
Chapter 1. Lecture Notes

1.14 07/10/24 - Proof(s) of Bézout’s Theorem

We are now finally ready to prove Bézout’s Theorem, which we state here.

Theorem 1.14.1 (Bézout). If k is an algebraically closed field, and C,D ⇢ P
2

k
algebraic

curves that do not share a common component, then

X

P2C\D
iP (C,D) = (degC)(degD).

We showed in Theorem 1.11.20 that if C and D do not share a component, then C
and D intersect in finitely many points. We will give two proofs of Theorem 1.14.1 below. The
proof strategy in both case is going to be to choose a suitable coordinate system in which C
and D do not intersect at infinity–that it all what we will need the projective plane for. Having
done that, the rest of the proof becomes a computation in the a�ne plane.

1.14.1 Proof 1: Dimension Count

Proof 1 of Theorem 1.14.1. Pick a line L not meeting C\D (this is possible by Theorem 1.11.20
and the correct salvage to Exercise 2.6.7), and choose a system of coordinates such that (i.e.
assume by a projective change of coordinates that) L = L1. Then neither C nor D contains L
as a component–indeed, if, say, L ⇢ C, then it would follow from Theorem 1.12.12 that L \D
is nonempty, and then L \ C \ D is nonempty, contrary to assumption. In particular, if F
(resp. G) is a minimal polynomial for C (resp. D), and we let f := F i (resp. g := Gi) and
degC = n � 1 (resp. degD = m � 1), then we have by Theorem 1.11.21 that

deg f = degF = degC = m and deg g = degG = degD = n.

If we write f = f0 + · · · + fm and g = g0 + · · · + gn, where each fi and gi is homogeneous of
degree i in x and y, then fmgn 6= 0, and it follows from the assumption that L \ C \ D = ;
that fm, gn 2 k[x, y] are relatively prime (for instance, thanks to Lemma 1.8.3). Finally, the
fact that C and D do not share a common component implies that f and g are relatively prime.
We now divide the rest of the proof into two lemmas, whose proofs we postpone for a moment.

Lemma 1.14.2. If k is an algebraically closed field and f, g 2 k[x, y] are relatively prime,
then the following map is an isomorphism:

k[x, y]/(f, g) !⇠
Y

P2Cf\Cg

OP /(f, g)OP .

Lemma 1.14.3. If k is a field and f, g 2 k[x, y] have degree m,n � 1 such that f and g
are relatively prime and the leading terms fm and gn are relatively prime, then

dimk k[x, y]/(f, g) = mn.

By our definition of intersection multiplicity (as in the existence part of the proof of
Theorem 1.9.9), the two lemmas above combined prove Theorem 1.14.1. ⌅

The first lemma is a local-to-global principle (often called Max Noether’s af + bg
theorem), and is a sort of Chinese Remainder Theorem for curves, if you will. The second
result is the global dimension computation that proves the result. Let’s now prove the lemmas.
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Lemma 1.14.2. If k is an algebraically closed field and f, g 2 k[x, y] are relatively prime,
then the following map is an isomorphism:

k[x, y]/(f, g) !⇠
Y

P2Cf\Cg

OP /(f, g)OP .

Proof. To show surjectivity, note that we showed in the proof of existence in Theorem 1.9.9 that
if f, g 2 k[x, y] are relatively prime and if P = (p, q) 2 Cf \ Cg, then there is an N � 1 such
that (x� p)N , (y � q)N 2 (f, g)OP . Since, by Theorem 1.6.6, the intersection Cf \ Cg is finite,
there is an N � 1 that works for all P 2 Cf \ Cg. In other words, there is an N � 1 such that
if we enumerate Cf \ Cg = {Pi} with Pi = (pi, qi), then (x� pi)N , (y � qi)N 2 (f, g)OPi for all
i. Now, to show injectivity, it su�ces to show that for each i, there is a polynomial fi 2 k[x, y]
such that fi maps to 0 in OPj/(f, g)OPj for all j 6= i, but to a unit in OPi/(f, g)OPi ; for this,
simply take

fi :=
Y

j:pj 6=pi

(x� pj)
N

Y

j:qj 6=qi

(y � qj)
N ,

which maps to zero in each OPj/(f, g)OPj for j 6= i because of our choice of N , while it is a unit
already in OPi and hence also in OPi/(f, g)OPi .

36

To show injectivity, we have to show that if h 2 k[x, y] is such that h 2 (f, g)OP for
all P 2 Cf \ Cg, then h 2 (f, g)k[x, y]. For that, given an h, consider the ideal

I := {q 2 k[x, y] : qh 2 (f, g)} ⇢ k[x, y].

