
Chapter 1. Lecture Notes

1.12 07/05/24 - Projective Changes of Coordinates, Multiplic-
ity and Smoothness, Classification of Projective Conics

1.12.1 Projective Changes of Coordinates

We defined a�ne changes of coordinates by setting x and y to be linear polynomials in x0 and
y0 subject to a nondegeneracy condition. We want to mimic the situation in the projective case:
we want to set X,Y, Z to be three homogeneous linear polynomials L,M,N 2 k[X 0, Y 0, Z 0], but
now we need to ensure nondegeneracy as well. If L,M,N were concurrent in P

2, then this point
of concurrency would be mapped to [0 : 0 : 0], which doesn’t make any sense; therefore, we
need to at least ask that L,M,N be nonconcurrent. It turns out that in the projective case,
this condition is also su�cient. The discussion in §1.11.1 gives us a direct condition to check to
ensure nonconcurrency, and leads us to

Definition 1.12.1. A projective change of coordinates is a transformation

� : P2

k(X
0, Y 0, Z 0) ! P

2

k(X,Y, Z)

of the form

[X : Y : Z] = �[X 0 : Y 0 : Z 0] = [AX 0+BY 0+CZ 0 : DX 0+EY 0+FZ 0 : GX 0+HY 0+ IZ 0]

for some A,B,C,D,E, F,G,H, I 2 k such that

det

2

4
A B C
D E F
G H I

3

5 6= 0.

Again, the nondegeneracy condition on the determinant ensures that the transforma-
tion is both well-defined and, in fact, invertible: this is because the transformation is given
before homogenization (i.e. quotienting by the equivalence relation of scaling) by the map

2
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3

5 =
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X 0

Y 0

Z 0

3

5 ,

so if this transformation matrix has nonzero determinant, then by Cramer’s rule it is an invert-
ible matrix, and we can recover [X 0 : Y 0 : Z 0] from [X : Y : Z] using

2

4
X 0

Y 0

Z 0

3

5 =
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D E F
G H I
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�1 2

4
X
Y
Z

3

5 .

Since, of course, two such transformation matrices define the same transformation if
they di↵er by scalar multiples, the group of all projective changes of coordinates is the group
PGL3 k ⇢ P

8

k
of all 3⇥ 3 matrices in k with nonzero determinant up to simultaneously scaling

by a nonzero scalar, i.e. GL3 k subject to the equivalence relation M ⇠ �M for all M 2 GL3 k
and � 2 k⇥. This scaling invariance implies that, unlike the a�ne case, a projective change
of coordinates � does not quite give us a pullback map on the homogeneous polynomial ring
�⇤ : k[X,Y, Z] ! k[X 0, Y 0, Z 0], but we can always choose such a pullback map which does what
we want27; such a pullback map would then necessarily be an isomorphism, and any two such
maps would be related by a nonscalar scalar.

27What do we want?
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The key fact to note here is that projective changes of coordinates respect incidence.
This is captured by

Lemma 1.12.2. Let � : P2

k
(X 0, Y 0, Z 0) ! P

2

k
(X,Y, Z) be a projective change of coordinates.

Then three points P1, P2, P3 2 P
2

k
(X 0, Y 0, Z 0) are collinear i↵ �(P1),�(P2) and �(P3) are.

Proof. Write Pi = [X 0
i
: Y 0

i
: Z 0

i
] for i = 1, 2, 3. Using Proposition 1.11.4 and the fact that

determinants are multiplicative and invariant under taking transposes, we conclude that

P1, P2, P3 are collinear , det

2

4
X 0

1
X 0

2
X 0

3

Y 0
1

Y 0
2

Y 0
3

Z 0
1

Z 0
2

Z3

3

5 = 0

, det

0

@

2

4
A B C
D E F
G H I

3

5

2

4
X 0

1
X 0

2
X 0

3

Y 0
1

Y 0
2

Y 0
3

Z 0
1

Z 0
2

Z3

3

5

1

A = 0

, �(P1),�(P2),�(P3) are collinear.

