
Chapter 1. Lecture Notes

1.11 07/03/24 - Projective Duality, (De)Homogenization, Pro-
jective Nullstellensatz

Last time, we introduced the projective plane and projective curves. Let’s start by looking at
an extended example first.

1.11.1 Projective Lines and Projective Duality

Definition 1.11.1. A projective line is a projective curve of the form L = CF ⇢ P
2

k
for a

nonconstant linear homogeneous polynomial F 2 k[X,Y, Z]1.

Once we have the notion of degrees for projective curves below (§1.11.3), then we’ll
see that a projective line is a projective curve of degree 1.

Example 1.11.2. If F = Z, then L = CF is called the line at infinity and denoted L1.

Any linear homogeneous F is specified as F = AX + BY + CZ, where A,B,C 2 k
are not all zero. Note that multiplying F by a nonzero scalar � 2 k⇥ does not a↵ect CF .
Analogously to the a�ne case, we will see (in Theorem 1.11.17) that L = CF recovers F
up to nonzero scalars, and hence we get a bijection between the set of lines L ⇢ P

2

k
and

the set of ordered triples (A,B,C) of elements of k, not all zero, subject to the equivalence
(A,B,C) ⇠ (�A,�B,�C) for all � 2 k⇤–but that’s just another projective plane! We denote
this projective plane by P

2⇤
k

:= P
2

k
(A,B,C), so we have a bijection

{lines L ⇢ P
2

k} $ P
2⇤
k .

Note that points in P
2⇤
k

correspond to lines in P
2

k
, but the symmetry of the equation

AX +BY + CZ = 0

tells us that lines in P
2⇤
k

correspond to points in P
2

k
–and indeed, if a point P 2 P

2

k
corresponds

to the line P ⇤ 2 P
2⇤
k
, and the line L ⇢ P

2

k
corresponds to the point L⇤ 2 P

2⇤
k
, then we have

P 2 L , P ⇤ 3 L⇤.

This funny phenomenon of interchanging the set of lines in one projective plane with the set
of points in another is called the phenomenon of projective duality. Duality is a powerful tool
that allows us to start with statements about points, lines, and incidences, and produce corre-
sponding “dual” statements–e↵ectively doubling the number of statements we can prove about
the projective plane with very little e↵ort. This is because this duality carries with it a lot of
structure.

Consider, for instance, the following asymmetry: in A
2

k
, given any two points, there is

a unique line passing through them, but given any two lines, they either interesect in a unique
point or not at all (i.e. if they are parallel). In the projective plane, duality asserts that this
asymmetry cannot happen.

Proposition 1.11.3. Given any two distinct points P1, P2 2 P
2

k
, there is a unique line

L ⇢ P
2

k
through them, and given two distinct lines L1, L2 ⇢ P

2

k
, they intersect in a unique

point.
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Proof. The second assertion follows from the first applied to P
2⇤
k

(i.e. by duality), and so it
su�ces to show the first one. Suppose we write P1 = [X1 : Y1 : Z1] and P2 = [X2 : Y2 : Z2];
then we are trying to solve simultaneously the system of equations

AX1 +BY1 + CZ1 = 0

AX1 +BY2 + CZ2 = 0

for A,B,C, not all zero, up to scaling. Multiplying the first equation by Y2 and the second by
Y1 and subtracting yields

A(X1Y2 �X2Y1) + C(Z1Y2 � Z2Y1) = 0.

Similarly, we obtain two other equations of this sort. It follows easily (check!) that there is a
solution to the above system of equations, up to scalars, given by

[A : B : C] = [Y1Z2 � Y2Z1 : Z1X2 � Z2X1 : X1Y2 �X2Y1],

where at least one of the expressions Y1Z2 � Y2Z1, Z1X2 � Z2X1, and X1Y2 �X2Y1 is nonzero
because P1 6= P2 (why?). ⌅

Similarly, the question of collinearity of three points in P
2

k
is answered by

Proposition 1.11.4. Given points P1, P2, P3 2 P
2

k
, write Pi = [Xi : Yi : Zi] for i = 1, 2, 3.

