
Chapter 1. Lecture Notes

1.13 07/08/24 - Parametric Projective Curves, Pascal’s Theo-
rem, and More on Conics

Today, I want to prove Bézout’s theorem for conics, and derive some delicious applications. For
this, I will need to talk about parametric projective curves.

1.13.1 Parametric Projective Curves and Bézout’s Theorem for a Conic

In the a�ne case, we defined a parametric curve to be an image of A
1

k
under two rational

functions. In the projective case, we can always clear denominators and work with P
1

k
instead.

This leads us to

Definition 1.13.1. A parametric projective algebraic curve is the image of a map  : P1

k
! P

2

k

of the form
 [U : V ] = [F1(U, V ) : F2(U, V ) : F3(U, V )],

where Fi(U, V ) 2 k[U, V ] for i = 1, 2, 3 are homogeneous polynomials of the same degree,
not all zero.

This definition corresponds to the a�ne one by considering A
1

k
⇢ P

2

k
as the set where

V 6= 0 with coordinate t = U/V , in which case the a�ne part of this parametric projective
curve is given by

t 7!
✓
F1(t, 1)

F3(t, 1)
,
F2(t, 1)

F3(t, 1)

◆
,

which is a parametric a�ne curve. One can show, either using techniques similar to those in
§1.3 or by reducing to the a�ne case, that a parametric projective algebraic curve is, in fact, a
projective algebraic curve (at least when not all Fi are proportional, in which case the image is
a single point). I will not do this here, but I encourage you to carry this out yourselves.

Remark 1.13.2. Note that I did not ask for the Fj(U, V ) to not have a common root on P
1

k
,

because if they did, then I would very easily be able to just cancel this common factor from
each Fj(U, V ). This is a manifestation of the completeness of projective curves–projective curves
have no holes, and rational maps out a smooth projective curve always eextends to a regular
morphism out of it. As usual, if this doesn’t make sense, please ignore it.

Example 1.13.3. The smooth conic defined by Y Z �X2 2 k[X,Y, Z]2 can be parametrized via
the map  given as

 [U : V ] = [UV : U2 : V 2].

This is the projective version of a�ne parametrization t 7! (t, t2) of the parabola defined by
y � x2 = 0. By Corollary 1.12.14, this gives us a parametrization of every smooth conic curve.
In particular, every smooth conic curve admits a parametrization.

From this parametrization, we can now prove Bézout’s theorem for a conic.

Theorem 1.13.4. If k is an algebraically closed field, C ⇢ P
2

k
is a conic (i.e. a curve with

degC = 2), and D ⇢ P
2

k
a curve of degree d � 1 such that C and D do not share a

component, then X

P2C\L
iP (C,D) = 2d.

Of course, degC = 2 and so 2d = (degC)(degD).
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Proof. By Corollary 1.12.14, we can choose coordinates such that C is either the union of the
two lines CX and CY , or that C = CY Z�X2 ; make a change of coordinates so that we are
working with this coordinate system. In the first case, neither of the two lines CX or CY can be
contained in D, and we are done by additivity of intersection multiplicity and Theorem 1.12.12
(make sure you believe this!). In the second case, C is irreducible and Example 1.13.3 tells us
that we can parametrize C as the image of the map

[U : V ] 7! [UV : U2 : V 2].

If F is a minimal polynomial for D, then F is a homogeneous polynomial of degree d, and the
intersection points of C and D correspond exactly to [U0 : V0] 2 P

1

k
such that

F (U0V0, U
2

0 , V
2

0 ) = 0.

Now F (UV,U2, V 2) 2 k[U, V ]2d is a homogeneous polynomial of degree 2d. If it is identically
zero, then we conclude that C ⇢ D, contrary to assumption that C and D do not share any
components; therefore, this polynomial is not identically zero, and so has exactly 2d roots
counted with multiplicity, again by Lemma 1.8.3. I will again leave it to the reader to check,
perhaps using techniques similar to those from Example 1.9.12, that the intersection multiplicity
of C and D at a point [U0V0 : U2

0
: V 2

0
] agrees with the multiplicity of [U0 : V0] as a root of

F (U0V0, U2

0
, V 2

0
) = 0.33 ⌅

We are now ready for some delicious applications!

1.13.2 Pascal’s Theorem, Pappus’s Theorem, Brocard’s Theorem, etc.

Theorem 1.13.5 (Pascal). Let k be an algebraically closed field, C ⇢ P
2

k
a smooth conic

and P1, . . . , P6 distinct points on C. For i = 1, . . . , 6, let Li be the line joining Pi and Pi+1

(where P7 := P1), and for j = 1, 2, 3, let Qj := Lj \Lj+3. Then the points Q1, Q2, Q3 2 P
2

k

are collinear, i.e. there is a line L0 ⇢ P
2

k
such that Qj 2 L0 for j = 1, 2, 3.

