Chapter 1. Lecture Notes

1.1 06/10/24 - Introduction

Example 1.1.1 (Student Examples). Get Desmos to plot the subsets of the plane (over k = R)
defined by the vanishing of the following polynomials

(a) 3z + 4y — 7 (line)

2 + 23 (semicubical parabola/cuspidal cubic),

2 — 23 — x (one-component elliptic curve),

2 — 23 + o (two-component elliptic curve),

(22 4+ 9?)(z +y — 1) (line and point not on it),

xy — 1 (hyperbola), and
(i) 2? +y* + 1 (empty set).

These are all examples of algebraic curves. Now get Desmos to plot
(a) y —sin(1/x), and
(b) y— |xl.

These are not plane algebraic curves (why?). See also Exercise

We will fix a field & throughout (see Remark|1.1.17).

Definition 1.1.2. The affine plane over k, denoted A2, is the set of ordered pairs of elements
of k, so that

A} = {(p,q) : p,q € k}.

If you want, see Remark|1.1.18|for an explanation of why we use A% to denote the set others
sometimes denote by k2.

Given a function F' : Ai — k, we can look at its vanishing locus, denoted variously by
F7H(0) = Cp=V(F) =Z(F) = {(p,q) : F(p,q) = 0}.
We will usually stick to the notation Cp.

Remark 1.1.3. More generally, we can look at the level sets F~!(a) for all a € k. Why does
this perspective not add anything new?

Any polynomial f(z,y) € k[z,y] gives rise to a function Fy : A7 — k by evaluation.

Remark 1.1.4. Why is it important to keep the notions of a polynomial and polynomial function
separate? See Exercise

Definition 1.1.5. An affine plane algebraic curve is the vanishing locus of a polynomial
function in the affine plane given by a nonconstant polynomial, i.e. a subset C C Ai of
the form C' = Cp, for some nonconstant polynomial f(z,y) € k[z,y].

For simplicity, we’ll use the notation Cy := Cp,. We will sometimes write C¢(k) to
denote C} if we want to emphasize the underlying field. Finally, we will often abbreviate “affine
plane algebraic curves” to simply “curves,” since we will not have occasion to deal with other
kinds of curves, at least initially.
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Remark 1.1.6. Our definition is currently a little weird. For instance, with our current defini-
tion, for certain fields k, a curve can be

e empty (think 22 + y? + 1 = 0 over R),

e a finite collection of points (think 2 +y? = 0 over R and Proposition [I.1.7} or think of
what happens when k = F, is a finite field),

e and all of A? (again think of k = F, being a finite field).

Neither of these sets seem to be “l1-dimensional,” which is the elusive notion we are trying to
capture. We could either choose to restrict ourselves to working over infinite fields or alge-
braically closed fields (even in positive characteristic—see Exercise, but this misses a lot of
important number theory (see Examples|1.1.11|and|1.1.15). Alternatively, we can accept that
our definition is broader than initially intended, and try to study its consequences.

I Proposition 1.1.7. Let k be a field. If C, D C Ai are curves, then so is C' U D.

Proof. If C = Cy and D = Cj, for f,g € k[z,y|, then CU D = Cy,. |

Remark 1.1.8. Here we are using that k[z, y] is a ring (how?), and that k is a field (or at least
that it is a domain—-what happens if k£ is not even a domain?). We will say more about this
when we talk about irreducibility and reducedness of curves.

1.1.1 Motivating Questions

Given a field k£ and a curve C' C Az, we can ask several questions about it.

I Question 1.1.9. Is C = (?

This is not at all as trivial as it seems. Many number-theoretic questions can be
phrased in this language, if we take k to be Q or a finite field F,, for instance.

Example 1.1.10. Take k& = Q, fix a prime p, and look at the curve C defined by
fla,y) :=2" +y* — peQlz,y).
Then C' = ) iff p satisfies a certain congruence condition (which?). See Exercise [2.1.1

Example 1.1.11. Take k£ = F,, to be a finite field of prime order and a € k to be any element,
and look at the curve C' defined by

f(a,y) = a* —a € Fylz,y).
Then C = @ iff a is quadratic nonresidue modulo p, i.e. (%) =—1.

Remark 1.1.12. For any field k, if f(x,y) € k[z,y] is a polynomial of  only, then the curve Cf
defined by f is a finite (possibly empty) union of “vertical lines”. Can you make this precise?