⌅

Lemma 1.12.2 and Proposition 1.11.3 tell us that projective changes of coordinates
preserve all incidence geometry of P2

k
: they take lines to lines, and incidences of points on lines

to incidence of points on lines, concurrency of lines to concurrency of lines, etc.

Example 1.12.3. An a�ne change of coordinates of the form (x, y) = (ax0+by0+p, cx0+dy0+q)
is the a�ne “shadow” of a projective change of coordinates given by the matrix

2

4
a b p
c d q
0 0 1

3

5 ,

where the a�ne and projective nondegeneracy conditions are identical because the determinant
of this matrix is ad � bc. Note that this “projectivization” of any a�ne change of coordinates
fixes the line at infinity L1 ⇢ P

2

k
as a set (although perhaps not pointwise!), and conversely, any

projective change of coordinates that fixes the line at infinity must arise from an a�ne change
of coordinates. Projective changes of coordinates are, however, more powerful, and treat all
points (resp. lines) “equally,” including points (resp. the line) at infinity.

From the construction itself, it is pretty clear that given any three tuple L,M,N 2
k[X,Y, Z]1 of homogeneous linear polynomials which vanish on three nonconcurrent lines, there
is a change of coordinates taking the lines given by the vanishing of X,Y, Z to those given
by L,M,N ; in Exercise 2.4.8 you are invited to make this precise, and to explore whether
such a transformation is unique. This incredible flexibility of projective transformations often
makes explicit computations with projective curves really easy. Here’s some terminology and a
proposition we will have repeated ocassion to use.

Definition 1.12.4. A subset S ⇢ P
2

k
is said to be in general position if no three points in S

are collinear. We also say that the points Pj 2 S are in general position.
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Proposition 1.12.5. Given any two ordered 4-tuples

P = (P1, P2, P3, P4) and Q = (Q1, Q2, Q3, Q4)

of points in P
2

k
, both in general position, there is a unique projective change of coordinates

� : P2

k
! P

2

k
taking one to the other, i.e. such that �(Pi) = Qi for i = 1, 2, 3, 4.

Proof. It su�ces to show the result when

P1 = E1 := [1 : 0 : 0], P2 = E2 := [0 : 1 : 0], P3 = E3 := [0 : 0 : 1] and P4 = E4 := [1 : 1 : 1],

because then we can first uniquely take an arbitrary 4-tuple P to this standard 4-tuple E
(because projective changes of curves are invertible), and then further take this standard 4-
tuple to an arbitrary collection Q.28 If we write Qi = [Xi : Yi : Zi], then any � taking Ei 7! Qi

for i = 1, 2, 3 must be given by a matrix of the form
2

4
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

3

5

2

4
� 0 0
0 µ 0
0 0 ⌫

3

5

for some �, µ, ⌫ 2 k⇥; that this matrix has nonzero determinant uses that Q1, Q2, Q3 are
non-collinear. Then the condition E4 7! Q4 uniquely determines the triple (�, µ, ⌫), up to
simultaneous scaling, by the requirement that

2

4
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

3

5

2

4
�
µ
⌫

3

5 = t ·

2

4
X4

Y4
Z4

3

5

for some t 2 k⇥, since the matrix on the left is invertible; the fact that the resulting �, µ, ⌫ from
this matrix equation are nonzero then is equivalent to saying that Q4 does not lie in the lines
Q2Q3, Q1Q3 and Q1Q2 respectively.29 ⌅

1.12.2 Multiplicity, Smoothness, and Intersection Multiplicity

We would like to define the notions of multiplicity, smoothness, tangent lines, and intersection
multiplicity in a way that is both invariant under projective changes of coordinates and compat-
ible with dehomogenization. One way to do this is to define these local notions by first changing
coordinates so that the point in consideration is P = [0 : 0 : 1], and then use dehomogeniza-
tion, and then rehomogenize–so for instance, the tangent line to a projective curve at a point
would be the projective closure of its a�ne tangent line in some chart. This approach works,
but has the disadvantage that checking invariance under projective changes of coordinates is a
much more daunting task than in the a�ne case. A slightly more elegant approach is given by
thinking about local rings.