Let’s first make a few observations about the statement:

(a) The lines Li are all distinct: if Li = Li0 for some i 6= i0, then this line intersects C in at least
3 distinct points, and is hence contained in C (by either Theorem 1.12.12 or 1.13.4); this
would mean that C is reducible and hence (by Corollary 1.12.14 if needed) not smooth.
In particular, by Proposition 1.11.3, the points Q1, Q2, Q3 are uniquely determined.

(b) Each Pi lies on exactly two lines Li0 , namely Li�1 and Li, and, in particular, these lines
have indices that di↵er by 1 (modulo 6); conversely, each Li contains exactly two points
Pi and Pi+1 of C, because again if it contained a third point of C, it would be contained
in C entirely.

(c) We have Pi 6= Qj for all i, j. Indeed, let us take the indices i, j modulo 6; then Pi = Qj

cannot happen because this implies that Pi 2 Lj \ Lj+3, violating the observation (b).
(d) Finally, we have Q1, Q2, Q3 /2 C. Indeed, if some Qj 2 C, then Qj 2 Lj \C = {Pj , Pj+1}

implies that Qj = Pi for some i, j, violating (c).
(e) In fact, although we will not need this for the proof, all the 9 points Pi, Qj are distinct:

Let’s now proceed to the proof, which is rather simple given the tools we have.

33I’m being lazy partly because, in the proof of Pascal’s Theorem (Theorem 1.13.5) below, we will only need
the result that C and D intersect in at most 2d points unless they share a component, and this we have already
proven. Also, we shall do a full proof of the general Bézout Theorem very soon.

73



Chapter 1. Lecture Notes

Proof. For i = 1, . . . , 6, let `i 2 k[X,Y, Z]1 be a homogeneous linear polynomial vanishing on
Li. Consider the family D⇤ of cubic curves parametrized by ⇤ = [� : µ] 2 P

1

k
, where D⇤ is

defined by the vanishing of the polynomial

�`1`3`5 + µ`2`4`6.

Note that each curve D⇤ in this family passes through all the Pi’s and Qj ’s, and we have that
D[1:0] = L1[L3[L5 and D[0:1] = L2[L4[L6.34 Now pick a point R 2 Cr{P1, . . . , P6}, which
exists because C is infinite (Proposition 1.11.13). From observation (b) above, we conclude that
R /2 D[1:0][D[0:1], from which it follows that there is a unique ⇤0 2 P

1

k
such that R 2 D⇤0 .

35 Let
D = D⇤0 . Since D is a cubic curve and C and D intersect in at least 7 points, it follows from
Theorem 1.13.4 that C and D share a component. Since C is irreducible (Corollary 1.12.14)
and degD = 3, this can only happen if C ⇢ D and D = C [ L0 for some line L0 ⇢ P

2

k
. But

now, D contains Q1, Q2, Q3 (because each D⇤ does), while C does not contain Q1, Q2, Q3 (this
was observation (c) above), and hence Q1, Q2, Q3 2 L0. ⌅

See Figure 1.8 for a visual demonstration of the proof technique.

Figure 1.8: Pascal’s Theorem. The conic (here ellipse) C and the line L0 are in thick black
style. The various colorful curves represent various members of the one parameter family D⇤,
one member of which is also C [ L0. Picture made with Geogebra.

Remark 1.13.6. Note that the actual statement of Theorem 1.13.5 does not use an ordering
whatsoever on the points P1, . . . , P6–indeed, for general fields, it does not even make sense to
order points of a conic. In particular, if we start with a collection of 6 distinct unordered points
on a conic C, then they can be connected into a hexagon in 60 di↵erent ways, and resulting in
60 di↵erent instances of Pascal’s Theorem and 60 di↵erent “Pascal” lines; this configuration of
60 lines associated to 6 points on a hexagon is often called the Hexagrammum Mysticum. Finally,
although we have proven the theorem over algebraically closed fields, it follows also immediately

34If you were not convinced of this already, then this observation tells us that every curve D⇤ has degree 3:
indeed, if it did not, then some D⇤ would be either a line or a union of two lines, neither of which can contain
all the Pi’s, since no three of them are collinear (why?).

