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Preface

These are lecture notes for a course on classical algebraic geometry that I taught at Ross/Ohio
2024 intended for peer mentors and counselors. The course covers the fundamental theory of
plane algebraic curves, up to a proof of Bézout’s Theorem and an introduction to the theory
of elliptic curves. The course only assumes familiarity with the material on the Ross first-year
sets.
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Chapter 1. Lecture Notes

1.1 06/10/24 - Introduction

Example 1.1.1 (Student Examples). Get Desmos to plot the subsets of the plane (over k = R)
defined by the vanishing of the following polynomials

(a) 3x+ 4y − 7 (line)
(b) x2 + y2 − 1 (circle),
(c) y − x2 (parabola),
(d) y2 + x3 (semicubical parabola/cuspidal cubic),
(e) y2 − x3 − x (one-component elliptic curve),
(f) y2 − x3 + x (two-component elliptic curve),
(g) (x2 + y2)(x+ y − 1) (line and point not on it),
(h) xy − 1 (hyperbola), and
(i) x2 + y2 + 1 (empty set).

These are all examples of algebraic curves. Now get Desmos to plot

(a) y − sin(1/x), and
(b) y − |x|.

These are not plane algebraic curves (why?). See also Exercise 2.1.8.

We will fix a field k throughout (see Remark 1.1.17).

Definition 1.1.2. The affine plane over k, denoted A2
k, is the set of ordered pairs of elements

of k, so that
A2
k := {(p, q) : p, q ∈ k}.

If you want, see Remark 1.1.18 for an explanation of why we use A2
k to denote the set others

sometimes denote by k2.

Given a function F : A2
k → k, we can look at its vanishing locus, denoted variously by

F−1(0) = CF = V(F ) = Z(F ) = {(p, q) : F (p, q) = 0}.

We will usually stick to the notation CF .

Remark 1.1.3. More generally, we can look at the level sets F−1(a) for all a ∈ k. Why does
this perspective not add anything new?

Any polynomial f(x, y) ∈ k[x, y] gives rise to a function Ff : A2
k → k by evaluation.

Remark 1.1.4. Why is it important to keep the notions of a polynomial and polynomial function
separate? See Exercise 2.2.6.

Definition 1.1.5. An affine plane algebraic curve is the vanishing locus of a polynomial
function in the affine plane given by a nonconstant polynomial, i.e. a subset C ⊂ A2

k of
the form C = CFf

for some nonconstant polynomial f(x, y) ∈ k[x, y].

For simplicity, we’ll use the notation Cf := CFf
. We will sometimes write Cf (k) to

denote Cf if we want to emphasize the underlying field. Finally, we will often abbreviate “affine
plane algebraic curves” to simply “curves,” since we will not have occasion to deal with other
kinds of curves, at least initially.
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Chapter 1. Lecture Notes

Remark 1.1.6. Our definition is currently a little weird. For instance, with our current defini-
tion, for certain fields k, a curve can be

• empty (think x2 + y2 + 1 = 0 over R),
• a finite collection of points (think x2 + y2 = 0 over R and Proposition 1.1.7, or think of
what happens when k = Fq is a finite field),

• and all of A2
k (again think of k = Fq being a finite field).

Neither of these sets seem to be “1-dimensional,” which is the elusive notion we are trying to
capture. We could either choose to restrict ourselves to working over infinite fields or alge-
braically closed fields (even in positive characteristic–see Exercise 2.2.8), but this misses a lot of
important number theory (see Examples 1.1.11 and 1.1.15). Alternatively, we can accept that
our definition is broader than initially intended, and try to study its consequences.

Proposition 1.1.7. Let k be a field. If C,D ⊂ A2
k are curves, then so is C ∪D.

Proof. If C = Cf and D = Cg for f, g ∈ k[x, y], then C ∪D = Cfg. ■

Remark 1.1.8. Here we are using that k[x, y] is a ring (how?), and that k is a field (or at least
that it is a domain–what happens if k is not even a domain?). We will say more about this
when we talk about irreducibility and reducedness of curves.

1.1.1 Motivating Questions

Given a field k and a curve C ⊂ A2
k, we can ask several questions about it.

Question 1.1.9. Is C = ∅?

This is not at all as trivial as it seems. Many number-theoretic questions can be
phrased in this language, if we take k to be Q or a finite field Fq, for instance.

Example 1.1.10. Take k = Q, fix a prime p, and look at the curve C defined by

f(x, y) := x2 + y2 − p ∈ Q[x, y].

Then C = ∅ iff p satisfies a certain congruence condition (which?). See Exercise 2.1.1.

Example 1.1.11. Take k = Fp to be a finite field of prime order and a ∈ k to be any element,
and look at the curve C defined by

f(x, y) = x2 − a ∈ Fp[x, y].

Then C = ∅ iff a is quadratic nonresidue modulo p, i.e.
(
a
p

)
= −1.

Remark 1.1.12. For any field k, if f(x, y) ∈ k[x, y] is a polynomial of x only, then the curve Cf

defined by f is a finite (possibly empty) union of “vertical lines”. Can you make this precise?

Example 1.1.13. Take k = Q and n ≥ 1 to be a positive integer. Let

fn(x, y) := xn + yn − 1 ∈ Q[x, y],

and Cn := Cfn be the curve defined by fn. Then Fermat’s Last Theorem says that

Cn(Q) = ∅ ⇔ n > 2.

7



Chapter 1. Lecture Notes

Question 1.1.14. If C is nonempty, what can we say about the locus C? Is it finite or
infinite? What can we say about its topologya?

aWhat’s that?

Example 1.1.15. For instance, if k is finite, what is the cardinality of C(k)? Suppose k = Fq is
a finite field, and that C is an elliptic curve1, e.g. the curve defined by

f(x, y) = y2 − x3 − x ∈ Fq[x, y]

when q is not a power of 2. The Hasse Theorem says that, in the above case,

(
√
q − 1)2 ≤ #C(Fq) ≤ (

√
q + 1)2.

In particular, we have #C(Fq) ∼ q for all large q. (What does that even mean? Aren’t we
starting with a fixed q to begin with?) We will not prove this theorem in this course.

Example 1.1.16. If k = R or k = C, how many pieces (i.e. connected components) does C(k)
have? How are they related to each other? See Exercise 2.1.2 for the case when k = R. Another
theorem, which will not prove in this course, asserts that if k = C, then any irreducible curve2

is connected.

1.1.2 Some Unimportant Remarks

Remark 1.1.17. Why did we require k to be a field? What would happen if k were just a
ring–does the notion of an affine plane curve over a ring make sense? [Hint: some things make
sense, whereas other things like Proposition 1.1.7 break down. See Remark 1.1.8.] Can you see
how far you can go till things break down and what you can salvage by adapting definitions?