The points P1, P2 and P3 are collinear i↵

det

2

4
X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

3

5 = 0.

Proof. The points P1, P2, P3 are collinear i↵ there are A,B,C 2 k, not all zero, such that
AXi +BYi + CZi = 0 for i = 1, 2, 3. This can be rephrased by asking for A,B,C, not all zero,
such that 2

4
X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

3

5

2

4
A
B
C

3

5 =

2

4
0
0
0

3

5 ,

and then the result follows from simple linear algebra: if the determinant of this matrix were
nonzero, it would be invertible (by Cramer’s rule, say), and so we would conclude from such
an equation that A = B = C = 0, and conversely, if the determinant is zero, then there is a
nonzero vector in the kernel of the linear map determined by it. ⌅

Note that projective duality tells us that concurrent triples of lines L1, L2, L3 ⇢ P
2

k

correspond exactly to collinear triples of points in P
2⇤
k
, and we get a corresponding criterion for

concurrency of lines, which I will leave to you to formulate.

Of course, this statement automatically implies a corresponding statement in the a�ne
plane (Corollary 1.11.5)) as well, but somehow I have always found the projective ase easier to
understand conceptually.
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Corollary 1.11.5. Given points p1, p2, p3 2 A
2

k
with coordinates pi = (xi, yi), we have that

p1, p2, p3 are collinear i↵

������

x1 y1 1
x2 y2 1
x3 y3 1

������
= (x2y3 � x3y2) + (x3y1 � x1y3) + (x1y2 � x2y1) = 0.

Proof. The points pi are collinear in A
2

k
i↵ the points Pi := [xi : yi : 1] are collinear in P

2

k
. ⌅

Remark 1.11.6. Note that similarly to how projective lines in P
2

k
are parametrized by another P2

k
,

it is clear that curves C ⇢ P
2

k
of a fixed degree (interpreted appropriately, i.e. with multiplicity)

are also parametrized by a projective space of higher dimension. For instance, a conic section
C ⇢ P

2

k
is specified by a homogeneous quadratic polynomial

F = AX2 +BXY + CY 2 +DXZ + EXZ + FZ2,

which amounts to giving a 6-tuple (A,B,C,D,E, F ) of elements of k, not all zero, up to
simultaneous scaling: in other words, the set of all conics C ⇢ P

2

k
is a P

5

k
. More generally, the

set of all degree d � 1 curves C ⇢ P
2

k
is a projective space Pd(d+3)/2

k
, and even more generally, the

set of all degree d � 1 hypersurfaces Z ⇢ P
n

k
for n � 1 is given by a projective space P

(d+n
n )�1

k
.

(Think about what this could mean–I haven’t defined projective spaces of higher dimensions for
you yet!) This idea of parameter spaces in our own category is unique to algebraic geometry–for
instance, the set of submanifolds of a smooth manifold does not have the structure of a finite-
dimensional manifold in any way. This notion of parameter spaces is one of the most powerful
tools in modern algebraic geometry: the geometry of a parameter space often dictates the
behavior of the objects it parametrizes. I will not dwell on this further, but I would encourage
you to think about this as and when this idea shows up in your further studies.

1.11.2 (De)Homogenization, Projective Closure and A�ne Part

Let’s now start talking about the relationship between a�ne and projective curves. For this,
we first need some algebraic definitions.

Definition 1.11.7.

(a) Given a polynomial f 2 k[x, y] of degree d � 0, we define its homogenization, written
fh, to be

fh(X,Y, Z) := Zdf

✓
X

Z
,
Y

Z

◆
2 k[X,Y, Z]d.