35Indeed, if we pick a representative (X0, Y0, Z0) for R = [X0 : Y0 : Z0], then neither of `1`3`5|(X0,Y0,Z0) and
`2`4`6|(X0,Y0,Z0) is zero, and this unique ⇤0 is ⇤0 = [�`2`4`6|(X0,Y0,Z0) : `1`3`5|(X0,Y0,Z0)] 2 P

1
k.
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over all fields (e.g. over k = R), thanks to Theorem 1.4.5 and the observation that Proposition
1.11.3 does not use that the base field is algebraically closed, which implies, for instance, that
if three points Q1, Q2, Q3 2 P

2

R
⇢ P

2

C
are collinear in P

2

C
, then they are collinear in P

2

R
, i.e.

the line joining them is real. Over the real numbers, other proofs can also be given; after all,
Pascal did not actually have Bézout’s Theorem. One approach involves using a variant of the
classification of projetive conics over R (see Remark 1.12.15) to conclude that any smooth conic
can be taken by a projective change of coordinates over R to a circle X2 + Y 2 � Z2 = 0, and
then to use other techniques from Euclidean geometry (e.g. Menelaus’s Theorem).

In the proof of Pascal’s Theorem, we did not really use that C was a smooth conic
other than to rule out certain degenerate cases. Therefore, the same proof technique also yields

Theorem 1.13.7 (Pappus). Let k be any field. Let L1, L2 ⇢ P
2

k
two distinct lines, and

P1, Q1, R1 2 L1 r L2 and P2, Q2, R2 2 L2 r L1 be distinct points. If

S1 = Q1R2 \Q2R1,

S2 = P1R2 \ 2R1, and

S3 = P1Q2 \ P2Q1.

. Then S1, S2, S3 ⇢ P
2

k
are collinear.

Proof. By Theorem 1.4.5 and Proposition 1.11.3, we may replace k by an algebraically closed
field and still have the same result (check!), and then the same proof technique as in Theorem
1.13.5 works. I leave the verification of the nondegeneracy conditions to the diligent reader. ⌅

Finally, Pascal’s Theorem can also be applied with “multiplicities”. The key result
needed to do this is

Lemma 1.13.8. Let C ⇢ P
2

k
be a curve and P 2 C be a smooth point. Let F be a

minimal polynomial for C, and let G,H 2 k[X,Y, Z] be homogeneous polynomials such
that G,H,G+H 6= 0. Then

iP (F,G+H) � max{iP (F,G), iP (F,H)}

with equality if iP (F,G) 6= iP (F,H).

Proof Sketch. This is a local property invariant under changes of coordinates, and so we may
work in the a�ne chart Z 6= 0 and assume that P = (0, 0) and that the tangent line to C at P
is the x-axis Cy. Let f = F i. The claim is that for any 0 6= g 2 OP , there is a unique integer
n � 0 such that for some unit u 2 O

⇥
P
we have g � uxn 2 (f)OP . Uniqueness is clear, because

then iP (f, g) = iP (f, uxn) = n. For existence, scale f and write it as f = y + xnp + y2q for
some p 2 k[x] such that p(0) 6= 0 and then y � p(1 + yq)�1xn 2 (f)OP , proving the claim for
g = y. The statement for g = x is clear, and so is the fact that if such an n exists for g and h,
then it does also for g · h. Showing the result for the sum g+ h when 0 6= g+ h is slightly more
involved, but in any case if g ⌘ uxn (mod fOP ) and h ⌘ vxm (mod fOP ) for some n,m � 0
and u, v 2 O

⇥
P
, then f + g ⌘ (uxn�m+ v)xm (mod fOP ) showing that the result holds for f + g

(as well as the claim in the lemma), unless we have n = m and u+ v = 0; this case needs some
more e↵ort, but is not too di�cult. See, for instance, the discussion in the proof of [3, §3.3,
Theorem 3(8)]. ⌅
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Remark 1.13.9. The grown-up way to prove (and understand) Lemma 1.13.8 is to say that if
C ⇢ P

2

k
is a curve and P 2 C is a smooth point, then the local ring OC,P of C at P is a discrete

valuation ring with uniformizer given by the class of any line not tangent to C at P . I haven’t
defined what those terms are yet, so do not worry too much about this at the moment.

Given Lemma 1.13.8, however, it is very straightforward to extend the proof of Pascal’s
Theorem to cases where the points “degenerate”. Here’s one example of how to do this; you
are invited to explore other examples of this sort in Exercise 2.5.3.

Theorem 1.13.10 (Brocard). Let k be an algebraically closed field and C ⇢ P
2

k
be a smooth

conic and P1, P2, P3, P4 2 C be distinct points. For i = 1, . . . , 4, let Ti := TPiC, and for
1  i, j  4, let Lij be the line joining Pi and Pj . Let

S1 = L12 \ L34,

S2 = L23 \ L41,

Q13 = T1 \ T3,

Q24 = T2 \ T4.

