
Chapter 1. Lecture Notes

1.10 07/01/24 - Intersection Multiplicity, the Projective Plane

Today, we’ll finish the proof of Theorem 1.9.9, and start talking about the projective plane and
projective curves.

1.10.1 Intersection Multiplicity

Let’s proceed to the proof of Theorem 1.9.9. We need to show two things: existence and
uniqueness of i. We’ll start with uniqueness.

Proof of Uniqueness in Theorem 1.9.9. We will give an algorithm that takes as input (f, g, P )
and returns iP (f, g) in finitely many steps, using only the axioms (1) - (7).

(a) By (6), we can reduce to the case P = (0, 0).
(b) By (2) and (3), we are done if either f and g have a common component through P , or

if P /2 Cf \ Cg, so assume that we are not in either of these cases (we then say that Cf

and Cg intersect properly at P ).
(c) Consider the polynomials f(x, 0), g(x, 0) 2 k[x], and suppose they have degrees d, e � 0

respectively, where we use the convention that deg 0 = 0. By (1), we may assume by
switching f and g if needed that 0  d  e. Now we split into two cases:

Case 1. If d > 0, then we may perform the Euclidean algorithm to produce an integer n � 1
and polynomials q1, q2, . . . , qn+1, r1, . . . , rn, rn+1 2 k[x] such that for i = 0, 1, . . . , n,
we have

ri�1 = ri · qi+1 + ri+1,

and deg ri+1 < deg ri, where r�1 := g(x, 0), r0 := f(x, 0), r1 · · · rn 6= 0, and rn+1 = 0;
then rn = gcd(f(x, 0), g(x, 0)). Define polynomials h1, . . . , hn, hn+1 2 k[x, y] by

hi = hi�2 � qi · hi�1

for i = 1, . . . , n + 1, where we set h�1 := g and h0 = f . We find inductively using
(5) that

iP (f, g) = iP (h1, f) = iP (h2, h1) = · · · = iP (hn, hn�1) = iP (hn+1, hn),

and hi(x, 0) = ri(x) for each i = 1, . . . , n+ 1, and hence hn+1(x, 0) = 0. We replace
(f, g) by (hn+1, hn) and land on

Case 2. If d = 0, then y | f , and so we can write f = yNp for some N � 1 and p 2 k[x, y]
such that y - p. Then by (4) we have

iP (f, g) = N · iP (y, g) + iP (p, g).

By (5), we have

iP (y, g) = iP (y, g(x, 0)) = iP (y, y � g(x, 0)) = m0(g(x, 0)),

where in the last step we have used the computation in Example 1.9.12 (this uses (7)).
By our assumption that g|P = 0, we have m0(g(x, 0)) � 1, and hence iP (y, g) � 1,
whence iP (p, g) < iP (f, g). Either iP (p, g) = 0, in which case we are done; else,
return to the beginning of Step (c) with (f, g) replaced by (g, p).

⌅
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It is clear that if such an i exists, then the above algorithm terminates in finitely many
steps, and determines the function i uniquely. Let’s work out an example in detail to see this
in practice.

Example 1.10.1. Let’s take

f(x, y) = y2 � x3 + x,

g(x, y) = (x2 + y2 � 3x)2 � 4x2(2� x),

and P = (0, 0). For simplicity, we work out the case when ch k 6= 2, and leave this (easier) case
to the reader. Note that Cf and Cg do not share a component because f is irreducible and
Cf 6✓ Cg: and plugging in y2 = x3 � x into g recovers nonzero polynomial

x2(x� 1)(x3 + 3x2 � 4x� 8),

which has finitely many roots. Let’s now apply Step (c).

(1) We have
f(x, 0) = �x(x� 1)(x+ 1) and g(x, 0) = x2(x� 1)2,

so that d = 3 and e = 4. Applying the Euclidean algorithm gives us n = 1 with

q1(x) = �x+ 2, r1(x) = 2x(x� 1),

q2(x) = �1

2
(x+ 1), r2(x) = 0.

Then

h1 = y4 + (2x2 � 5x� 2)y2 + 2x(x� 1) and

h2 =
1

2
y2
�
(1 + x)y2 + x(2x2 � 3x� 7)

�
.

Setting (f1, g1) := (h2, h1), we are now in Case 2.
(2) Here N = 2 and

p1 =
1

2

�
(1 + x)y2 + x(2x2 � 3x� 7)

�
.

Then
iP (f1, g1) = 2 ·m0(g1(x, 0)) + iP (p1, g1) = 2 + iP (p1, g1).

Setting (f2, g2) := (g1, p1) (switching for degree reasons), we are again in Case 1.
(3) We have

f2(x, 0) = 2x(x� 1) and g2(x, 0) =
1

2
x(2x2 � 3x� 7),

so that d = 2 and e = 3. Again, we get n = 1 with

q1(x) =
1

2
x� 1

4
, r1(x) = �4x,

q2(x) = �1

2
x+

1

2
, r2(x) = 0.