Then I � (f, g)k[x, y], and we want to show that 1 2 I, i.e. that I = k[x, y].37 If I is not a
proper ideal, then by Proposition 1.7.6, there is a prime ideal Q ⇢ k[x, y] containing I.38 Since
Q cannot be 0 or of the form (r) for some irreducible r 2 k[x, y] (because f, g 2 Q are nonzero
and relatively prime), by Exercise 2.3.3, we must have Q = (x� p, y� q) for some p, q 2 k (this
uses that k is algebraically closed). Now f, g 2 Q = (x � p, y � q) implies that if P = (p, q),
then P 2 Cf \ Cg. Since, by hypothesis, we have h 2 (f, g)OP , we conclude that there are
a, b, c 2 k[x, y] such that ch = af + bg with c|P 6= 0. But this implies that c 2 I rQ, which is a
contradiction, finishing the proof. ⌅

Lemma 1.14.3. If k is a field and f, g 2 k[x, y] have degree m,n � 1 such that f and g
are relatively prime and the leading terms fm and gn are relatively prime, then

dimk k[x, y]/(f, g) = mn.

Proof. For each integer d � 0, let k[x, y]d denote the k-vector subspace of k[x, y] consisting
of polynomials of degree at most d, which has dimension

�
d+2

2

�
over k. The proof idea is to

approximate dimk k[x, y]/(f, g) by the images of the projections of k[x, y]d for d � 1. To do
this, for any d � m+ n, consider the sequence of k-vector spaces and k-linear maps given by

0 ! k[x, y]d�m�n

↵�! k[x, y]d�m ⇥ k[x, y]d�n

��! k[x, y]d

⇡d�! k[x, y]/(f, g), (1.2)

36The surjectivity result does not actually need k to be algebraically closed.
37The ideal I is often called the ideal quotient of (f, g) by (h) and is denoted (f, g) : (h).
38In our case, we did not quite need a fact this general, since we already have f, g 2 I and so we may conclude

from this that there are polynomials in x only and y only in I, but Proposition 1.7.6 (which is a good fact to
know in general) simplifies things tremendously.
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where

↵ : c 7! (cg,�cf),

� : (a, b) 7! af + bg,

and ⇡d is the restriction of the natural projection map ⇡ : k[x, y] ! k[x, y]/(f, g) to the subspace
k[x, y]d] ⇢ k[x, y]. In the sequence (1.2), the compositions of each pair of successive maps are
all zero, i.e. � �↵ = 0 and ⇡d�� = 0. The key claim is that, under our hypotheses, this sequence
(1.2) is exact, i.e. ↵ is injective, and we have im↵ = ker� and im� = ker⇡d. Assuming this,
we conclude from repeated applications of the Rank-Nullity Theorem that

dimk im⇡d =

✓
d+ 2

2

◆
� dimk ker⇡d

=

✓
d+ 2

2

◆
� dimk im�

=

✓
d+ 2

2

◆
�

✓
d�m+ 2

2

◆
�

✓
d� n+ 2

2

◆
+ dimk ker�

=

✓
d+ 2

2

◆
�

✓
d�m+ 2

2

◆
�

✓
d� n+ 2

2

◆
+ dimk im↵

=

✓
d+ 2

2

◆
�

✓
d�m+ 2

2

◆
�

✓
d� n+ 2

2

◆
+

✓
d�m� n+ 2

2

◆

= mn,

where the last step is a trivial simplification. In particular, for all d � m+ n, the dimension of
im⇡d is independent of d. Since the im⇡d ⇢ k[x, y]/(f, g) for d � 0 form an increasing sequence
of subspaces with union im⇡ = k[x, y]/(f, g), it follows from this constancy of dimensions that

im⇡m+n = im⇡m+n+1 = im⇡m+n+2 = · · · = im⇡ = k[x, y]/(f, g),

and hence
dim k[x, y]/(f, g) = dim im⇡m+n = mn.

It remains to show that under our hypothesis, the sequence (1.2) is exact, which we do now.

(a) The map ↵ is visibly injective, since k[x, y] is a domain and f, g 6= 0.
(b) Clearly, im↵ ⇢ ker�. Conversely, if (f, g) 2 ker�, then af + bg = 0. Since f and g

are relatively prime, it follows from this that g | a and f | b, and in fact that there is a
c 2 k[x, y] such that a = cg and b = �cf . If deg a  d �m and deg b  d � n, then we
must also have deg c  d�m� n. This proves that ker� ⇢ im↵.

(c) Again, clearly im� ⇢ ker⇡d. Conversely, if h 2 ker⇡d, then h 2 (f, g). Write h = af + bg
for some a, b 2 k[x, y] and suppose that this representation is chosen so that deg a is
minimal (here we take deg 0 = 0). We will show that deg a  d �m and deg b  d � n,
from which it follows that h 2 im�, finishing the proof. Suppose to the contrary that
p := deg a > d � m or that q := deg b > d � n, so that either af or bg contains a term
of degree greater than d. Since deg h  d and h = af + bg, it follows that the leading
terms of af and bg must cancel, i.e. p+m = q + n and if we write a = a0 + · · ·+ ap and
b = b0 + · · ·+ bq, where each ai, bi is homogeneous of degree i with apbq 6= 0, then

apfm + bqgn = 0.

