the case when
the nine points of intersection are distinct, leaving the general case (with multiplicities) to the
dedicated reader. This is not too unfair, since we have developed all the necessary tools for
this extension already. The advantage of working with distinct points is that it makes Theorem
1.16.1 very easy to apply.

Lemma 1.16.3. Let D,E ⇢ P
2

k
be projective curves of degrees m,n � 1 which intersect

in exactly mn distinct points, and let Y ⇢ P
2

k
be a curve that passes through all mn of

these points. If F,G,H 2 k[X,Y, Z] are minimal polynomials forD,E, Y respectively, then
there are homogeneous polynomials A,B 2 k[X,Y, Z] of degrees deg(H)�deg(F ), deg(H)�
deg(G) respectively such that H = AF +BG.

Proof. By Theorem 1.16.1, it su�ces to show that (H)O
P
2
k,P

⇢ (F,G)O
P
2
k,P

for all P 2 P
2

k
.

When P /2 D \E, this is clear, since the right hand side is all of O
P
2
k,P

. Now suppose that P 2
D\E. Our hypothesis coupled with Bézout’s Theorem implies that iP (D,E) = 1, and we have
to show that this combined with P 2 Y implies the result. This is clearly a local computation,
so we can pass to the a�ne case; let f, g, h denote the respective dehomogenizations. Then
evalP : O

A
2
k,P

! k is surjective with kernel containing (f, g) such that the quotient O
A
2
k,P

/(f, g)

has dimension one; this gives us an isomorphism evalP : O
A
2
k,P

/(f, g) ! k. In particular, Y 3 P

i↵ h lies in the kernel of this evaluation map i↵ h 2 (f, g)O
A
2
k,P

. ⌅

The only di↵erence in the general case is that one needs to check the “Noether condi-
tion” (H)O

P
2
k,P

⇢ (F,G)O
P
2
k,P

by hand for each P 2 D \ E, so to speak. See [3, §5.5]. We are
now ready to prove

Theorem 1.15.14 (Chasles). Let D,E ⇢ P
2

k
be two cubic curves that intersect in 9 points,

and suppose one of D or E is irreducible. If X ⇢ P
2

k
is another cubic curve that passes

through 8 of 9 of these points, then X also passes through the 9th one.

Proof. Suppose that D is irreducible, and write D \ E = {P1, . . . , P9}, with Pi 2 X for i =
1, . . . , 8. Let the ninth point of intersection of X with D be Q, and suppose for the sake of
contradiction that Q 6= P9. Pick a general line L through P9; it su�ces to take one not passing
through Q and meeting D in two distinct other points R,S. Then E 63 R,S. Applying Lemma
1.16.3 to Y := X [ L, we conclude that if F,G,H are the homogeneous cubic polynomials
defining D,E,X respectively, then there are homogeneous linear polynomials A,B 2 k[X,Y, Z]
such that

LH = AF +BG.

(Here we are using L also to denote the linear polynomial defining the line L; we will also do
this for A and B.) Now R,S /2 E implies that the line G contains R and S, and hence must
be identical with L. It follows that L | AF , but since F is assumed to be irreducible, this can
only happen if L = A (upto scaling). Cancelling the factor of L tells us that H = ↵F + �G for
some scalars ↵,� 2 k, i.e. that X is in the pencil spanned by D and E. In particular, X 3 P9,
which is a contradiction. This shows that our assumption Q 6= P9 is false, proving X 3 P9 as
needed. ⌅
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With this we have now completed the proof of the associativity of the elliptic curve
addition law–at least as long as all the points involved are distinct; see Remark 1.15.16. Let us
now move on to some explicit examples illustrating how to work with elliptic curves.

1.16.1 Weierstrass Normal Form and Legendre Form, Two and Three Tor-
sion

Recall our convention that k is an algebraically closed field of characteristic other than 2 or 3.
In these circumstances, we given a smooth cubic E ⇢ P

2

k
, we can make a convenient choice of

basepoint O 2 E and coordinates that makes the study of the elliptic curve (E,O) particularly
convenient.

Firstly, the choice of basepoint O doesn’t really matter all that much (see Exercise
2.6.9), but a convenient choice of O can make the addition law particularly easy. Namely, by
Exercise 2.5.5, E has exactly 9 inflection points, and we pick O to be one of these flexes. The
upshot of this is that in the addition law on E, we have O0 = O by definition (see the proof of
Theorem 1.15.13), and hence the �A,O and A are collinear for each A 2 E; in fact, it is easy to
see in this case (check!) that three points A,B,C 2 E (counted with multiplicity) are collinear
i↵ A+B + C = 0 in the group law.