The points S1, S2, Q13 and Q24 in P
2

k
are collinear.

I will leave to the reader the verification of many implicit claims in the statement of the theorem,
e.g. the definition of S1 uses Proposition 1.11.3 and that L12 6= L34. The line joining S1, S2, Q13

and Q24 is called the polar of the last intersection point S3 := L13 \ L41 with respect to the
conic C. Again, the ordering of the points P1, P2, P3, P4 does not matter, and we end up with
3 di↵erent such configurations.

Proof. It su�ces to show that S1, S2 and Q13 are collinear, because then S2, S1 and Q24 are
collinear by an application of the proven claim to P2, P3, P4, P1 in that order. To show the
first claim, apply Pascal’s Theorem (Theorem 1.13.5) to the “hexagon” P1P1P2P3P3P4. To say
more, take

L1 = T1,

L2 = L12,

L3 = L23,

L4 = T3,

L5 = L34, and

L6 = L41

in the setup of Theorem 1.8, so that Q1 = Q13, Q2 = S1 and Q3 = S2. Take linear polynomials
as `i as before, and again consider the 1-parameter family D⇤. Again, take a new point R
and a unique ⇤0 such that R 2 D. Since L1 [ L3 [ L5 and L2 [ L4 [ L6 each meet C in
multiplicity at least 2 at both P1 and P3, it follows from Lemma 1.13.8 then every memebr of
the family D⇤ meets C both passes through the points P1, P2, P3, P4, S1, S2 and Q13, and meets
C to multiplicity at least two at both P1 and P3. It follows as before from Bézout’s Theorem
for a conic (Theorem 1.13.4), but this time applied with multiplicities, that C ⇢ D, and the
rest of the proof is identical to that of Theorem 1.13.5. ⌅

See Figure 1.9 for an illustration of Theorems 1.13.7 and 1.13.10.

Remark 1.13.11. Over k = R or k = C, the proof of these “degenerate” cases can also be given
by continuity. Similarly, once you have Pascal’s Theorem, you can also derive from it Pappus’s
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Figure 1.9: Theorems of Pappus and Brocard. Pictures made with Geogebra.

Theorem by continuity (by letting a hyperbola degenerate to a pair of lines). Such proofs are
also available over other fields, but only with significantly more sophisticated tools.

1.13.3 More on Conics

Finally, let’s talk about how Bézout’s Theorem can be used to solve interpolation problems, i.e.
problems involving finding curves of certain degrees passing through given points in P

2

k
.

Theorem 1.13.12. Let S ⇢ P
2

k
be a set with 5 elements.

(a) There is a conic C ⇢ P
2

k
passing through S, i.e. such that S ⇢ C.

(b) If no four distinct points in S are collinear, then such a conic as in (a) is unique.
(c) If no three distinct points in S are collinear (i.e. S is in general position), then the

unique conic as in (b) is smooth.

Note that (b) and (c) are the best possible refinements of (a): if four points in S
were collinear, then (at least if k is infinite), there would be infinitely many (reducible) conics
containing S, and similarly if three points in S are collinear, then there is no hope of a conic
containing S being irreducible or equivalently smooth (thanks again to Theorem 1.13.4).

Proof.

(a) Let S = {P1, . . . , P5}, and pick representatives (Xi, Yi, Zi) for Pi = [Xi : Yi : Zi] for
i = 1, 2, . . . , 5. The vector space of homogeneous quadratic polynomials in

(b) If there are two distinct conics C,D ⇢ P
2

k
through S, then by Bézout’s Theorem (Theo-

rem 1.13.4), C and D must have a common component. Then neither C nor D can be
irreducible, and, in fact, we must have C = L1 [ L2 and D = L2 [ L3 for some distinct
lines L1, L2, L3 ⇢ P

2

k
(check!). In this case, S ⇢ C \D = L2 [ (L1 \L3). Since L1 \L3 is

one point, at least four points of S must lie on L2.
(c) If the unique conic C as in (b) is singular, then it is reducible and hence a union of two

lines. By the Pigeonhole Principle, at least three elements of S must lie on a line.

⌅

Remark 1.13.13. You are invited to explore similar interpolation problems in Exercise 2.5.1. In
the above result, there is some subtlety involving whether of not we’re working over algebraically
closed fields; I’ll let you work through the details of that. Remark 1.12.15 may be of some help.

We will have just a little more to say about conics in the next few lectures–when we
talk about one-parameter families (i.e. pencils) of conics. Next time, we will finally go over two
proofs of Bézout’s Theorem.
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