Remark 1.1.18. As sets, A2
k and k2 = k × k are identical3, but A2

k does not come equipped
with additional structure that k2 is often (implicitly) interpreted to have: k2 is often seen (by
students who have seen some linear algebra) as a vector space with an additive structure and
a distinguished origin, but for us A2

k is just a set4 and, as will become clear when we discuss
affine changes of coordinates, there is no distinguished point in A2

k–all points “look the same”.
In slightly more grown-up terminology, the affine plane over k is a principal homogenous space
or torsor for the (underlying additive group) of the vector space k2. If you do not understand
what this remark means, you can safely ignore it.

Remark 1.1.19. Regarding the different choices of the field k: it’s often easiest to plot curves
over k = R, but plots can also be made over other fields such as k = C (using some ingenuity
and imagination–how?) or k = Fq (this may be a silly, uninstructive plot, but not always!). We
will see throughout the course that it is, in fact, easier to work with curves over k = C than
over k = R (why do you think this might be?). However, curves over other fields are equally
important:

(a) Fields such as k = Q,Fp (or finite extensions and completions of these–such as k = Qp)
show up a lot in solving number-theoretic questions. See Examples 1.1.10, 1.1.11 and
1.1.13.

1We will define this notion formally later.
2Now, what’s that?
3Only according to our definition! There are other accepted definitions of A2

k, such as A2
k = Spec k[x, y], for

which this is no longer the case. You don’t have to wrorry too much about this right now.
4Later on in your studies, it can, and will, be given the structure of a topological space, and in fact a locally

ringed space (even affine scheme).
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Chapter 1. Lecture Notes

(b) Another case of interest is when k = K(t) for some other field k. When K = Fq is a finite
field, working with curves over k = Fq(t) is known as a the “function field analog” of the
theory of curves. Many important questions which are unsolved in the “usual case” have
been solved in the function field case (such as the Riemann Hypothesis), and this provides
(one strand of) evidence for the Riemann Hypothesis.

(c) In (b), when we take K = C, so that we are looking at curves over k = C(t), we are really
looking at one-parameter families of curves that fit together into an algebraic surface. For
instance, elliptic curves over C(t) often give rise to elliptic K3 surfaces. This perspective
is very helpful in the study of higher-dimensional algebraic varieties as well.

Figure 1.1: The elliptic curve over k = C(z) defined by y2 = x3 − 3zx + (z3 + 1)(z + 2)−1 in
blue, along with its hyperplane section at z = 2, which is the elliptic curve y2 = x3 − 6x+ 9/4.
Picture made with Desmos 3D.

Therefore, it is helpful to have the flexibility to work over arbitrary fields from the beginning.
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Chapter 1. Lecture Notes

1.2 06/12/24 - Degree I, More Examples

Today, I want to start discussing an important notion, namely that of the degree of an algebraic
curve, and give more examples of curves.

1.2.1 Degree I

Clearly, the “degree” of a line should be one, whatever the word “degree” means. Similarly, the
degree of the parabola defined by y − x2 should be two.

So we can start defining the degree of a polynomial f ∈ k[x, y] as follows: the degree of
a monomial cxiyj where 0 ̸= c ∈ k and i, j ≥ 0 is i+j, and the degree of f is the maximal degree
of the (finitely many) monomials appearing in it. Here’s one definition we can now propose:

Definition 1.2.1 (Degree–Attempt I). For a field k and curve C ⊂ A2
k, pick a nonconstant

f ∈ k[x, y] such that C = Cf (this exists because C is a curve!), and define the degree of
C by

degC := deg f.

Is this a definition? Well, not really. For this to be a definition, we have to check that
if for f, g ∈ k[x, y] we have Cf = Cg, then deg f = deg g. Unfortunately, this is not quite the
case with our definitions. Consider the following examples:

(a) When k = R, we can take f(x, y) = x3 − y3 and C = Cf . Then Cf is also Cℓ where
ℓ(x, y) := x− y, but deg f = 3 while deg ℓ = 1.

(b) What happens to the empty set? E.g. when k = R, then for any n ≥ 1 we have Cfn = ∅,
where fn := x2n + y2n + 1 ∈ k[x, y]. Therefore, the empty set should have degree every
positive even integer.

(c) Maybe (a) and (b) illustrate that there is something wrong with the field k = R. But,
in fact, this notion is problematic over other fields too: for any field f ∈ k[x, y], we have
thanks to the proof of Proposition 1.1.7 that

Cf2 = Cf ∪ Cf = Cf .

If f is nonconstant, then deg f2 = 2deg f > deg f , and this is a problem.

What should we do? One salvage (proposed by students) could be:

Definition 1.2.2 (Degree–Attempt II). For a field k and curve C ⊂ A2
k, look at the set

{deg f : nonconstant f ∈ k[x, y] such that C = Cf}.

This set is a nonempty subset of the positive integers by definition, and so we may use the
Well-Ordering Principle to define the degree of C, written degC, to be the least element
of this set.

This is at least a definition. However, again we have some weird properties. For
instance, by this definition, in example (a) above, the curve defined by f(x, y) = x3 − y3 will
have degree 1, whereas the empty set of example (b) will have degree 2 (why?). Let’s use this
as a provisional definition for now–we will revisit it in a few lectures.

Let’s now do some more examples of curves.
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Chapter 1. Lecture Notes

1.2.2 Polar Curves

I’ll assume some familiarity with polar coordinates.

Definition 1.2.3. Given any function G : [0,∞) × R → R, the polar curve PG ⊂ A2
R

implicitly defined by the vanishing of G is the subset

PG := {(r cos θ, r sin θ) : (r, θ) ∈ [0,∞)× R such that G(r, θ) = 0} ⊂ A2
R.

Example 1.2.4. The Archimedean spiral is the polar curve defined by G(r, θ) = r − θ. (Get
Desmos to draw a picture!)

Remark 1.2.5. Note that there is some redundancy here: for any (r, θ) ∈ [0,∞)× R, the polar
coordinates (r, θ) and (r, θ + 2π) define the same point in A2

R, and for all θ ∈ R, the polar
coordinates (0, θ) define only the origin (0, 0) ∈ A2

R. Could we perhaps come up with a better
domain of definition for G?

A natural question to ask is: which of these curves is an algebraic curve? Here’s one
thing you can do: any nonconstant polynomial g(r, c, s) ∈ R[r, c, s] in the variables r, c, and s5

defines a function Gg of r and θ by

Gg(r, θ) = g(r, cos θ, sin θ).

The vanishing set of Gg will be denoted by Pg := PGg ; this is the curve implicitly defined by
the “polar polynomial” g.

Example 1.2.6. What curve do you get by taking g(r, c, s) = (r2 − 1)3 − r5c2s3?

