
Chapter 1. Lecture Notes

1.15 07/12/24 - More Applications, Pencils of Curves, Intro-
duction to Elliptic Curves

Today, we’ll do more applications of Bézout’s Theorem and start talking about elliptic curves,
which will be our main focus for the last few lectures. Before we do that though, it is helpful
to have a few handy corollaries and ideas. Here are two immediate applications of Bézout’s
Theorem.

Theorem 1.15.1. Let k be an algebraically closed field.

(a) If C,D ⇢ P
2

k
are any two projective curves, then C \D 6= ;.

(b) Any smooth projective curve is irreducible.

Proof. The statement (a) is an immediate corollary of Bézout’s Theorem (Theorem 1.14.1). For
(b), if a projective curve has multiple components, then some two of these components must
intersect somewhere by (a), and then by Theorem 1.9.6, this point of intersection is a singular
point of the curve. ⌅

Note that (a) is sharp in the sense that it is possible for two curves of any degrees
m,n � 1 to intersect in a single point with multiplicity mn. We shall have occasion to use (b)
repeatedly below.

1.15.1 Pencils of Curves and the Quartic Equation

Let’s now talk about linear one parameter families of curves, starting with a couple of examples.

Example 1.15.2. The family C = {C�}�2k of curves, where C� is the horizontal line defined by
y � � = 0 is a one-parameter family of curves of degree 1. When � ! 1, curve C� seems to
disappear; one way to rectify this is to write this family projectively as given by the vanishing
locus of µY � �Z = 0 for ⇤ = [� : µ] 2 P

1

k
, so when � is “infinity”, i.e. ⇤ = [1 : 0], then the

corresponding line is simply Z = 0, the line at infinity–we could have predicted that. Note that
in this case, each member of the family has degree exactly 1.

Example 1.15.3. Now consider the family C = {C⇤}⇤2P1
k
of curves, where C⇤ for ⇤ = [� : µ] is

the vanishing locus of �Y Z � µX2 = 0. This is a one-parameter family of conics (specifically
parabolae), and the member C⇤ is singular i↵ ⇤ = [1 : 0] or ⇤ = [0 : 1]; in the former case, it is
the union of the x-axis and L1, and in the latter case, it is the (“doubled”) y-axis. Note that
degC⇤ = 2 for all ⇤ except [0 : 1], where degC[0:1] = 1.

These examples motivate the following definition.

Definition 1.15.4.

(a) A pencil C of projective plane curves of degree d is a one-parameter linear family
C = {C⇤}⇤2P1

k
of projective curves, all but finitely many members of which have

degree d.
(b) Given a pencil C of curves, we define the base locus of C to be

BL(C) :=
\

C2C
C

the intersection of all the curves in the pencil.

82



Chapter 1. Lecture Notes

Concretely, a pencil C of degree d is given by specifying two linearly independent
F,G 2 k[X,Y, Z]d and then defining

C⇤ := C�F+µG

for ⇤ = [� : µ] 2 P
1

k
. In this case, we have

BL(C) = CF \ CG.

Of course, the choices for F and G are not unique: any two F 0, G0 that form a basis for the
span khF,Gi of F and G can be chosen as our F and G spanning the pencil, at the cost of
changing the parameter ⇤ representing each curve C⇤ (by a projective change of coordinates
in P

1

k
.) Saying that all but finitely many members of C have degree d is equivalent to saying

that there is no homogeneous polynomial H 2 k[X,Y, Z] such that H2 | F,G (check!); this is a
condition we will assume from henceforth as well.

Remark 1.15.5. With our description of the parameter space P
d(d+3)/2

k
for all curves of degree

d � 1, a pencil corresponds exactly to a line P
1

k
⇠= L ⇢ P

d(d+3)/2

k
. Similarly, a two-parameter

family (given by a plane P
2

k
⇠= ⇤ ⇢ P

d(d+3)/2) is called a net and a three-parameter family is
called a web (which are some rather pictorial names); in general, a k-dimensional linear family
of curves of degree d is also called a k-dimensional linear system of degree d curves. Note also
that we cannot, in general, expect all curves in our pencil to have degree exactly d, as Example
1.15.3 illustrates that we cannot ask all members of our pencil to have the same degree; this
can be done (e.g. if we consider the “double” y-axis to have degree 2), but needs the language
of schemes. As we shall see below, the notion of base locus also behaves most nicely when we
are in the world of schemes, so we can keep track of tangency of the members of our pencil as
well.