Recall from Definition 1.10.2 that given a point P 2 A
2

k
, we define its local ring

O
A
2
k,P

⇢ k(x, y) to consist of all rational functions on A
2

k
which can be evaluated at P , in which

case evaluation at P gives us a ring homomorphism

evalP : O
A
2
k,P

! k

with kernel
I
A
2
k,P

:= ker evalP

28Make this statement precise, particularly if it doesn’t obviously make sense!
29Check this! This uses Cramer’s rule.
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consisting of all rational functions that vanish at P .30 If P = (0, 0) is the origin, then I
A
2
k,P

is an ideal of O
A
2
k,P

generated by x and y. It follows from this that I2
A
2
k,P

is generated by

x2, xy, and y2, or more generally that for any n � 1, the ideal In
A
2
k,P

is generated over O
A
2
k,P

by

xn, xn�1y, . . . , xyn�1, yn. In particular, we have that

\

n�0

In
A
2
k,P

= 0,

and hence given any nonzero polynomial f 2 k[x, y] ⇢ O
A
2
k,P

, there is a unique largest integer

m � 0 such that f 2 k[x, y] \ Im
A
2
k,P

. A moment’s reflection shows that this m is nothing

but the multiplicity mP (f) of f at P . This could have been used as an alternative definition
of multiplicity, and this notion would then be somewhat visibly invariant under changes of
coordinates, since the local ring O

A
2
k,P

and its maximal ideal I
A
2
k,P

visibly behave well under
changes of coordinates. Further, the above discussion gives us some added flexibility: the
same definition applies to any nonzero element of O

A
2
k,P

, and so we are now allowed to talk
about intersection multiplicities of rational functions that one can evaluate at P . This is a
crucial generalization needed to check the invariance of multiplicity under projective changes
of coordinates irrespective of the chosen definition. Similarly, the notion of local intersection
multiplicity is local: we observed in the proof of existence in Theorem 1.9.9 that iP (f, g) is just
dimk OA

2
k,P

/(f, g)O
A
2
k,P

, again dependent only on the local ring.

The above discussion tells us that if we can define projective analogs of the rational
function field of A2

k
and of these local rings in a way that is compatible with taking a�ne charts,

then we would be in good shape to define multiplicity in this case. And indeed, this is possible.

Definition 1.12.6. The rational function field of P2

k
is the subfield

k(P2

k) :=

⇢
F

G
2 k(X,Y, Z) : F,G are homogeneous of the same degree

�
⇢ k(X,Y, Z).

Given a point P 2 P
2

k
, we define the local ring of P2

k
at P to be the ring

O
P
2
k,P

:= {r 2 k(P2

k) : r = F/G for some homogeneous F,G 2 k[X,Y, Z] s.t. G|P 6= 0.}

Evaluation at P gives us a surjective map

evalP : O
P
2
k,P

! k

whose kernel we will denote by I
P
2
k,P

. Finally, given any integer n � 1 and homoge-

neous F1, . . . , Fn 2 k[X,Y, Z], we define the ideal (F1, . . . , Fn)OP
2
k,P

to consist of all linear
combinations of the form

nX

i=1

Hi

Gi

· Fi,

where the Hi, Gi 2 k[X,Y, Z] are homogeneous such that degHi = degFi + degGi and
after cancellation of common factors we have Gi|P 6= 0.

Given this, we are now ready to handle defining multiplicity of a homogeneous poly-
nomial at a point P 2 P

2

k
and the intersection multiplicity of two polynomials, etc.

30Some textbooks denote this kernel by mA2
k,P

or mP to emphasize that it is a maximal ideal of OA2
k,P

, but we

will not need this idea and I will stick to IA2
k,P

or IP .
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Definition 1.12.7. Let P 2 P
2

k
be a point.