Example 1.2.7. What’s the equation of a line ℓ ⊂ A2
R defined by say ax+by+c = 0 for a, b, c ∈ R

with not both a and b zero, in polar coordinates?

But how do we know that such a subset is always an algebraic curve in our definition
(using x and y coordinates)? Here’s the result we need:

Proposition 1.2.8. Given any nonconstant g(r, c, s) ∈ R[r, c, s], there is a nonconstant
f(x, y) ∈ R[x, y] such that

Pg ⊂ Cf .

Proof. We give an algorithm to produce an f . Firstly, find k ≥ 0 such that rkg is a polynomial
in the variables r, rc and rs. Next, rearrange to separate odd powers of r, i.e. find polynomials
p(t, u, v), q(t, u, v) ∈ R[t, u, v] such that

rkg = r · p(r2, rc, rs)− q(r2, rc, rs).

Finally, take
f(x, y) := (x2 + y2) · p(x2 + y2, x, y)2 − q(x2 + y2, x, y)2.

■

We leave it to the reader to verify details of the proof (why is f nonconstant?), as well
as the fact that this procedure works; it is, of course, essentially the only natural thing to do.

5Even any element in the quotient ring R[r, c, s]/(c2 + s2 − 1).
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Chapter 1. Lecture Notes

Example 1.2.9. Consider g(r, c, s) = r2 − s. Take k = 1 and p = t and q = v to get

f(x, y) = (x2 + y2)3 − y2.

Use Desmos to plot the curves Pg and Cf .

Here are two issues with this approach:

(a) From Example 1.2.9, it is clear that the “squaring” at the last step introduces extraneous
components. Can these components be avoided? We will eventually develop more tools to
answer such questions, but for right now you are invited to explore this in Exercise 2.1.3.

(b) Is the f produced in Proposition 1.2.9 here unique? It is not because we can always
multiply f with anything else: for any h ∈ R[x, y], we have Cf ⊂ Cfh. Here’s a better
question: is this f unique (up to scalars) if we require it to be of smallest degree? You
are invited to explore this in Exercise 2.1.10.

1.2.3 Synthetic Constructions

Sometimes, we can give “synthetic constructions” for curves. Instead of telling you what that
means, I’ll just go over a few examples. For now, we’ll stick to k = R.

Example 1.2.10. Given a line ℓ ⊂ A2
R (the “directrix”) and a point O ∈ A2

R not on it (the
“focus”), we can look at the locus

C := {P ∈ A2
R : dist(P, ℓ) = dist(P,O)}

of points at an equal distinct from ℓ and O. This is, of course, one classical definition of the
parabola. Taking the line ℓ to be x + a = 0 and the point O to be (a, 0) for some 0 ̸= a ∈ R
(see Figure 1.2) gives us the algebraic equation

f(x, y) = y2 − 4ax.

Figure 1.2: The synthetic construction of the parabola. Picture made with Desmos.

Other conic sections–ellipses and hyperbolae–also admit such synthetic descriptions.
One way to connect these synthetic definitions to the definitions as sections of a cone is to use
Dandelin spheres; see this fantastic video by 3Blue1Brown for more on this. Finally, note that
an ellipse limits to a circle as the foci coincide, and a pair of lines as well as a “double” line
can be obtained as a “limit” of these conic sections as well–for instance, as a → 0, the above
parabola limits to the “double” line y2 = 0. This suggests that we should also count pairs of
lines and double lines as conic sections, at least if we the set of conic sections to be closed under
limits of coefficients. This motivates the following definition over arbitrary fields:

12
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Definition 1.2.11. For a field k, a conic section, or conic, is a curve C ⊂ A2
k defined by the

vanishing of a quadratic polynomial of the form

f(x, y) = ax2 + hxy + by2 + ex+ fy + c ∈ k[x, y]

for some a, b, c, e, f, h ∈ k, not all zero.

Note how this definition encapsulates all the above notions: of ellipses, hyperbolae,
parabolae, pairs of lines, and double lines. In Exercise 2.1.6, you’ll show that at least when
k = C, these are all the conics, up to affine changes to coordinates (to be defined soon). When
ch k ̸= 2, it is often traditional to replace h, e, f in the above with 2h, 2e, 2f–this is because it
allows us to think of this vanishing locus as the set of (x, y) such that

[
x y 1

] a h e
h b f
e f c

xy
1

 = [0]

and then to use tools of linear algebra to help us study conics. More on this later.

Example 1.2.12 (Cassini Ovals and Lemniscate). For any two points A,B ∈ A2
R and constant

b ≥ 0, we can consider the locus

Cb := {P ∈ A2
R : dist(P,A) · dist(P,B) = b2}.

For varying values of b, these give a family of curves, whose members are called Cassini ovals.
These are named after the 17th century astronomer Giovanni Domencio Cassini, who used these
in his study of planetary motion. Taking A and B to be at (±a, 0) for 0 ̸= a ∈ R yields the
equation

fa,b(x, y) :=
(
(x− a)2 + y2

) (
(x+ a)2 + y2

)
− b4 ∈ R[x, y].

The shape of these ovals depends only on the eccentricity e := b/a. When e = 0,
the curve is two points; when 0 < e < 1, the curve consists of two oval pieces (i.e. connected
components); when e = 1, the curve is the Lemniscate of Bernoulli–the ∞ symbol–which has a
node at the origin; when e > 1, the curve is connected. For 1 < e <

√
2, the curve is not convex,

but for e ≥
√
2 it is. The limiting case of e → ∞ is the circle. You are invited to prove these

results in Exercise 2.2.2. See Figure 1.3 in which I have drawn these ovals for some values of e
between 0 and 2, and marked the special cases e = 0, 1,

√
2 in black.

Figure 1.3: The Cassini ovals. Picture made with Desmos.

13
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Example 1.2.13 (Cissoid of Diocles). This curve is named after the ancient Greek mathematician
Diocles. To construct it, start with a circle S ⊂ A2

R and a point O ∈ S. Construct the
diameter OO′ to S through O as well as the tangent line ℓ to S through O′. Now for each
point Q ∈ S, extend the line OQ to meet ℓ in R, and mark off the point P on OQ such that
dist(OP ) = dist(QR). As Q varies on S, the path that P traces out is called the cissoid; see
Figure 1.4a. Taking O = (0, 0) and S to have center (a, 0) and radius a for a ∈ (0,∞) yields
the polar equation

r = 2a(sec θ − cos θ),

which is easily seen (check!) to correspond to the Cartesian description as the vanishing locus
of

fa(x, y) = (x2 + y2)x− 2ay2 ∈ R[x, y].

For all nonzero values of a, this polynomial fa defines a plane cuspidal cubic. The name of this
curve is derived from the Greek κισσοειδής, which means “ivy-shaped”, presumably because of
the similarity to the shape of ivy leaf edges (see Figure 1.4b).