Example 1.15.6. A pencil of lines is just the family of all lines in P
2

k
passing through some fixed

point P 2 P
2

k
; in particular, there is only one kind of pencil of lines up to projective changes of

coordinates, and the family of all pencils of lines in P
2

k
is exactly P

2

k
.

Example 1.15.7. Over an algebraically closed field of characteristic other than 2, there are
exactly 8 types of pencils of conics up to projective changes of coordinates. Ifa pencil C contains
at least one smooth member, then the base locus of C consists of at most 4 distinct points, and
the intersection multiplicities of at the base locus add up to 4; in other words, family containing
one smooth member are indexed by partitions of 4, of which there are five. Conversely, if two
pencils, each containing one smooth member, give rise to the same partition, then either one
can be taken to the other by a projective change of coordinates. If all members of C are singular,
then the base locus can be either a point, the union of a point and a line not passing through
it, or a line. If it is a point P0, then the pencil consists only of pairs of lines intersecting at
that point, and no line is common to all such pairs. If it is the union {P0} [ L for some point
P0 and line L such that P0 /2 L, then the pencil consists of all reducible conics of the form
C⇤ = L [ L⇤, where L⇤ is the pencil of all lines through P0 (see Example 1.15.6). Finally, if
the base locus is a line L, then there is a point P0 2 L such that the pencil again consists of
all reducible conics of the form C⇤ = L [L⇤, where L⇤ is the pencil of all lines through P0. In
these three degenerate case, the base locus completely determines the pencil up to projective
changes of coordinates.40 See Figure 1.10 for a picture illustrating these eight types, as well as
their names. You are invited to prove these results in Exercise 2.6.2.

Example 1.15.8. We met examples of pencils of cubic curves in the proof of Pascal’s Theorem
(Theorem 1.13.5); see Figure 1.8 for an illustration.

40This happens also in the first case (i.e. when C has at least one smooth member), if we think of the base
locus scheme-theoretically, i.e. as remembering what the multiplicities at each point of intersection are.
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Figure 1.10: The eight types of pencils of conics up to projective changes of coordinates. Pic-
ture(s) made with Desmos.

Unfortunately, there are only finitely many types of pencils of degree d curves in P
2

k
,

up to projective changes of coordinates, i↵ d 2 {1, 2}. In general, for d � 3, classification of all
pencils of curves of degree d, even in P

2

k
, is a very di�cult problem. We will discuss the case of

d = 3 in detail when we talk about the classification of elliptic curves in P
2

k
.

Here’s one cool thing we can say about pencils of conics.

Theorem 1.15.9. Let k be an algebraically closed field of characteristic other than 2, and
let C be a pencil of conics in P

2

k
. Then either every member of C is reducible, or at most

3 are.

Proof. Note that if ch k 6= 2, then a quadratic homogeneous polynomial Q 2 k[X,Y, Z]2 can be
written as

Q =
⇥
X Y Z

⇤
2

4
A H E
H B F
E F C

3

5

2

4
X
Y
Z

3

5 ,

where the matrix in the middle determines, and iis uniquely determined, by Q.41 If we denote

41This is the reason that the classification of projective conics is intimately related to the theory of binary
quadratic forms. See Remark 1.12.15.
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this matrix by MQ, then we see that

2

4
@XQ
@Y Q
@ZQ

3

5 = 2 ·MQ ·

2

4
X
Y
Z

3

5 .

In particular, it follows from the Projective Jacobi Criterion (Theorem 1.12.10) that the conic
CQ defined by Q (when Q 6= 0) is singular i↵MQ has a nonzero kernel (i.e. a nonzero eigenvector
with eigenvalue 0), which happens i↵ detMQ = 0, as we have talked about several times. Now
given two such linearly independent Q1, Q2 and corresponding matrices Mi := MQi for i = 1, 2,
the pencil C containing Ci = CQi for i = 1, 2 is given by taking C⇤ to be the curve defined by
the vanishing of �Q1 + µQ2 = 0. The matrix representative of this quadric is given exactly by

�MQ1 + µMQ2 .

By the first observation, the reducible conics of the pencil C correspond exactly to the roots ⇤
of the equation

det(�MQ1 + µMQ2) = 0.

Since this is homogeneous cubic equation in � and µ, it is either identically zero (in which case
every member of C is reducible), or it has at most three roots, in which case at most three
members of C are reducible, and the rest smooth. ⌅

Note that a pencil can have any number of singular members between 1 and 3 (inclusive)–
the precise number corresponds to the multiplicities of the roots of the cubic polynomial
det(�MQ1 + µMQ2), and can also be read o↵ from the geometry of the base locus (how?).