Then

h1 =

✓
�1

2
x+

1

4

◆
y4 + x

✓
�x2 + 3x+

1

4

◆
y2 � 4x

h2 = �1

8
y2
�
(2x2 � 3x� 7)y2 + (4x4 � 16x3 � 5x2 + 41x+ 16)

�
.

Setting (f3, g3) := (h2, h1), we are now in Case 2.
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(4) Here again N = 2 and

p3 = �1

8

�
(2x2 � 3x� 7)y2 + (4x4 � 16x3 � 5x2 + 41x+ 16)

�
.

Then
iP (f3, g3) = 2 ·m0(g3(x, 0)) + iP (p3, g3) = 2 + iP (p3, g3).

At this point, we have iP (p3, g3) = 0, and the algorithm terminates.

We conclude that iP (f, g) = 4. Get Desmos to draw some pictures to make sure you believe
this!

To show existence, we first define the local ring of A2

k
at a point P 2 A

2

k
.

Definition 1.10.2. Given a P 2 A
2

k
, the local ring of A2

k
at P , denoted OP or O

A
2
k,P

, is the
ring

OP := {r 2 k(x, y) : there are s, t 2 k[x, y] s.t. r = s/t and t|P 6= 0.} ⇢ k(x, y).

Since k[x, y] is a UFD and k(x, y) = Frac k[x, y], this ring can equivalently be defined
as the set of r 2 k(x, y), which, when written in lowest terms as r = s/t with s, t 2 k[x, y] and
t 6= 0 satisfy t|P 6= 0. We are now ready to sketch the proof of existence.

Proof Sketch of Existence in Theorem 1.9.9. Define

iP (f, g) := dimk OP /(f, g)OP .

Properties (1), (5), and (6) are reasonably clear. To show (7), note that for P = O = (0, 0),
there is an evaluation map

evalP : OP ! k;

this is clearly surjective, and it is easy to see that its kernel is generated by x and y, whence we
get an isomorphism

OP /(x, y)OP !⇠ k

and so iP (x, y) = 1. To show (3), note that if f |P 6= 0, then f 2 O
⇥
P
, and so (f, g)OP = OP ,

and similarly if g|P 6= 0. Conversely, if f |P = g|P = 0, then (f, g)OP ⇢ ker evalP , so

OP /(f, g)OP ⇣ OP / ker evalP ⇠= k implies that iP (f, g) � 1.

To show (2), we may assume P = O = (0, 0). First suppose that we have such a q; then
(f, g)OP ⇢ (q)OP , and we get OP /(f, g)OP ⇣ OP /(q)OP , so it su�ces to show that OP /(q)OP

is not finite dimensional over k. To do this, we may assume by a linear change of coordinates
that y - q; we show that the classes of 1, y, y2, . . . in OP /(q)OP are linearly independent. If they
were not, then there would be a nonzero p 2 k[y] of least degree such that p 2 (q)OP , which is
to say that p = qs/t for some nonzero s, t 2 k[x, y] with t|P 6= 0. Then p|P = 0 implies y | p,
so if y - q, then y | s, and we may cancel a y from both sides, contradicting our choice of p.
Conversely, suppose that f and g have no common components through P . Since irreducible
factors of f and g not through P are units in OP , we may assume by dividing by these factors
that f and g are relatively prime in k[x, y]. Then, as in Example 1.6.4, Lemma 1.6.2 tells us
that there are nonzero p 2 k[x] and q 2 k[y] such that p, q 2 (f, g)k[x, y] ⇢ (f, g)OP . Now if we
write p = xmp0 for some m � 0 and p0 2 k[x] with p0(0) 6= 0, then m � 1 because p 2 ker evalP ,
and p0 2 O

⇥
P
, so that xm 2 (f, g)OP . Similarly, from q we get an integer n � 1 such that

yn 2 (f, g)OP . Then it follows that any rational function of the form 1/t with t|P 6= 0 can be
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expanded in OP /(f, g)OP as
P

i�0
(1� t)i, where all but finitely many terms are zero because of

[xn] = [ym] = 0. It is then easy to see that the classes of the monomials xiyj with 0  i  m�1
and 0  j  n� 1 span OP /(f, g)OP as a k-vector space. Finally, to show (4), the result boils
down to showing that there is a short exact sequence of the form

0 ! OP /(f1, g)OP

·f2��! OP /(f1f2, g)OP ! OP /(f1, g)OP ! 0,

and the rank-nullity theorem. For full details, see [3, §3.3, Theorem 3] or [4, Chapter 2]. ⌅

1.10.2 The Projective Plane

As we have observed before, to count intersection points of curves properly, we have the need for
a systematic way to study intersection points “at infinity”. One way to do this is to note that
every collection of parallel lines has a unique representative through the origin, and so points
at infinity should correspond to lines through the origin–which are determined by their slope.
Therefore, one approach would be to parametrize points at infinity via a parameter t 2 k, where
t corresponds to the point at infinity along the line y � tx = 0. However, this misses exactly
one line: namely the vertical line x = 0, for which the value of t “would be” 1.