(a) Cissoid of Diocles. Made with Desmos. (b) An ivy leaf. Picture from the internet.

Figure 1.4: Comparison of the cissoid and the edgy of an ivy leaf.

There are many other constructions of this curve: for instance, it is the curve obtained
by inverting a parabola in a circle centered at its vertex, and also, if two congruent parabolae
are set vertex-to-vertex, and one rolls on the other, then the vertex of the rolling parabola traces
out the cissoid. It is a fun exercise, left to the reader, to try to prove these assertions.

It was a classical observation that the cissoid can be used to construct two mean
proportionals to a given length a > 0, i.e. to construct the length 3

√
a, given the length a. You

are invited to explore this in Exercise 2.1.5.

Example 1.2.14 (Conchoids). Our final example of a synthetic construction is that of conchoids.
To construct a conchoid, you need a triple (O,C0, a), where O ∈ A2

R is a point, C0 ⊂ A2
R is

the “base curve” and a ∈ [0,∞). Then the conchoid with these parameters is constructed as
follows: for each point P ∈ C0, draw the line segment OP joining O and P , and let R,R′ be
points on the line OP on either side of P (with say R in the direction of the ray OP from P )
satisfying

dist(PR) = dist(PR′) = a.

As P varies on C0, the points R and R′ trace out a curve, and this is the curve we call the
conchoid. (Sometimes the locus traced by either R or R′ is also called the conchoid.) See Figure
1.5a.

14
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(a) Conchoid with base curve a circle. (b) Various conchoids of Nichomedes.

Figure 1.5: Conchoids of various forms. Pictures made with Desmos.

If we set O = (0, 0) and suppose that C0 is given by the polar equation r = f(θ) for
some function f , the the conchoid has polar equation

r = f(θ)± a.

For instance, taking C0 to be the line x = t yields the curve called the conchoid of Nichomedes,
and it is easy to see (check!) that it has the Cartesian description as the vanishing locus of

f(x, y) = (x− t)2(x2 + y2)− a2x2 ∈ R[x, y].

See Figure 1.5b for a plot of conchoids for various values of the parameters. The name comes
from the Greek word κόγχη meaning “conch” or “shell”–I’ll let you be the judge of whether this
curve resembles the shape of a conch.

The conchoid of Nichomedes constructed with appropriate parameters can be used to
trisect a given angle. You are invited to prove this in Exercise 2.1.5.

Many more examples of such synthetic constructions can be found in Brieskorn and
Knörrer’s Plane Algebraic Curves, [1, Chapter I].

15
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1.3 06/14/24 - Parametric Curves

Today we’ll discuss parametrization of curves, and what you can do with them.

Example 1.3.1. Given a field k and u, v, w, z ∈ k with not both u,w zero, you can look at the
subset given parametrically by

C := {(ut+ v, wt+ z) : t ∈ k} ⊂ A2
k.

This is the line Cℓ defined by the polynomial

ℓ(x, y) := wx− uy − wv + uz ∈ k[x, y].

Conversely, any line ℓ can be similarly parametrized (this uses that ℓ is not constant!).

Example 1.3.2. For any field k, the parametrization (t, t2) traces the parabola y − x2 = 0.

Example 1.3.3. Take k = R and the subset

C := {(t2, t2 + 1) : t ∈ R} ⊂ A2
R.

This is the ray defined by y − x − 1 = 0 and x ≥ 0. This example shows that a “quadratic”
parametrization can give rise to a linear curve, and the image of a parametrization of this sort
need not be an entire algebraic curve, even if it is part of one.

One might argue that the above phenomenon occurs only because t2 cannot be negative
in R, i.e. that R is not algebraically closed. However, as the following example shows, the same
thing can happen also over any field.

Example 1.3.4. For any field k, the subset

C :=

{(
t+ 1

t+ 3
,
t− 2

t+ 5

)
: t ∈ k ∖ {−3,−5}

}
⊂ A2

k

traces out the hyperbola defined by

f(x, y) = 2xy + 5x− 4y − 3 ∈ k[x, y],

except for the point (1, 1), i.e.
C = Cf ∖ {(1, 1)}.

As we shall see, this is the typical situation–that over an algebraically closed fied k, a
rational parametrization of an algebraic curve C can miss at most one point–more on that next
time.

Here’s one example of a thing we can do with parametrizations.

Theorem 1.3.5 (Primitive Pythagorean Triples). IfX,Y, Z ∈ Z are pairwise coprime positive
integers such that X2 + Y 2 = Z2, then there are coprime integers m,n of different parity
such that m > n > 0 and either (X,Y, Z) or (Y,X,Z) is (m2 − n2, 2mn,m2 + n2).

Of course, this result can be used to produce or characterize all Pythagorean triples,
not just primitive ones (how?).
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Proof. Over any field k (of characteristic other than 2 for simplicity), we can parametrize the
circle C defined by x2+y2−1 ∈ k[x, y] by projection from the point (−1, 0). In other words, for
each t ∈ k, we may look at the line through (−1, 0) with slope t, which is given by the vanishing
of y − t(x+ 1), and consider its intersection with the circle C. We can now solve the system of
equations

x2 + y2 − 1 = 0

y − t(x+ 1) = 0

by substituting the expression for y from the second line in the first to get

0 = x2 + t2(x+ 1)2 − 1 = (x+ 1)
(
(1 + t2)x− (1− t2)

)
.

One of the roots of this quadratic equation is the expected x = −1, and, as long as 1 + t2 ̸= 0,
the other root is

x =
1− t2

1 + t2
,

which yields the point (
1− t2

1 + t2
,

2t

1 + t2

)
∈ C.

This recipe tells us that, in fact, this is a parametrization of all of C–except the point (−1, 0)
itself, i.e. {(

1− t2

1 + t2
,

2t

1 + t2

)
: t ∈ k, 1 + t2 ̸= 0

}
= C ∖ {(−1, 0)}.

Make sure you understand this! Of course, this is the familiar “half-angle” parametrization of
the circle, i.e. we have the trigonometric identities

cos θ =
1− tan2 θ/2

1 + tan2 θ/2
and sin θ =

2 tan θ/2

1 + tan2 θ/2
.

See Figure 1.6.

Figure 1.6: Parametrizing the circle x2 + y2 = 1.
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Now, let’s specialize to the case k = Q. If X,Y, Z are as in the statement, then the
point

(x, y) :=

(
X

Z
,
Y

Z

)
∈ C(Q)∖ {(−1, 0)},

so there is a t ∈ Q such that (
X

Z
,
Y

Z

)
=

(
1− t2

1 + t2
,

2t

1 + t2

)
.