Example 1.1.13. Take £k = Q and n > 1 to be a positive integer. Let
fn(%y) = xn +yn —-1le Q[wvy]v
and Cy, := Cy, be the curve defined by f,,. Then Fermat’s Last Theorem says that

Ch(Q=0<n>2.
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Question 1.1.14. If C' is nonempty, what can we say about the locus C'?7 Is it finite or
infinite? What can we say about its topologﬂ’

“What’s that?

Example 1.1.15. For instance, if k is finite, what is the cardinality of C'(k)? Suppose k = F, is
a finite field, and that C is an elliptic curv e.g. the curve defined by

3

fla,y) =y* — 2® — x € Fyla, y]

when ¢ is not a power of 2. The Hasse Theorem says that, in the above case,

(Va—1)? <#C(Fy) < (Vg+1)%

In particular, we have #C(Fy) ~ ¢ for all large g. (What does that even mean? Aren’t we
starting with a fixed ¢ to begin with?) We will not prove this theorem in this course.

Example 1.1.16. If £ = R or £ = C, how many pieces (i.e. connected components) does C(k)
have? How are they related to each other? See Exercise[2.1.2]for the case when k& = R. Another
theorem, which will not prove in this course, asserts that if & = C, then any irreducible curveﬂ
is connected.

1.1.2 Some Unimportant Remarks

Remark 1.1.17. Why did we require k to be a field? What would happen if k& were just a
ring—does the notion of an affine plane curve over a ring make sense? [Hint: some things make
sense, whereas other things like Proposition break down. See Remark ] Can you see
how far you can go till things break down and what you can salvage by adapting definitions?

Remark 1.1.18. As sets, Ai and k% = k x k are identica but Ai does not come equipped
with additional structure that k? is often (implicitly) interpreted to have: k2 is often seen (by
students who have seen some linear algebra) as a vector space with an additive structure and
a distinguished origin, but for us Ai is just a setE| and, as will become clear when we discuss
affine changes of coordinates, there is no distinguished point in Aifall points “look the same”.
In slightly more grown-up terminology, the affine plane over k is a principal homogenous space
or torsor for the (underlying additive group) of the vector space k2. If you do not understand
what this remark means, you can safely ignore it.

Remark 1.1.19. Regarding the different choices of the field k: it’s often easiest to plot curves
over k = R, but plots can also be made over other fields such as k = C (using some ingenuity
and imagination-how?) or k = F, (this may be a silly, uninstructive plot, but not always!). We
will see throughout the course that it is, in fact, easier to work with curves over k = C than
over k = R (why do you think this might be?). However, curves over other fields are equally
important:

(a) Fields such as k = Q,F, (or finite extensions and completions of these-such as k = Q))

show up a lot in solving number-theoretic questions. See Examples [1.1.10} |1.1.11] and
113

1We will define this notion formally later.

2Now, what’s that?

30nly according to our definition! There are other accepted definitions of A?, such as A7 = Spec k[z, y], for
which this is no longer the case. You don’t have to wrorry too much about this right now.

“Later on in your studies, it can, and will, be given the structure of a topological space, and in fact a locally
ringed space (even affine scheme).
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(b) Another case of interest is when k& = K (t) for some other field k&. When K =, is a finite
field, working with curves over k = FF,(t) is known as a the “function field analog” of the
theory of curves. Many important questions which are unsolved in the “usual case” have
been solved in the function field case (such as the Riemann Hypothesis), and this provides
(one strand of) evidence for the Riemann Hypothesis.

(¢) In (b), when we take K = C, so that we are looking at curves over k = C(t), we are really
looking at one-parameter families of curves that fit together into an algebraic surface. For
instance, elliptic curves over C(¢) often give rise to elliptic K3 surfaces. This perspective
is very helpful in the study of higher-dimensional algebraic varieties as well.

Figure 1.1: The elliptic curve over k = C(z) defined by y*> = 2% — 322 + (2> + 1)(z + 2)"! in
blue, along with its hyperplane section at z = 2, which is the elliptic curve y? = 23 — 6x + 9/4.
Picture made with Desmos 3D.

Therefore, it is helpful to have the flexibility to work over arbitrary fields from the beginning.