Example 1.15.10. Let k be an algebraically closed field and let C,D ⇢ P
2

k
be two conics that

intersect in exactly 4 distinct points P1, . . . , P4. In this case, these four points must be in general
position (Definition 1.12.4); indeed, if some three of them were to lie on a line L, then every
conic through them would have to contain L (by Bézout’s Theorem for lines or conics), and
hence any two distinct conics passing through them would intersect in all points along L, of
which there are infinitely many (Proposition 1.11.13).

In this case, the pencil of conics containing C and D is said to be a general pencil;
see the case O1 in Figure 1.10 for an illustration of this type of pencil. The claim is that
such a pencil consists of all conics passing through these four points (and, in particular, always
contains smooth members). This can be proven using Max Noether’s Fundamental Theorem
(Theorem 1.16.1) which we will use to prove Chasles’s Theorem (Theorem 1.15.14) next time,
or using a dimension argument on the number of linear constraints imposed on conics by four
points in general position, but an alternative, direct, proof runs as follows. Let E be any other
conic passing through these four points, and pick a fifth point P5 on E distinct from P1, . . . , P4.
Since no four of P1, . . . , P5 are collinear, it follows that E is the unique conic passing through
P1, . . . , P5 (Theorem 1.13.12(b)). In particular, if we can find a conic E0 in the pencil spanned
by C and D that contains P5, then we would have shown that E = E0 and hence that E is in
the pencil spanned by C and D.

For this, we claim first that P5 /2 C [D; indeed, if P5 2 C, then by Bézout’s Theorem
for conics (Theorem 1.13.4), we know that E and C share a component. Since E and C are
distinct conics, this can only happen in E = L1 [ L2 and C = L2 [ L3 for some distinct lines
L1, L2, L3 ⇢ P

2

k
with P5 2 L2. Since L2 contains exactly two of the four points Pi, say P1 and P2,

and both E and C pass through P3 and P4 as well, it follows that both L1 and L3 are lines joining
P1 and P4, whence L1 = L3, which is a contradiction. Therefore, as in the proof of Theorem
1.13.5, if we take F and G to be homogeneous equations defining C and D respectively, and
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pick a representative (X0, Y0, Z0) for P5 = [X0 : Y0 : Z0], then F (X0, Y0, Z0) ·G(X0, Y0, Z0) 6= 0,
and the curve E0 = C⇤ = C�F+µG in the pencil spanned by C and D, where

⇤ = [� : µ] = [�G(X0, Y0, Z0) : F (X0, Y0, Z0)]

contains P5, and we are done. (That ⇤ is well-defined uses that P /2 C [D, or at least that one
of P /2 C and P /2 D holds.)

Therefore, we have shown that a general pencil of conics is exactly the set of all conics
that pass through four points P1, . . . , P4 in P

2

k
in general position. Since any such tuple of points

can be taken to any other by a projective change of coordinates (this was Proposition 1.12.5),
it follows that any two general pencils are related by a projective change of coordinates. This
is an 1/8th of the solution to Exercise 2.6.2.

Finally, note that if C is a general pencil of conics through the points P1, . . . , P4, then
we can see explicitly what the exactly three reducible conics in C, as suggested by Theorem
1.15.9 are: namely, they are the three pairs of lines that are opposite edges of the complete
quadrilateral with vertices P1, . . . , P4; i.e. if for 1  i < j  4, we let Lij be the line joining Pi

and Pj , then the three reducible conics are exactly L12 [ L34, L13 [ L24 and L14 [ L23.

This observation gives us a way to find the intersection points of two conics that inter-
sect in 4 points as follows. Given equations Q1 and Q2 of conics intersecting in 4 distinct points,
we find the roots of the cubic polynomial det(�MQ1 + µMQ2) (say via Cardano’s method), and
use this to find the singular members of the pencil spanned by Q1 and Q2. Then we decom-
position the equation of these singular members into equations of the corresponding lines (by
solving quadratic equations). Finally, the four intersection points of the original conics will
be contained in the 6 pairwise intersection points of these lines, and lines are easy enough to
intersect.