Then 0 < t < 1 because X,Y > 0. Write t = m/n for some positive coprime integers m,n with
m > n > 0 to get (

X

Z
,
Y

Z

)
=

(
1− t2

1 + t2
,

2t

1 + t2

)
=

(
m2 − n2

m2 + n2
,

2mn

m2 + n2

)
.

If m and n are of opposite parity, then the expression on the right is in lowest terms (check!)
and hence we conclude that

(X,Y, Z) = (m2 − n2, 2mn,m2 + n2)

as needed. If m and n are both odd, then

gcd(m2 − n2,m2 + n2) = gcd(2mn,m2 + n2) = 2,

from which we conclude that

2X = m2 − n2,

2Y = 2mn,

2Z = m2 + n2.

In this case, we can take

m′ :=
m+ n

2
and n′ :=

m− n

2
,

which are again coprime, of different parity (check!), such that m′ > n′ > 0 and

(Y,X,Z) =
(
(m′)2 − (n′)2, 2m′n′, (m′)2 + (n′)2

)
.

■

Let’s now do some parametrizations of higher degree curves.

Example 1.3.6 (Cuspidal Cubic). For any field k, consider the set

C := {(t2, t3) : t ∈ k} ⊂ A2
k.

If we let
f(x, y) := y2 − x3 ∈ k[x, y],

then it is clear that
C ⊂ Cf .

To go the other direction, suppose we have a point (p, q) ∈ Cf . If p = 0, then q = 0 as well, and
then (p, q) = (t2, t3) for t = 0. Else, if p ̸= 0, then it is easy to see (check!) that (p, q) = (t2, t3)
for t := q/p. This tells us that

C = Cf .

Again, what we are doing geometrically is that we are parametrizing points of the cuspidal
cubic by the slope of the line joining the point to the cusp.
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Example 1.3.7 (Nodal Cubic). For any field k, consider the curve Cf defined by the vanishing
of

f(x, y) = y2 − x3 − x2 ∈ k[x, y].

This is a nodal cubic with a node at (0, 0). For any t ∈ k, consider the line of slope t through
the node, which has the equation y − tx = 0. We may now solve the system of equations

y2 − x3 − x2 = 0

y − tx = 0

as before by subsituting the second line into the first to get

0 = t2x2 − x3 − x2 = x2(−x+ t2 − 1).

This is a cubic equation with a “double root” at x = 0; this captures the fact that the point
(0, 0) is a node (how?). The third root is then the unique point of intersection of this line with
the curve Cf other than the origin, and has x-coordinate x = t2 − 1 and hence coordinates

(x, y) = (t2 − 1, t3 − t2).

This is easily seen to be (check!) a parametrization of Cf , i.e.

Cf = {(t2 − 1, t3 − t2) : t ∈ k}.

The above examples lead us to ask the following natural questions:

Question 1.3.8. Does every curve C ⊂ A2
k admit a rational parametrization? In other

words, given any curve C ⊂ A2
k, are there rational functions u(t), v(t) ∈ k(t) such that

C = {(u(t), v(t)) : t ∈ k ∖ S},

where S ⊂ k is the finite set of poles of u(t) and v(t)?

Question 1.3.9. Is every subset of A2
k given parametrically by rational functions an alge-

braic curve? In other words, given any u(t), v(t) ∈ k(t) and S as before, can we always
find an f(x, y) ∈ k[x, y] such that

{(u(t), v(t)) : t ∈ k ∖ S} = Cf?

The answer to Question 1.3.8 is “yes” if C is a line (Example 1.3.1), “almost yes”
if C is a conic, and “no, in general” if C has higher degree. Here’s what the “almost yes”
means: it means that if C is a conic and C(k) ̸= ∅, then given any point P ∈ C(k), there is a
parametrization of C(k)∖P (by projection from the point P to any line not containing P , as in
the proof of Theorem 1.3.5), and in some cases we may have a complete parametrization of C(k)
as well6, as in Example 1.3.2. For curves of higher degree, the situation is drastically different:
most curves of higher degree (in some sense of the word) do not admit rational parametrizations.
However, proving this is beyond our tools at the moment. The simplest example of a curve that
does not admit a rational parametrization is probably given by taking

f(x, y) := y2 − x3 + x ∈ k[x, y]

6This happens precisely when C ∖C contains a k-rational point, where C ⊂ P2
k is the projective closure of C.

If you don’t know what this means, you can ignore it now.
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when ch k ̸= 2. In Exercise 2.2.1, you will be guided through a proof of this result, at least
when ch k = 0.

The answer to Question 1.3.9 is also “no”, at least the way it is currently stated, as
Examples 1.3.3 and 1.3.4 illustrate. However, the claim actually admits a very nice salvage; as
it turns out, we can always find an f such that C ⊂ Cf , and at least when k is algebraically
closed (a notion to be discussed soon), either C is all of Cf or all of Cf except perhaps one
point. We will not prove this general statement here, although see Remark 1.3.11.

Given u and v, finding such an f as in Question 1.3.9 amounts to “eliminating” t from
the system of equations

u(t)− x = 0

v(t)− y = 0.

This is the beginning of a vast subject called elimination theory; we won’t get into the general
theory here, and only discuss specific examples. Let’s start with one.

Example 1.3.10 (Student Example). For any field k, consider the curve given parametrically as

C = {(t3 − 2t2 + 7, t2 + 1) : t ∈ k} ⊂ A2
k.

To produce such an f , perform Euclid’s algorithm on the polynomials

A = t3 − 2t2 + 7− x

B = t2 + 1− y

in the polynomial ring K[t] where K = k(x, y) is the field of rational functions in two variables
x and y. The algorithm runs to give us

A = Bq1 + r1,

B = r1q2 + r2, and

r1 = r2q3,

where

q1 = t− 2, r1 = (y − 1)t− (x+ 2y − 9),

q2 =
1

y − 1
t+

x+ 2y − 9

(y − 1)2
, r2 =

(x+ 2y − 9)2 − (y − 1)3

(y − 1)2
,

and q3 = r1r
−1
2 . We claim that taking

f(x, y) = (x+ 2y − 9)2 − (y − 1)3 ∈ k[x, y]

suffices in the sense that at least C ⊂ Cf . To see this, use backward substitution in Euclid’s
algorithm to obtain the polynomial identity

f = P ·A+Q ·B ∈ k[x, y, t]

where

P = −(y − 1)t− (x+ 2y − 9), t and

Q = (y − 1)t2 + (x− 7)t+ y2 − 2x− 6y + 19.
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This identity tells us that if for some x, y, t ∈ k we have (x, y) = (t3 − 2t2 + 7, t2 + 1), then
A = B = 0 and hence f(x, y) = 0, proving that C ⊂ Cf . Note that

f(x, y) = det


1 0 1 0 0
−2 1 0 1 0
0 −2 1− y 0 1

7− x 0 0 1− y 0
0 7− x 0 0 1− y

 .