In other words, if f 6= 0 and we write f = f0+f1+ · · ·+fd with each fi homogeneous
of degree i, and fd 6= 0, then we have

fh(X,Y, Z) = Zdf0(X,Y ) + Zd�1f1(X,Y ) + · · ·+ fd(X,Y ).

(b) Given a homogeneous polynomial F 2 k[X,Y, Z], we define the inhomogeneous part
or dehomogenization of F with respect to Z, denoted F i, to be

F i(x, y) := F (x, y, 1) 2 k[x, y].

We will use simple properties of these operations such as (fg)h = fhgh for nonzero
f, g 2 k[x, y] without further comment. Note that although we have for any f 2 k[x, y] that
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(fh)i = f , the operations f 7! fh and F 7! F i are not inverse bijections in general. For any
nonzero f 2 k[x, y] of degree d, the homogenization fh is homogeneous of degree d = deg f , and
Z - fh because fd 6= 0; therefore, if Z | F , then we cannot possibly have F = (F i)h. However,
this is the only problem: we have for any nonzero F 2 k[X,Y, Z] that is homogeneous of degree
d � 0 that if F = ZmF0 for some m � 0 and F0 2 k[X,Y, Z]d�m not divisible by d, then
(F i)h = F0, whence F = Zm(F i)h. In particular, if Z - F , then F = (F i)h. Phrased slightly
di↵erently, we have

Lemma 1.11.8. For any d � 0, the operations f 7! fh and F 7! F i give inverse bijections
between the set of all nonzero polynomials f 2 k[x, y] of degree d and the set of all nonzero
homgeneous polynomials F 2 k[X,Y, Z] of degree d such that Z - F .

The parallel definitions in geometry are as follows.

Definition 1.11.9.

(a) Given an a�ne curve C ⇢ A
2

k
, we define its projective closure, denoted C, to be

C := Cfh , where f 2 k[x, y] is any polynomial such that C = Cf . Given any a�ne

curve C ⇢ A
2

k
, we define the set of points at infinity along C to be C \ L1.

(b) Given a projective curve C ⇢ P
2

k
, we define its a�ne part in the chart defined by

Z 6= 0 to be C� := C \ A
2

k
= {P 2 C : P = [X : Y : Z] and Z 6= 0} = CF i , where

F 2 k[X,Y, Z] is any homogeneous polynomial such that C = CF .

The first thing to note here is that if f, g 2 k[x, y] are polynomials such that Cf = Cg,
then Cfh = Cgh , making the projective closure well-defined; similarly, if F,G 2 k[X,Y, Z] are
homogeneous polynomials such that CF = CG, then CF i = CGi (which is somewhat easier to
see from the alternative description). Next, we note that if C ⇢ A

2

k
has degree d � 1, then C

is obtained by attaching at most d new points to C (i.e. there are at most d points at infinity
along C); namely, if we write f = f0 + · · · + fd, then points of C r C correspond to roots
of the homogeneous polynomial fd(X,Y ), of which there are at most d distinct values. This
observation has the amusing consequence that an algebraic curve of degree d in A

2

k
can have at

most d distinct asymptotes.23 Finally, we have as before that if C ⇢ A
2

k
is an a�ne curve, then

(C)� = C, but the operations C 7! C and C 7! C� are not inverse bijections: if we consider the
line at infinity L1, then L�

1 = ;, whence L�
1 = ; as well. Again, this is the only problem, and

if C ⇢ P
2

k
is any projective curve other than L1, then C� is a nonempty a�ne curve. In fact,

we have

Lemma 1.11.10. If C ⇢ P
2

k
is a projective curve, then either L1 6⇢ C, in which case we

have C = C�, or we have C = C� [ L1.

Proof. Left to the reader. ⌅

Remark 1.11.11. The terminology “projective closure” comes from topology: there is a topology
on P

2

k
called the Zariski topology, in which C is just the ordinary topological closure of C ⇢

A
2

k
⇢ P

2

k
. Understanding the Zariski topology is absolutely fundamental to appreciating more

advanced algebraic geometry, but we don’t need to worry too much about it right now.