Example 1.15.11. Here’s an example of how to use pencils of conics to solve the quartic equation,
at least when the characteristic of the base field is other than 2. Suppose we are trying to solve
the equation

x4 + ax3 + bx2 + cx+ d = 0

over a field k with ch k 6= 2. It is easy to see (check!) that solving this equation is equation
amounts to finding the intersection points of the two parabolae given by the vanishing of the
homogeneous polynomials

Q1 = Y 2 + aXY + bY Z + cXZ + dZ2, and

Q2 = Y Z �X2,

since they do not intersect on the line at infinity. Then the corresponding matrices MQ1 and
MQ2 are easily seen to be

MQ1 :=

2

4
0 a/2 c/2

a/2 1 b/2
c/2 b/2 d

3

5 and MQ2 :=

2

4
�1 0 0
0 0 1/2
0 1/2 0

3

5 ,

whence

det(�MQ1 + µMQ2) = �1

4

⇥�
a(ad� bc) + c2

�
�3 + (ac� b2 + 4d)�2µ+ 2b�µ2 � µ3

⇤
.

Then, we may solve this cubic, and use this as suggested in Example 1.15.10 to find the inter-
section points of CQ1 and CQ2 , and hence the roots of the quartic equation. You are invited to
work out one (carefully chosen) example in detail in Exercise 2.6.3. The whole procedure above
can be simplified slightly by first depressing the quartic (i.e. replacing X by X � (1/4)a) and
then applying the above procedure. For a (slightly) more detailed explanation of the procedure
and its connection to Galois theory, as well as references, see [5, §1.14].
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1.15.2 An Introduction to Elliptic Curves

We now want to focus on the next simplest case of curves after the conics, namely the cubic
curves. We already classified all singular plane cubics up to projective changes of coordinates
(at least over algebraically closed fields of characteristic other than 3) in Exercise 2.4.4, so we
may now focus on the case of smooth cubics–it turns out that such curves admit a very rich
theory, which makes them very powerful objects in modern algebraic geometry.

Definition 1.15.12. An elliptic curve (over a field k) is a pair (E,O), where E ⇢ P
2

k
is a

smooth cubic curve, and O 2 E.

The reader will not lose much by imagining k to be algebraically closed (otherwise our
definition of smoothness is not quite the right one), and soon we will be assuming ch k 6= 2, 3
as well for convenience, but it is helpful to have the right level of generality and to be able to
talk about points of elliptic curves over finite fields, for instance.

Now consider the binary operation + : E ⇥ E ! E defined as follows: given a pair
(A,B) 2 E ⇥ E, let the line42 LA,B joining A and B intersect the curve E in the third point
D.43 Then we define A+ B := +(A,B) to be the third point of intersection of E and the line
LO,D joining O and D. See Figure 1.11. The key claim, from which the power of elliptic curves
comes, is

Theorem 1.15.13. Let (E,O) be an elliptic curve. Then the binary operation + : E⇥E !
E defined above makes E into an abelian group with identity O.

Proof. Commutativity of + is clear, as is the fact that A+O = A for all A 2 E: indeed, if the
line LA,O meets the curve again in A0, then the line LO,A0 meets the curve again in A. To find
inverses, consider once and for all the point O0 2 E which is the third point of intersection of
the tangent line LO,O = TOE with E; then it is easy to see that given any A 2 E, the third
intersection point A00 of LAO0 with E has the property that A + A00 = O. Finally, we have to
show associativity.

For this, consider points A,B,C 2 E. Let D denote the third intersection of LA,B

with E, let F denote the third intersection of LA+B,C with E, and let G denote the third
intersection of LB,C with E. (See Figure 1.11.) To show associativity, it su�ces to show that
the line LA,B+C passes through F (check!). Temporarily denote the third intersection point of
LA,B+C with E by F 0; then we have to show that F = F 0.

Consider the cubic curves � := LA,B [ LC,F [ LO,G and ⌃ := LB,C [ LA,B+C [ LO,D,
and note that

E \ � = {O,A,B,C,D,G,A+B,B + C,F} and

E \ ⌃ = {O,A,B,C,D,G,A+B,B + C,F 0}.

In particular, ⌃ is a cubic curve that passes through 8 of the 9 intersection points of the cubic
curves E and �. Therefore, the proof is finished by the following theorem (Theorem 1.15.14). ⌅

42When A = B, we take LA,B to be the tangent line to E at A, which we can do uniquely since E smooth.
43Here we are using Bézout’s Theorem (Theorem 1.14.1 or at least Theorem 1.12.12). We do not disallow the

possibility that D = A,B,O. For instance, D = A if A 6= B but the line LA,B is tangent to E at A, or if A = B

and LA,B meets E with multiplicity three at A (i.e. A is an inflection point of E). I will leave such considerations
to the reader, but see also Remark 1.15.16.
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Figure 1.11: The addition law on an elliptic curve. Picture made with GeoGebra.