As a first consequence, not that this means that given a fixed P 2 E, the point P is an
inflection point on E i↵ the “points” P, P, P are collinear i↵ 3P = 0 i↵ P 2 E[3] is a 3-torsion
point. In particular, Exercise 2.5.5 gives us that E[3] is an abelian group with 9 elements, each
of order 3, and hence that E[3] ⇠= Z/3⇥Z/3. This is the first observation in a very large story,
another part of which we shall see below and which you will be asked flesh out in detail in
Exercise 2.6.10.

Given an elliptic curve (E,O) with O 2 E an inflection point, we can now bring E into
what is called the (reduced) Weierstrass normal form. Here’s how this goes: pick a coordinate
system in which O = [0 : 1 : 0] with the tangent line TOE being the line at infinity Z = 0. Let
F be the minimal polynomial of E, and write F as

F = A0Y
3 +A1Y

2 +A2Y +A3

for Ai 2 k[X,Z]i homogeneous of degree i for i = 0, . . . , 3. The condition O 2 E implies A0 = 0,
the condition TOE = V(Z) implies that A1 = Z (possibly after scaling, which we do), and the
condition that O 2 E is an inflection point says that Z | A2. Therefore, the polynomial F looks
like

Y 2Z + (�X + µZ)Y Z +A3.

Since ch k 6= 2, we can replace Y by Y � (�X + µZ)/2 to eliminate the middle term, so that
the equation looks like

Y 2Z = ↵0X
3 + ↵1X

2Z + ↵2XZ2 + ↵3Z
3

for some ↵i 2 k for i = 0, . . . , 3. Since E is irreducible, we must have ↵0 6= 0; replacing Z by
↵0Z, we may assume that ↵0 = 1 to get an equation of the form

Y 2Z = X3 + �1X
2Z + �2XZ2 + �3Z

3.

Finally, using ch k 6= 3, we may replace X by X � 1

3
�1Z to depress this last cubic to obtain the

reduced Weierstrass normal form

Y 2Z = X3 + pXZ2 + qZ3
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for some p, q 2 k, or in a�ne coordinates

y2 = x3 + px+ q.

By (a salvage of) Exercise 2.3.10 combined with Exercise 2.2.5(b), this curve is smooth i↵

4p3 + 27q2 6= 0.

One thing this form enables us to see immediately is the two-torsion E[2] on E. Firstly,
the only point on E at infinity (i.e. on Z = 0) is the point O. Next, given a(n) (a�ne) point
P = (x, y) on E, when E is in Weierstrass form, since P,O and �P are collinear, we see that
�P = (x,�y). In particular, 2P = 0 i↵ P = �P i↵ P = O or P = (x, y) with y = 0. In other
words, the two-torsion points other than O correspond directly to the roots of x3 + px + q; if
these roots are e1, e2, e3 2 k (using here that k = k), then

E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}.

Note that the discriminant condition 4p3 + 27q2 6= 0 (or equivalently the nonsingularity of E)
implies the roots e1, e2, e3 are pairwise distinct, whence E[2] is an abelian group of size 4; since
every nontrivial element of E[2] has order 2, we see immediately that

E[2] ⇠= Z/2⇥ Z/2.

The two examples here suggest the following generalization: is it always true that for
any n � 1 we have

E[n] ⇠= Z/n⇥ Z/n,

as we have shown for n = 1, 2, 3? In fact, this is always true in characteristic zero, or more
generally if ch k - 2n; for a proof, see Exercise 2.6.10. The best way I know of understanding
this result, however, involves seeing connections to a di↵erent branch of math, namely complex
analysis; I’ll cover this in the story time during the next lecture–see §1.17.2.

The above version of the Weierstrass normal form is convenient, but it doesn’t make
it clear how the isomorphism class of E depends on (p, q). For starters, replacing Z by uZ tells
us that the curves given by (p, q) and (u2p, u3q) are the same for any u 2 k⇥. It turns out, but
is more di�cult to prove, that two elliptic curves are in short Weierstrass form are isomorphic
i↵ there is such a transformation between them. We’ll pursue a slightly di↵erent line of study,
via a slightly di↵erent variant of the Weierstrass form.

Namely, recall as above that we by a chance of coordinates assume that the curve is
given as

Y 2Z = X3 + �1X
2Z + �2XZ2 + �3Z

3.

This time, we’ll factor the right hand side as

(X � e1Z)(X � e2Z)(X � e3Z)

for some distinct ei 2 k. Next, replacing X by X � e1Z, we will assume that e1 = 0; then

e2e3 6= 0. Finally, by replacing Z by e�1

2
Z and Y by e1/2

2
Y (again using k = k), we arrive at

the Legendre form
Y 2Z = X(X � Z)(X � �Z)

for some � 2 k r {0, 1}. Written in a�ne coordinates, this is

y2 = x(x� 1)(x� �).

Let us denote this curve by E�. One can then ask: when are E� and Eµ for �, µ 2 k r {0, 1}
related by a projective change of coordinates? Giving a complete answer to this question will
allow us to give a classification of elliptic curves. This is what we will pursue next time.
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