The goal of this translation is that it allows us to port over the work that we did in
the a�ne case to the projective case without a lot of additional e↵ort. This is what we do now.
Let’s do a couple of examples.

23What are those?
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Proposition 1.11.12. If C,D ⇢ P
2

k
are projective curves, then so is C [D.

Proof. If C = CF and D = CG, then C [D = CF ·G. ⌅

Proposition 1.11.13. If k is an algebraically closed field and C ⇢ P
2

k
is a projective curve,

then C = C(k) is infinite.

Proof. Either C = L1, in which case we are done because k is infinite (how?), or C� is an a�ne
curve, so we are done by Lemma 1.5.1. ⌅

Let’s now move on to a few more things that follow easily.

1.11.3 Homogeneous Unique Factorization, Nullstellensatz, etc.

Lemma 1.11.14. If F,G 2 k[X,Y, Z] are such that F is homogeneous and G | F , then G
is homogeneous.

Proof. Write F = GH, and suppose that the degrees of F,G,H are d,m, n � 0 with m+n = d.
If m = 0 or n = 0, then the result is clear; hence assume that m,n � 1, so d � 2. Expand
G = G0 +G1 + · · ·+Gm and H = H0 + · · ·+Hn with each Gi (resp. each Hj) homogeneous of
degree i (resp. j), and Gm 6= 0 (resp. Hn 6= 0). Let i be the least non-negative integer such that
Gi 6= 0, so that 0  i  m; similarly, let j be the least non-negative integer such that Hj 6= 0.
Then the degree i+ j component of F = GH is GiHj , which is nonzero; since we assumed that
F is homogeneous of degree d, this implies that i + j = d, whence i = m and j = n, showing
that both G and H are homogeneous. ⌅

From this, we immediately obtain a homogeneous analog of unique factorization in
k[X,Y, Z], namely

Theorem 1.11.15 (Homogeneous Unique Factorization). Every nonconstant homogeneous
F 2 k[X,Y, Z] can be factored as

F = F1 · · ·Fn,

a product of finitely many homogeneous irreducible elements F1, . . . , Fn 2 k[X,Y, Z], and
this factorization is unique up to the order of the elements and multiplication by units.

I will leave to you to make the last statement precise (say along the lines of Definition 1.5.7.)

Proof. Immediate consequence of unique factorization in k[X,Y, Z] (Corollary 1.5.14) and the
Lemma 1.11.14 above. ⌅

Now we can mimic the a�ne theory as follows. Firstly, the analog of Theorem 1.6.6 is

Theorem 1.11.16 (Projective Finite Intersection). Let F,G 2 k[X,Y, Z] be nonconstant
relatively prime homogeneous polynomials. Then CF \ CG is finite.
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Proof. Note that Z cannot divide both F and G; without loss of generality, suppose that Z - G.
Since

CF \ CG ⇢ (C�
F \ C�

G) [ (L1 \ CG),

it su�ces to show that both C�
F
\C�

G
and L1\CG are finite. The latter is easy: if degG = d � 0,

and we write
G = ZdG0(X,Y ) + Zd�1G1(X,Y ) + · · ·+Gd(X,Y ),

where each Gj(X,Y ) 2 k[X,Y ]j is homogeneous of degree d, then Z - G implies that Gd 6=
0, whence L1 \ CG corresponds to the finitely many roots of the homogeneous polynomial
Gd(X,Y ), of which there are at most d.24 To show the former, note that C�

F
\C�

G
= CF i \CGi ,

so in light of Theorem 1.6.6, it su�ces to show that if F,G 2 k[X,Y, Z] are nonconstant
relatively prime homogeneous polynomials, then the dehomogenizations F i, Gi 2 k[x, y] are
also relatively prime (although no longer necessarily nonconstant). To show this statement, it
su�ces note that if q 2 k[x, y] is such that q|F i, then F i = pq for some p 2 k[x, y], whence
qh | phqh = (F i)h | F ; then, if a nonconstant q 2 k[x, y] were to divide both F i and Gi, then the
nonconstant25 qh 2 k[X,Y, Z] would divide F and G, contradicting their relative primality. ⌅

This theorem was the key to the Nullstellensatz, and all of its corollaries, which we
collect in one theorem here.