(Where on earth did this matrix come from?) In this case, we have in fact that C = Cf when
k is algebraically closed; you are invited to solve the mystery of this matrix and show this
last result in Exercise 2.2.4. Get Desmos to plot the curve C of Example 1.3.10 over k = R.
Geometrically, we are taking the intersection of the surfaces in (x, y, t) space defined by the
vanishing of A and B and projecting the resulting curve to the (x, y)-plane–can you get Desmos
3D to illustrate this?

Here’s a slightly more advanced explanation that I do not expect you to fully under-
stand right now; I include it for the sake of completeness and for when you revisit this topic
later.

Remark 1.3.11. Suppose we are given a parametrization of the form

C = {(u(t), v(t)) : t ∈ k ∖ S}

for some rational functions u(t), v(t) ∈ k(t) and finite set S of all poles of u(t) and v(t); for the
sake of nontriviality, we’ll assume that S ⊊ k. Write

u(t) =
p(t)

q(t)
and v(t) =

r(t)

s(t)

for some p, q, r, s ∈ k[t] with qs ̸= 0 and (p, q) = (r, s) = (1). Consider the elements

A := p− xq and B := r − ys

of k[x, y, t] ⊂ K[t] where K = k(x, y). Now consider the ideal (A,B) ⊂ K[t]. Since K[t] is a
Euclidean domain and hence a PID, either (A,B) = (q) for some q ∈ K[t] of positive degree,
or (A,B) = (1). In fact, the former case cannot happen, although we don’t quite yet have the
tools to prove this.7 It follows that the Euclidean algorithm can be used as above to produce
P,Q ∈ k[x, y, t] and nonzero8 f ∈ k[x, y] such that

f = P ·A+Q ·B ∈ k[x, y, t]. (1.1)

The polynomial f then cannot be constant: if it were a nonzero constant c, then we
could take any value of t ∈ k ∖ S and substitute x = u(t), y = v(t) in (1.1) to produce the
contradiction c = 0. It follows as before that

C ⊂ Cf .

7Here’s a proof: if A and B had a common factor q ∈ K[t] of positive degree, then there would be an
α ∈ K = k(x, y) such that p(α)− xq(α) = r(α)− ys(α) = 0. Now, we claim that q(α) ̸= 0. Indeed, if q(α) = 0,
then p(α) = 0 as well, but already there are m,n ∈ k[t] such that mp+ nq = 1, so plugging in t = α would give
0 = 1, which is false. Similarly, s(α) ̸= 0. Therefore, in K(α), we have

x =
p(α)

q(α)
and y =

r(α)

s(α)
.

Therefore, k(α) ⊃ k(x, y) is a finite algebraic extension, but that cannot happen because the transcendence
degree of k(x, y) over k is 2. Alternatively, more “elementary” proofs can be given using the theory of Gröbner
bases.

8This uses that (A,B) = (1) in K[t].
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In fact, if f is chosen to be of minimal degree such that an equation like (1.1) holds (e.g. such
as when f is coprime to P and Q–which we always do by cancelling common factors), then this
f is none other than the resultant of A and B with respect to t, i.e. f = Rest(A,B).

Finally, it is not always true that Cf ⊂ C, although if k is algebraically closed then
C is either all of Cf or Cf minus at most one point; we certainly don’t have the tools to prove
this (at least at this level of generality) either.9

9Here’s a proof: the rational parametrization amounts to a morphism

φ : A1
k ∖ S → Cf

which extends by smoothness of P1
k to a morphism

φ : P1
k → Cf ⊂ P2

k,

where Cf is the projective closure of P2
k. Since, by assumption, φ is not constant, it follows from the general

theory of curves that this morphism is surjective on k-points. Note that any point in S must map to Cf ∖ Cf

by the hypothesis that S is the set of poles of u(t) and v(t). If we let ∞ denote the unique k-point of P1
k ∖ A1

k,
then we have two cases: either φ(∞) ∈ Cf ∖ Cf , in which case it follows that φ : A1

k ∖ S → Cf is surjective on
k-points, or φ(∞) ∈ Cf , in which case φ : A1

k ∖ S → Cf is surjective onto Cf (k)∖ {φ(∞)}.
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1.4 06/17/24 - Changes of Coordinates, Nonempty Curves

1.4.1 Affine Changes of Coordinates

Definition 1.4.1. An affine change of coordinates is a transformation

ϕ : A2
k(x

′, y′) → A2
k(x, y)

of the form
(x, y) = ϕ(x′, y′) = (ax′ + by′ + p, cx′ + dy′ + q),

for some a, b, c, d, p, q ∈ k, where ad− bc ̸= 0.

Here A2
k(x

′, y′) is just the plane A2
k, which we think of as having coordinates x′, y′ (and

similarly for A2
k(x, y)). The ad− bc ̸= 0 condition guarantees that ϕ is invertible (why?). Affine

changes of coordinates comprise of a linear map following by a translation; in particular, the
image ϕ(0, 0) = (p, q) of the “origin” (0, 0) ∈ A2

k can be any point, i.e. all points look the same
(see also Remark 1.1.18).

Note that such a transformation induces a map on the polynomial rings in the opposite
direction, i.e. we have a ring homomorphism (even a k-algebra homomorphism)

ϕ∗ : k[x, y] → k[x′, y′], x 7→ ax′ + by′ + c, y 7→ cx′ + dy′ + q

which records the same information. For instance, ϕ is an isomorphism iff ϕ∗ is. The reason
for this switching of direction, also called “contravariance,” is that you should think of k[x, y]
as the ring of polynomial functions f : A2

k → k, so a coordinate transformation ϕ : A2
k(x

′, y′) →
A2
k(x, y), or more properly ϕ∗, takes a function f : A2

k(x, y) → k to the function

ϕ∗f = f ◦ ϕ : A2
k(x

′, y′) → k

obtained via precomposition. (This is the ultimate root of all contravariance in algebraic geom-
etry.) Of course, thinking of polynomials as functions is not quite right, as you are invited to
explore in Exercise 2.2.6; however, this suffices to get good intuition.

Here are a few things you can do with these: check that given any point (p, q) ∈ A2
k

and line ℓ through (p, q), there is an affine change of coordinates ϕ : A2
k(x

′, y′) → A2
k(x, y) such

that ϕ(0, 0) = (p, q) and ϕ−1ℓ = Cx, i.e. such that in the coordinate system (x′, y′), the point
(p, q) moves to the origin and the line ℓ moves to the y-axis Cx. We shall often define things
in this course in good coordinate systems–it is then your job to check that these definitions are
invariant under affine changes of coordinates. You are invited to play with the transformation
of conics under affine changes of coordinates in Exercise 2.1.6.