Theorem 1.15.14 (Chasles). Let D,E ⇢ P
2

k
be two cubic curves that intersect in 9 points,

and suppose one of D or E is irreducible. If X ⇢ P
2

k
is another cubic curve that passes

through 8 of 9 of these points, then X also passes through the 9th one.

There are many ways to prove Theorem 1.15.14. One approach is to use a dimension
count: each point of intersection imposes one linear condition on the space P

9

k
of homogeneous

cubic equations, and so imposing 8 such general conditions brings us down to a P
1

k
⇢ P

9

k
, i.e. a

pencil of cubic curves. If C and D are two members of this pencil, then any other cubic curve
passing through these 8 points belongs to the pencil spanned by C and D and hence also passes
through the 9th point. For this argument to work, the points need to be in su�ciently general
position–it turns out to be su�cient to assume that no 7 of the points P1, . . . , P9 lie on a conic.
For an argument along these lines, see either [5, Prop. 2.6], or this blog post [7] by Terry Tao.
This 8 ) 9 phenomenon can be fruitfully generalized in the direction of the number of linear
conditions imposed by points in projective space, resulting in the so-called the Cayley-Bacharach
Theorem. Sometimes Theorem 1.15.14 itself is called the Cayley-Bacharach theorem, but this
is a misnomer–see this paper [8] by Eisenbud, Green, and Harris44 for an explanation of the
Cayley-Bacharach Theorem and its relation to Chasles’s Theorem. Next time, we will give a
proof of Theorem 1.15.14 using a local-to-global principle called Max Noether’s Fundamental
Theorem (Theorem 1.16.1).

Remark 1.15.15. Chasles’s Theorem (Theorem 1.15.14) immediately implies those of Pascal
(Theorem 1.13.5) and Pappus (Theorem 1.13.7); for instance, to deduce Pascal’s Theorem in
the notation used in that section, we can take the two cubic curves to be D := L1 [ L3 [ L5

and E := L2 [ L4 [ L6 (so the intersection points are P1, . . . , P6, Q1, Q2, Q3), and then take X
to be the union of the conic C and the line L joining Q1 and Q2.

44Harris was my advisor!
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Remark 1.15.16. The proof of Theorem 1.15.13 and the statement of Theorem 1.15.14 certainly
work as written when all the 9 involved points are distinct, but that is not quite su�cient
to prove Theorem 1.15.13. We also need to take into account intersection multiplicites and
tangencies. There are a few ways to get around this. Over fields such as k = R or k = C, we
may use continuity arguments, as in indicated for instance in [5, §I.2]. Over general fields, we
can use a similar argument, but using the rigidity of complete varieties instead, as explained
in [9, Chapter 3]. Alternatively, one can write down explicit formulae for the group law and
verify all the claims directly via (very) tedious computation. Finally, we can treat the whole
theory as above somewhat more carefully using the notion of intersection multiplicities already
introduced, and note that Theorem 1.15.14 also works when we counts point with intersection
multiplicity.45 This last one is, generally speaking, the approach we will take, as we shall see in
the proofs next time.

Remark 1.15.17. Suppose that an elliptic curve E defined over a field k is smooth over its
algebraic closure k. The above addition law tells us then that the set of k-rational points
E(k) of E form a subgroup of E(k)–indeed, this follows from the group law because the third
intersection point of a L joining two k-points with a cubic curve defined over k is also defined
over k, because a cubic equation with coe�cients in k and two roots in k must also have its last
root in k.

In particular, for instance, it makes sense to talk about, say, the subgroup real points of
a complex elliptic curve which is defined over the real numbers and has O 2 E(R). Such a “real
elliptic curve” is then a topological–even Lie–group. It seems also from Figure 1.11 above that
the sums A+B,B+C and A+B+C lie on the same component of the two-component elliptic
curve as A,B,C, as long as this component contains O, i.e. that the component containing O
of a real two-component elliptic curve is a subgroup of the whole curve under the addition law,
although it is not an algebraic curve itself (Example 1.7.15). You are invited to explore this in
Exercise 2.6.8.

Next time, we will prove Theorem 1.15.14 and start working with explicit examples of
elliptic curves.

45For instance, if instead of 9 distinct points P1, . . . , P9 we have only 8 distinct points P1, . . . , P8 of intersection
but tangency at P8, then the statement says also that if X passes through P1, . . . , P8, then it is also tangent to
both D and E at P8.
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