Theorem 1.11.17 (Projective Nullstellensatz). Suppose that k is an algebraically closed
field.

(a) If F,G 2 k[X,Y, Z] are nonconstant homogeneous polynomials, then CG ⇢ CF i↵
there is some integer n � 1 such that G | Fn.

(b) If F,G 2 k[X,Y, Z] are nonconstant homogeneous polynomials with F irreducible,
then CG ⇢ CF implies CG = CF .

(c) If F 2 k[X,Y, Z] is a nonconstant homogeneous polynomial, then CF is irreducible.a

Conversely, if C ⇢ P
2

k
is an irreducible projective curve, then there is an irreducible

homogeneous F 2 k[X,Y, Z] such that C = CF .

aYou were invited to define the notion of irreducibility for projective curves in Exercise 2.4.2.

Proof.

(a) Identical to the proof of Theorem 1.6.7: if Q is a prime factor of G, then Q is homogeneous
by Lemma 1.11.14, and then if Q and F were relatively prime, then CQ\CF = CQ would
be finite by Theorem 1.11.16 but infinite by Proposition 1.11.13.

(b) Identical to the proof of Corollary 1.6.8 using (a) instead of Theorem 1.6.7.
(c) Identical to the proof of Theorem 1.5.6, and left to the reader.

⌅

Similarly to the a�ne case, given a projective curve C ⇢ P
2

k
, we can try to define a

vanishing ideal I(C) ⇢ k[X,Y, Z] of C consisting of homogeneous polynomials vanishing on C,
but the problem is that the sum of two homogeneous polynomials of di↵erent degrees is not
homogeneous. The correct definition is

24In other words, we have [X0 : Y0 : Z0] 2 L1 \ CG i↵ Z0 = 0 and Gd(X0, Y0) = 0, but the latter condition
constrains the ratio [X0 : Y0] to be one of the homogeneous roots of Gd(X0, Y0), i.e. if we factor Gd using Lemma
1.8.3 (and Theorem 1.4.5 if needed) as Gd =

Qd
i=1(�iX + µiY ), then [X0 : Y0] can only be one of the d possible

choices for [�µi : �i].
25This uses deg qh = deg q.
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Definition 1.11.18. Given a projective curve C ⇢ P
2

k
, we define the vanishing ideal of C to

be

I(C) := {F 2 k[X,Y, Z] : if F = F0+· · ·+Fd with Fj 2 k[X,Y, Z]j then C ⇢ CFj for all j.}

This is, in fact, an ideal of k[X,Y, Z]–and, indeed, a special kind of ideal called a
homogeneous ideal.26 Then the analog of Theorem 1.6.12 still holds: I(C) is a principal ideal
generated by rad(F ) for any homogeneous F 2 k[X,Y, Z] such that C = CF . A generator of
I(C) is again called a minimal polynomial of C; any two of these di↵er by a nonzero scalar, and
we define the degree of C to be the degree of any minimal polynomial for C. The analog of
Corollary 1.6.13 still holds: over k = k, there is a bijective correspondence between projective
curves C ⇢ P

2

k
and principal ideals of k[X,Y, Z] generated by nonconstant reduced homogeneous

F 2 k[X,Y, Z], and the curve C is irreducible i↵ I(C) is a prime ideal. Finally, we also have an
analog of Theorem 1.7.10; let’s write this down in some detail.