(a) Given a nonzero homogeneous polynomial F 2 k[X,Y, Z], we define the multiplicity
of F at P to be the largest integer m � 0 such that

(F )O
P
2
k,P

⇢ Im
P
2
k,P

.

(b) Given a curve C ⇢ P
2

k
and point P 2 P

2

k
, we define the multiplicity of C at P to be

mP (C) := mP (F )

where F is any minimal polynomial for C.
(c) Given two nonzero homogeneous polynomials F,G 2 k[X,Y, Z], we define the local

intersection multiplicity of F and G at P to be

iP (F,G) := dimk OP
2
k,P

/(F,G)O
P
2
k,P

.

(d) Given two curves C,D ⇢ P
2

k
and point P 2 P

2

k
, we define the intersection multiplicity

of C and D at P to be
iP (C,D) := iP (F,G)

where F,G are any minimal polynomials for C and D.

These definitions have the advantage of being visibly invariant under projective changes
of coordinates, but we observe also that they are compatible with definitions from the a�ne
case: setting x := X/Z and y := Y/Z gives us an isomorphism

k(P2

k) !⇠ k(x, y)

with the property that if P = [x0 : y0 : 1] 2 A
2

k
⇢ P

2

k
, then this map takes

O
P
2
k,[x0:y0:1]

!⇠ O
A
2
k,(x0,y0)

and I
P
2
k,[x0:y0:1]

!⇠ I
A
2
k,(x0,y0)

.

From this isomorphism and our above discussion on multiplicity, it follows immediately that if
P 2 A

2

k
⇢ P

2

k
and F 2 k[X,Y, Z] is a nonzero homogeneous polynomial, then

mP (F ) = mP (F
i),

and similarly that if F,G 2 k[X,Y, Z] are nonzero homogeneous polynomials, then

iP (F,G) = iP (F
i, Gi).

It follows from this that the function i satisfies axioms similar to (1)-(7) and is also completely
characterized by them. Henceforth, we will use notions of (intersection) multiplicity for projec-
tive curves without further comment.

Remark 1.12.8. One can reasonably ask: which subring of k(x, y) does O
P
2
k,P

map to when

P 2 L1? The answer is pretty fun to work out and straightforward: if P = [1 : 0 : 0], then
O

P
2
k,P

⇢ k(x, y) corresponds to the ring

k


y

x
,
1

x

�

(y/x,1/x)

⇢ k(x, y)

which is the localization of the polynomial ring k[y/x, 1/x] at the maximal ideal (y/x, 1/x). If
you do not know what this remark means, you can safely ignore it.
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1.12.3 Projective Jacobi Criterion

One useful result that we would like to have in our toolkit is a projective analog of Theorem
1.8.8. For this, we will need

Lemma 1.12.9 (Euler). Suppose F 2 k[X,Y, Z] is a homogeneous polynomial of degree
d � 0. If @XF (resp. @Y F , @ZF ) denotes the formal partial derivative of F with respect
to X (resp. Y, Z), then

X · @XF + Y · @Y F + Z · @ZF = d · F.

Proof. Both sides of the equation are k-linear in F , so it su�ces to show the result for a
monomial of the form F = XaY bZc, where a+ b+ c = d; but then the statement is clear. ⌅

Of course, there is nothing special about the polynomial ring in three variables, and
a similar result holds in any number of variables. Lemma 1.12.9 tells us also that if ch k - d
(in particular always in characteristic zero), then the conditions @XF |P = @Y F |P = @ZF |P = 0
also imply F |P = 0. We are now ready to prove

Theorem 1.12.10 (Projective Jacobi Criterion). Suppose we are given a curve C ⇢ P
2

k
and

a point P 2 P
2

k
. Let F 2 k[X,Y, Z] be a minimal polynomial for C. Then

(a) P 2 C i↵ F |P = 0, and in this case
(b) P is a singular point of C i↵

@XF |P = @Y F |P = @ZF |P = 0.