A more symmetrical approach is to note that lines through the origin can be written
as �x� µy = 0, where �, µ 2 k are not both zero, and the pair (�, µ) determines the same line
as (c�, cµ) for every c 2 k r {0}, so when µ 6= 0, this corresponds to the above with t = �/µ,
but when µ = 0, this adds the line x = 0. In this case, we denote the “coordinates” of the line
by [� : µ] to emphasize that only the ratio between the coordinates matters. This gives us a
way to think of the “projective plane” P

2

k
as the disjoint union of points (p, q) 2 A

2

k
and the

directions [� : µ], but in fact there is a more symmetric way to do it. This leads us to

Definition 1.10.3. The projective plane over k, denoted P
2

k
, is the set of equivalence classes

of ordered triples (X,Y, Z) of elements of k, not all zero, subject to the equivalence relation
that (X,Y, Z) ⇠ (�X,�Y,�Z) for all � 2 k r {0} = k⇤, i.e.

P
2

k =

�
(X,Y, Z) 2 k3 r {(0, 0, 0)}

 

(X,Y, Z) ⇠ (�X,�Y,�Z) 8� 2 k⇤
.

The class of a triple (X,Y, Z) in P
2

k
is usually denoted by [X : Y : Z], and X,Y, Z

are called the homogeneous coordinates on P
2

k
.

Note that the homogeneous coordinates are not well-defined functions on P
2

k
–only their

ratios are, and those too only away from the loci where the denominator vanishes. Note also
that [0 : 0 : 0] is not a well-defined point in P

2

k
. Homogeneous coordinates were introduced

by Möbius in his 1827 treatise Der Barycentrische Calcül. This way of thinking about P
2

k
is

in a sense the same as that from before: if Z 6= 0, then the point [X : Y : Z] has a unique
representative of the form [x : y : 1] where x := X/Z and y := Y/Z, and these are the points
that compose the A

2

k
⇢ P

2

k
. When Z = 0, however, we get points of the form [X : Y : 0], and

these are exactly the points at 1. One way to think about them is to think of them as the points
that are limits of a�ne the form [X/" : Y/" : 1] as " ! 0. The advantage of this formulation is
that it makes some additional symmetry–namely that between X,Y, and Z, obvious–which we
will leverage to great e↵ect.

Note that in the case of the projective plane, the distinction between polynomials and
polynomial functions becomes even more crucial: an arbitrary polynomial F 2 k[X,Y, Z] does
not even define a well-defined function F : P2

k
! k because picking a di↵erent representatives
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(X,Y, Z) of a point P = [X : Y : Z] will in general (i.e. for nonconstant F ) yield di↵erent
values under the polynomial function (on A

3

k
) arising from F . However, if F is homogenous of

degree d � 0, then we see that for any c 2 k⇥ we have

F (cX, cY, cZ) = cdF (X,Y, Z),

whence the locus of points P = [X : Y : Z] 2 P
2

k
where F |P = 0 still makes sense. This leads

us to

Definition 1.10.4. A projective plane algebraic curve is the vanishing locus of a nonconstant
homogeneous polynomial F in the projective plane, i.e. a subset C ⇢ P

2

k
of the form

C = CF := {P 2 P
2

k : F |P = 0}

for a nonconstant homogeneous polynomial F (X,Y, Z) 2 k[X,Y, Z].

Next time, we’ll define the homogenization of a polynomial and the projective closure
of algebraic curves in more detail. Today, I want to end with one example.

Example 1.10.5. Consider the hyperbola Cf defined by f(x, y) = xy � 1 2 k[x, y]. Then the
homogenization of f is F = fh = XY � Z2 2 k[X,Y, Z], and the projective closure of C is the
curve

Cf = CF = {P = [X : Y : Z] 2 P
2 : XY � Z2 = 0}.

The intersection CF \A
2

k
is exactly Cf ; on the other hand, the new points at infinity correspond

to solutions to XY � Z2 = Z = 0, which are the two points [1 : 0 : 0] and [0 : 1 : 0]. These are
the two points corresponding to the two asymptotes of Cf , namely the lines x = 0 and y = 0.
In particular, over k = R, the two branches which are disjoint in A

2

R
connect up to form one

“continuous loop” in P
2

R
.
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