1.4.2 Algebraically Closed Fields

As we have seen many times previously, it may very well happen over an arbitrary (even infinite)
field k that the vanishing locus Cf ⊂ A2

k of a polynomial function corresponding to a nonconstant
polynomial f ∈ k[x, y] is just empty. One example of this situation is when

f(x, y) = xn + a1x
n−1 + · · ·+ an ∈ k[x, y],

i.e. that f is a polynomial of x alone. In this case, the corresponding locus Cf is nonempty iff
this equation has a root in k, in which case Cf is the union of some vertical lines (see Remark
1.1.12). This suggests that the problem lies already in finding solutions to polynomial in one
variable.
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Definition 1.4.2. A field k is said to be algebraically closed if for every nonconstant poly-
nomial f(x) ∈ k[x], there is a root of f in k, i.e. there is an α ∈ k such that f(α) = 0.

Example 1.4.3. The fields Q,R and Fq for any q are not algebraically closed (why?).

Here are two facts which I will take for granted–these are important theorems in their
own right, but this course is perhaps not the right place for them.

Theorem 1.4.4 (Fundamental Theorem of Algebra). The field C is algebraically closed.

Theorem 1.4.5. Given any field k, there is an algebraically closed field k′ containing k.

Theorem 1.4.5 says that every field k can be embedded into some algebraically closed
one, although in many different ways in general.10 This theorem says that we lose little when
passing to algebraically closed fields, even when working in positive characteristic. The “small-
est”11 algebraically closed field containing k is often called the algebraic closure of k, and is
often denoted k; then the condition of being algebraically closed reads k = k. This is notation I
will occasionally slip and use, although we don’t really need to dwell on the notion of algebraic
closures at the moment.

One last thing to think about: can an algebraically closed field be finite? You are
invited to explore this in Exercise 2.2.8. The following lemma might help.

Lemma 1.4.6. Let k be an algebraically closed field. If f(x) ∈ k[x] is a polynomial such
that f(α) = 0 for all α ∈ k, then f is the zero polynomial.

Proof. The polynomial f + 1 has no roots in k and is hence a constant polynomial. ■

In fact, the condition of being algebraically closed is sufficient but not necessary; this
result is, of course, the one-dimensional analog of Exercise 2.2.6. This result now allows us to
prove nonemptiness results for curves.

Theorem 1.4.7. If C ⊂ A2
k is a curve over an algebraically closed field k, then C(k) ̸= ∅.

Proof. Suppose C = Cf for some nonconstant f(x, y) ∈ k[x, y]. Write

f(x, y) = an(x)y
n + an−1(x)y

n−1 + · · ·+ a0(x)

for some integer n ≥ 0 and polynomials a0(x), . . . , an(x) ∈ k[x] with an(x) ̸= 0. If n = 0, then
f is a polynomial of x alone; since f is nonconstant and k is algebraically closed, we may pick
a root α ∈ k of this polynomial and any β ∈ k whatsoever to give us the point (α, β) ∈ C.
If n ≥ 1, then Lemma 1.4.6 gives us an α ∈ k such that an(α) ̸= 0; then the polynomial
f(α, y) ∈ k[y] is nonconstant, so again, since k is alegbraically closed, there is a root β ∈ k of
f(α, y), giving us again (α, β) ∈ C. ■

10This is a subtlety which we will not have the need to discuss right now, and a true discussion of which belongs
to algebra courses anyway.

11What would that mean?
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This statement–every algebraic curve C ⊂ A2
k is nonempty–is a characterization of

algebraically closed fields, although not an awfully useful one. In fact, as you can check, the
proof gives us more: the proof above shows that if C is not already the union of finitely many
vertical lines, then for all but finitely many values of a (namely the roots of an(x), if any), the
curve C will intersect the vertical line x = a. In particular, if k is infinite (see Exercise 2.2.8),
then this argument shows that C(k) must be infinite as well. (So we are leaving behind the
nonsense of a curve being finitely many points as well.) In Exercise 2.2.7, you are invited to
discuss whether the complement A2

k ∖ C of C in A2
k is infinite as well. The picture is therefore

somewhat easier to understand over algebraically closed fields than over general fields–this is
the reason that we shall essentially restrict ourselves to working with algebraically closed fields
from now on.

Example 1.4.8. Considering the hyperbola defined by the vanishing of f(x, y) = xy − 1 and
taking the line x = 0 shows that it is not necessarily true than an algebraic curve C intersects
every vertical line. Somehow, the point of intersection of f(x, y) = xy − 1 with x = a “moves
to infinity” as a → 0; this is a situation we will rectify in projective space, where every curve
will intersect every other. More on that soon!
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1.5 06/19/24 - Irreducibility I and Unique Factorization I

Last time, we showed that if C ⊂ A2
k is an algebraic curve over an algebraically closed field k,

then C is nonempty (and, in fact, infinite). Let’s record this fact here, since I left some of it to
you as an exercise.

Lemma 1.5.1. If k is an algebraically closed field, then any curve C ⊂ A2
k is infinite.

Henceforth, we will always assume that our base field k is algebraically closed; this
will simplify life for us tremendously. If time permits, we will return to non algebraically closed
fields towards the end of the course.

1.5.1 Irreducibility I

Today I want to spend some more time relating the algebra of k[x, y] to the geometry of curves
in A2

k. Consider the following parallel definitions:

Definition 1.5.2. Let R be a ring.

(a) An element f ∈ R is said to be irreducible if it is not zero, not a unit, and if f = gh
for some g, h ∈ R, then either g or h is a unit.

(b) An element f ∈ R is said to be a prime if it is not zero, not a unit, and if f |gh for
some g, h ∈ R, then either f |g or f |h.

Definition 1.5.3. A curve C ⊂ A2
k is said to be irreducible if whenever C = D∪E for curves

D,E ⊂ A2
k, then either D = C or E = C.

Remark 1.5.4. The condition in Definition 1.5.2(b) says that a nonzero f ∈ R is prime iff the
principal ideal (f) ⊂ R generated by f is a prime ideal. If R is an integral domain, then every
prime is irreducible, but the converse need not hold in general–see Exercise 2.3.2. The converse
does, however, hold if R is a UFD; see Proposition 1.5.8.

What is the relationship between the irreducibility of a polynomial and that of the
curve defined by it? In light of Proposition 1.1.7, one could reasonably make

Conjecture 1.5.5. Give a nonconstant polynomial f ∈ k[x, y], the algebraic curve Cf

defined by f is irreducibe iff f is.

However, a moment’s reflection shows that this cannot be correct as stated. For
instance, if f(x, y) = x2, then f is not irreducible, but the algebraic curve Cf is a line, which is
irreducible thanks to Exercise 2.1.7 (how?). One correct salvage of this statement would be

Theorem 1.5.6. If an f ∈ k[x, y] is irreducible, then Cf is irreducible, and conversely if
C ⊂ A2

k is an irreducible curve, then there is an irreducible f ∈ k[x, y] such that C = Cf .