Now, since the terms fm and gn are relatively prime, it follows as before that there is some
nonzero c 2 k[x, y] of degree p� n = q �m such that ap = gcn and bq = �cfm. Then

h = (a� cg)f + (b+ cf)g

is another representation of h with deg(a� cg) < deg a, contrary to our choice of a.

⌅
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1.14.2 Proof 2: Resultants

Sketch of Proof 2 of Theorem 1.14.1. Consider the finite set S consisting of all lines that join
two or more points of C\D and all tangent lines to C andD at all the points of intersection C\D.
Pick a point P0 2 P

2

k
that is not on C [D and not on any line in S. Pick a coordinate system

so that P0 = [1 : 0 : 0]. It follows from this choice that each “horizontal” line Z0Y � Y0Z = 0
meets at most one point of C \D, i.e. all the points of intersection have distinct y-coordinates.
The idea of the proof is to project the intersection points C \D onto the y-axis, and use this
to count then number intersection points (with multiplicity).

For this, let degC = m (resp. degD = n), and let F (resp. G) be a minimal polynomial
for C (resp. D). Write

F = F0X
m + · · ·+ Fm and G = G0X

n + · · ·+Gn,

where each Fi (resp. Gi) is a polynomial only of Y and Z and homogeneous of degree i. The
assumption that P0 /2 C[D implies that F0G0 6= 0. Since F,G are relatively prime in k[X,Y, Z],
by Lemma 1.6.2(b) there are A,B 2 k[X,Y, Z] and 0 6= R 2 k[Y, Z] such that AF + BG = R.
In fact, we can choose R to be the resultant

R = ResX(F,G) 2 k[Y, Z]mn

with A and B homogeneous as well.39 Then a point [Y0 : Z0] is a root of R i↵ the polynomials
F (X,Y0, Z0) and G(X,Y0, Z0) have common root X0 over k (Exercise 2.2.4(d)), which happens
i↵ the horizontal line Z0Y � Y0Z = 0 intersects the curve. In other words, the roots of R
correspond exactly to the projection of the intersection of F and G to the y-axis, since we chose
our coordinate system so that no two points of intersection lie on the same horizontal line.

Since R has exactly mn roots counted with multiplicity, to complete the proof, it
su�ces to show that for each root [Y0 : Z0] of R, the intersection multiplicity of C and D
at the unique point of intersection on the line Z0Y � Y0Z = 0 is exactly the multiplicity of
[Y0 : Z0] as a root of R. There are many ways to do this. One way to show this is to prove
that this definition satisfies (with respect to any choice of P0) satisfies the axioms (1)-(7), and
use the uniqueness result from Theorem 1.9.9; this is, for instance, the approach followed in [6,
Theorem 3.18]. Another way to do this is to note that the problem is local at P , so by an a�ne
translation (so preserving P0), we may assume that P = (0, 0) is the point of intersection on line
y = 0. Since resultants are stable under dehomogenization, we conclude that if f and g are the
dehomogenizations of F and G, then we have to show that iP (f, g) is the multiplicity m0(r) of
r = Resx(f, g) at 0, which is the highest power of y dividing r. Let this highest power be N . The
claim then follows from the observation in the local ring OP , we have (f, g)OP = (x+yq, yN )OP

for some q 2 k[x, y]. The result follows from this from because then

iP (f, g) = dimk OP /(f, g)OP = iP (x+ yq, yN ) = N · iP (x+ yq, y) = N · ip(x, y) = N.

To show that (f, g)OP = (x + yq, yN )OP , note first that r 2 (f, g)k[x, y] can be
written as yNr0 for some r0 2 k[y] with r0(0) 6= 0, whence yN 2 (f, g)OP . Also, we can write
f = xf1 + yf2 and g = xg1 + yg2 for some polynomials f1, g1 2 k[x] and f2, g2 2 k[x, y]. Then
the assumption that P is the only intersection point of C and D on y = 0 implies that f1
and g1 are coprime, whence from Bézout’s Lemma it follows that there are a, b 2 k[x] such that
af1+bg1 = 1. It follows then that af+bg = x+yq for q = af2+bg2, and hence x+yq 2 (f, g)OP .
This shows (x+ yq, yN )OP ⇢ (f, g)OP . The other inclusion is similar, but needs more work of
reconstructing the polynomials f and g from the resultant and powers of x. ⌅

39We haven’t quite shown this, but it is not very hard to do with the tools that we have developed. A fuller
discussion of the theory of resultants would include this result. The resultant R is homogeneous of degree mn

precisely because F0G0 6= 0.
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