Theorem 1.11.19 (Projective Unique Decomposition). If k = k, then given any curve C ⇢
P
2

k
, there is an integer n � 1 and irreducible curves C1, . . . , Cn ⇢ P

2

k
such that Ci 6= Cj for

i 6= j, such that
C = C1 [ C2 [ · · · [ Cn.

The integer n is uniquely determined, as are the Cj up to reordering.

Proof. Identical to the proof of Theorem 1.7.10. ⌅

The curves C1, . . . , Cn ⇢ C occuring in such a decomposition are called the irreducible
comopnents of C. Finally, the analog of Theorem 1.7.11 is

Theorem 1.11.20 (Projective Finite Intersection Revisited). If C,D ⇢ P
2

k
are two curves that

don’t share any common irreducible components, then the intersection C \D is finite.

Proof. Identical to the proof of Theorem 1.7.11. ⌅

The three things from the a�ne case that we haven’t transferred yet are (a) parametric
curves, (b) changes of coordinates, and (c) (intersection) multiplicity. This we will do in the
next two lectures.

1.11.4 Addendum: Irreducible Projective Curves

I did not have time to cover this in lecture, but I do want to explain the relationship between
minimal polynomials and irreducibility of a�ne curves and their projective counterparts. This
is the content of

26Can you come up with a good definition of this notion?
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Theorem 1.11.21.

(a) If f 2 k[x, y] is irreducible (resp. reduced), then so is fh 2 k[X,Y, Z]. Conversely, if
a homogeneous F 2 k[X,Y, Z] is irreducible (resp. reduced), then so is F i 2 k[x, y],
unless F = �Zm for some � 2 k⇥ and m � 0 (resp. m = 0, 1), in which case, and
only in which case, F i = � is a nonzero constant.

(b) If an a�ne curve C ⇢ A
2

k
has minimal polynomial f , then its projective closure C

has minimal polynomial fh; in particular, degC = degC. If C ⇢ P
2

k
has minimal

polynomial F , then its a�ne part C�, if nonempty, has minimal polynomial F i and
either

(i) L1 ⇢ C and degC� = degC � 1 (where degC� = 0 says just that C� = ;), or
(ii) L1 6⇢ C and degC� = degC.

(c) If C ⇢ A
2

k
is an irreducible a�ne curve, then its projective closure C is an irreducible

projective curve. If C ⇢ P
2

k
is an irreducible projective curve, then either C� = ;

(which happens i↵ C = L1), or C� is an irreducible a�ne curve.

Proof.

(a) Let’s treat irreducibility; the proof for reducedness is similar and left to the reader. If given
an f 2 k[x, y], there is a G 2 k[X,Y, Z] such that G | fh and 0 < degG < deg fh = deg f ,
then G is homogeneous by Lemma 1.11.14 and Z - G because Z - fh, from which we get
that Gi | (fh)i = f and 0 < degGi = degG < deg f ; therefore, if f is irreducible, then so
is fh. Conversely, given a homogeneous F 2 k[X,Y, Z] that is not of the form �Zm, we
must have degF i � 1; if g 2 k[x, y] is such that g | F i and 0 < deg g < degF i  degF ,
then gh | (F i)h | F with 0 < deg gh = deg g < degF ; therefore, if F is irreducible, then so
is F i.

(b) If an a�ne curve C has minimal polynomial f , then f is reduced, and so by (a) so is
fh; since fh is a reduced homogeneous polynomial vanishing on C, it follows that fh is a
minimal polynomial for C. I will leave the rest to the reader.

(c) If C is an irreducible a�ne curve, then any minimal polynomial f for C is irreducible;
then fh is irreducible by (a) and a minimal polynomial for C by (b), and so it follows that
C is an irreducible projective curve. The converse is again left to the reader.

⌅

Finally, the symmetry in X,Y, Z tells us that irreducibility of a given homogeneous
F 2 k[X,Y, Z] is testable by dehomogenization with respect to any of the variables.
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