(c) If P 2 C is a smooth point, then the tangent line TPC is defined by the vanishing of

@XF |P ·X + @Y F |P · Y + @ZF |P · Z = 0,

where in these evaluations we use the same representative (X0, Y0, Z0) for the point
P = [X0 : Y0 : Z0].

Proof. The statement in (a) is clear. As in the proof of Theorem 1.8.8, all parts are invariant
under projective coordinate changes,31 so it su�ces to do the case P = [0 : 0 : 1], and so we
may work in the a�ne chart A

2

k
. For (b), we note that P is a singular point for C i↵ it is a

singular point for C�, which by Theorem 1.11.21 has minimal polynomial F i. Theorem 1.8.8
tells us that this happens i↵

@xF
i|P = @yF

i|P = 0.

But now we observe that

@xF
i = (@XF )i,

@yF
i = (@Y F )i, and

@ZF |P = d · F |P ,

where in the last equality we are using Lemma 1.12.9. It follows that if (a) holds, then

@xF
i|P = @yF

i|P = 0 , @XF |P = @Y F |P = @ZF |P = 0,

31Check! This is the reason for the symmetric shape of the statement, although we will break the symmetry
by invoking the a�ne Jacobi criterion below.
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proving (b). Theorem 1.8.8 also tells us that the a�ne tangent line to C� at P is

@xF
i|(0,0) · x+ @yF

i|(0,0 · y = 0

which has projective closure

@XF |P ·X + @Y F |P · Y + @ZF |P · Z = 0

as needed. ⌅

One immediate consequence of this criterion is an analog of Theorem 1.9.7; this is

Theorem 1.12.11. If C ⇢ P
2

k
is any curve, then C has only finitely many singular points.

Proof. Identical to the proof of Theorem 1.9.7, using Theorem 1.12.10 instead of Theorem
1.11.21. We can also reduce to the a�ne case. I leave the details to the reader. ⌅

That’s more than enough abstract theory for now. Let’s return to some concrete
examples now.

1.12.4 Bézout’s Theorem for a Line, Classification of Projective Conics up
to Changes of Coordinates

Let’s first prove Bézout’s theorem for a line.

Theorem 1.12.12. If k is an algebraically closed field, C ⇢ P
2

k
is a curve of degree d � 1,

and L ⇢ P
2

k
is a line such that L 6⇢ C, then

X

P2C\L
iP (C,L) = d.

Of course, degL = 1, so that d = (degC)(degL).

Proof. By a projective change of coordinates, we can assume L = L1. By Theorem 1.11.21,
if F is a minimal polynomial for C, then C� has minimal polynomial f := F i, and L1 6⇢ C
implies that Z - F and so deg f = degF = degC = d. If we write f = f0 + · · ·+ fd, where each
fj 2 k[x, y] is homogeneous of degree j, then

F = fh = Zdf0(X,Y ) + · · ·+ fd(X,Y ).

Then points P 2 C \ L are exactly points of the form [X0 : Y0 : 0], where fd(X0, Y0) = 0,
and there are exactly d such points counted with multiplicity, by Lemma 1.8.3, where the two
notions of multiplicity coincide by the computation in Example 1.9.12; I leave the details of this
verification to the reader, since we will do the more general case soon. ⌅

We can now use this to classify all projective conics–at least when the base field k is
algebraically closed.
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Theorem 1.12.13. If k is algebraically closed and Q 2 k[X,Y, Z]2 is a nonzero homoge-
neous polynomial of degree 2, then there is a projective change of coordinates � : P2

k
! P

2

k

and a lift to the homogeneous polynomial ring �⇤ : k[X,Y, Z] ! k[X,Y, Z] such that �⇤Q
is either X2, XY or Y Z �X2.

It is also clear that three cases are disjoint, since the corresponding projective curves
are not isomorphic. One immediate consequence of this algebraic result is

Corollary 1.12.14 (Classification of Projective Conics). If k is an algebraically closed field
and C ⇢ P

2

k
a conic (i.e. curve of degree 2), then there is a projective change of coordinates

� : P2

k
! P

2

k
taking C to one, and only one, of the following forms:

(a) C = CXY , which is a union of two lines that is singular at [0 : 0 : 1], and
(b) C = CY Z�X2 , which is a smooth conic.

In particular, it follows that any irreducible conic is smooth; compare this with the
proof of this result from Exercise 2.3.4(b).

Proof of Theorem 1.12.13. Either Q = `2 for some L 2 k[X,Y, Z]1, in which case we can take
` to X via some �⇤; or Q = `1`2 for some distinct irreducibles `1, `2 2 k[X,Y, Z]1, in which
case we can take `1 7! X and `2 7! Y by a simple application of Proposition 1.12.5; or Q is
irreducible. Consider the curve C defined by Q; then C is also irreducible. By Proposition
1.11.13, C is infinite, but by Theorem 1.12.11, C has only finitely many singular points; in
particular, all but finitely many points on C are smooth.

Let P1, P2 2 C be any two distinct smooth points, and let Li = TPiC for i = 1, 2
be the tangent lines at those points. We claim that P1 /2 L2 (and so, by symmetry, we have
P2 /2 L1), and in particular L1 6= L2. Indeed, if P1 2 L2, then we get that

X

P2C\L2

iP (C,L2) � iP1(C,L2) + iP2(C,L2) � 1 + 2 = 3,

where iP2(C,L2) � 2 because L2 is tangent to C at P2 (check!). This, combined with Theorem
1.12.12 tells us that L2 ⇢ C, which by 1.11.17(b) implies that L2 = C, contradicting the fact
that degC = 2.32 Since L1 6= L2, we conclude from Proposition 1.11.3 that L1 and L2 intersect
in a unique point, say P3. Since P1 /2 L2, it follows that P1 6= P3; similarly, P2 6= P3. In fact,
it follows that P1, P2, P3 are not collinear: if they were collinear, then Proposition 1.11.3 would
tell us that the line containing them would have to be both L1 and L2, contradicting L1 6= L2.

It then follows from 1.12.5 that there is a projective change of coordinates � taking
P1 7! [0 : 0 : 1], P2 7! [0 : 1 : 0] and P3 7! [1 : 0 : 0]. In this coordinate system, L1 is the line
Y = 0, and L2 is the line Z = 0. For this � and any choice of �⇤, if we write

�⇤Q = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2,

then f = 0 (because P1 2 C), c = 0 (because P2 2 C), d = 0 (because L1 = CY ) and b = 0
(because L2 = CZ). In particular, we will have

�⇤Q = aX2 + eY Z.

Now neither a nor e is zero, because otherwise Q would be reducible. Then we may scale �⇤

by �a�1 and further change coordinates so Y is replaced by �ae�1Y to bring Q into the form
Y Z �X2. ⌅

32The fact that P1 /2 L2 uses crucially that C is a conic–for instance, a tangent to a cubic or higher degree
curve meets the curve in at least one other point in general.
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Remark 1.12.15. A careful analysis of the proof shows that we did not really use, in the last
case, that k is algebraically closed, but only that C has at least two points. The above proof
can be upgraded, with some care, to also obtain a classification over other fields: namely that
if k is any field and Q 2 k[X,Y, Z]2 is a homogeneous irreducible element of degree 2 such that
CQ has at least two points, then, after a suitable change of coordinates, Q = Y Z�X2. This is,
in fact, the best we can do in general: if k = R, then the possibilities for Q include, in addition
to X2, XY, Y Z �X2, also the “conics” X2 + Y 2 (which defines one point) and X2 + Y 2 + Z2

(which defines the empty set). The classification of projective conics over an arbitrary field is
closely related to the classification of binary quadratic forms in 3 variables over that field. See,
for instance, [5, §1.6] for another perspective on this result via this approach.

Next time, we will start by discussing very cool applications of these results–including
Pascal’s Theorem!
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