Our next order of business is to develop tools to prove Theorem 1.5.6.
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1.5.2 Unique Factorization I

The first fact we would need is that k[x, y] is UFD. Let’s recall the definition of such a ring.

Definition 1.5.7. A ring is said to be a unique factorization domain, abbreviated UFD, if R is
a domaina, if every nonzero nonunit in it is a product of finitely many irreducible elements,
and the decomposition into irreducible factors is unique up to order and multiplication by
units. In other words, a domain R is a UFD if given any nonzero nonunit f ∈ R, there is
an integer n ≥ 1 and irreducible elements f1, . . . , fn ∈ R such that

f = f1f2 · · · fn

and if there is some other integer m ≥ 1 and irreducible elements g1, . . . , gm ∈ R such that

f = f1f2 · · · fn = g1g2 · · · gm,

then we must have n = m, a bijection σ : {1, . . . , n} → {1, . . . , n} and units c1, . . . , cn ∈ R×

such that for all i with 1 ≤ i ≤ n we have cigi = fσ(i).

aThis means the same thing as “integral domain”.

A field is vacuously a UFD–there are no nonzero nonunits. Here’s one way to identify UFD’s.

Proposition 1.5.8. Let R be a domain. Then the following are equivalent:

(a) R is a UFD.
(b) Every nonzero nonunit in R is a product of finitely many irreducible elements and

each irreducible element is prime.
(c) Every nonzero nonunit in R is a product of finitely many prime elements.

Proof.

(a) ⇒ (b) We only need to show that every irreducible in a UFD is prime; I leave this to the reader.
(b) ⇒ (c) Clear.
(c) ⇒ (a) Since primes are irreducible, all that remains to be shown is uniqueness of factorization.

For this, we first show that if (c) holds, then every irreducible element is prime: indeed,
if f ∈ R is irreducible and we write f = p1 · · · pn for some integer n ≥ 1 and primes
p1, . . . , pn, then irreducibility of f tells us (how?) that n = 1 and f = p1 is prime. We
show uniqueness of the irreducible decomposition of a nonzero nonunit f ∈ R by inducting
on the minimal number n ≥ 1 of irreducible factors in such a decomposition. For the base
case n = 1, our f = f1 itself is irreducible, so if f = g1 · · · gm for some m ≥ 1 and
irreducibles gj ∈ R, then irreducibility of f tells us (how?) that m = 1 and f = g1.
Inductively, if we have for some m ≥ n ≥ 2 that

f = f1 · · · fn = g1 · · · gm,

then primality of g1 tells us that g1 | fj for some j with 1 ≤ j ≤ n, so let c1 ∈ R be such
that c1g1 = fj . Now fj is irreducible and g1 is not a unit, so c1 must be a unit. Therefore,
cancelling f1 from both sides, we are left with

f1 · · · fj−1fj+1 · · · fn = (c−1
1 g2)g3 · · · gm,

so we are done by induction (how?).

■
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The one technique we have seen at Ross so far of showing that a domain is a UFD is
to work with Euclidean functions. Let’s define those now.

Definition 1.5.9.

(a) Let R be a domain. A Euclidean function on R is a map d : R∖{0} → Z≥0 such that
for all A,B ∈ R with B ̸= 0, there are q, r ∈ R such that

A = Bq + r

and either r = 0 or d(r) < d(B).
(b) A domain R is said to be a Euclidean domain if it admits a Euclidean function.

Here are a few key examples.

Example 1.5.10.

(a) For R = K a field, the function d ≡ 1 is Euclidean.
(b) For R = Z, the function d(n) = |n| is Euclidean.
(c) For R = Z[i] or R = Z[ω], the norm function d(α) = N(α) is Euclidean.
(d) For R = K[t], the polynomial ring over the field K, the function d(f) = deg f is Euclidean.
(e) For R = K[[t]], the d(f) = ordt f taking a power series to the highest power of t dividing

it is Euclidean.

The key reason we like Euclidean domains is

Theorem 1.5.11. Every Euclidean domain is a UFD.

Proof Sketch. The key idea is that Euclidean functions allow us to perform the Euclidean algo-
ritheorem to produce the greatest common divisor of any two elements, although I do want to
warn you that the proof at this level of generality needs some work. See [2] for a direct proof,
or any algebra textbook. ■

The result that we really need, however, is that the ring R = k[x, y] is a UFD. This
cannot be done using Theorem 1.5.11–indeed, the ring k[x, y] is not a Euclidean domain.12 How
do we proceed then?

We will prove

Theorem 1.5.12. If R is a UFD, then so is the polynomial ring R[t].

Remark 1.5.13. In fact, one can check that if R is any ring such that R[t] is a UFD, then so is
R. (Prove this!) This makes the statement in Theorem 1.5.12 an “if-and-only-if” statement.

The way we will we use Theorem 1.5.12 is via

Corollary 1.5.14. If R is a UFD, then so is the polynomial ring R[t1, . . . , tn] for each n ≥ 1.
In particular, for any field k, the ring k[x, y] is a UFD.

12This is because Euclidean domains are principal ideal domains, while k[x, y] is not one. If you don’t know
what this means, you can ignore this comment. If you do know what this means, there are also examples of
principal ideal domains which are not Euclidean, but such rings are harder to come by. The simplest examples I
know of are R = Q[

√
−19] and R = R[x, y]/(x2 + y2 + 1), but proving these claims needs some work.
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To prove Theorem 1.5.12, we need some preparation. In what follows, we will fix a
UFD R and let K = FracR be its fraction field, so that K = {p/q : p, q ∈ R, q ̸= 0}. Also, for
any f ∈ R[t] and n ≥ 0, we will denote the coefficient of tn by [tn]f . The first order of business
is to show that R[t] is a domain.

Lemma 1.5.15.

(a) If R is a domain, then so is R[t].
(b) If p ∈ R is prime, then p is also prime in R[t].

Proof.

(a) Write 0 ̸= f, g ∈ R[t] as f =
∑n

i=0 an−it
i and g =

∑m
j=0 bm−jt

j for some m,n ≥ 0, with

ai, bj ∈ R and a0 ̸= 0 and b0 ̸= 0. Since R is a domain, [tm+n]fg = a0b0 ̸= 0, so fg ̸= 0.
(b) We can either reduce to (a) by noticing that R[t]/(p) ∼= (R/p)[t] (how?), or argue directly

as before: if f ∈ R[t] is such that p ∤ f and we write f =
∑n

i=0 an−it
i for some n ≥ 0 and

ai ∈ R with a0 ̸= 0, then there is some i with 0 ≤ i ≤ n and p ∤ ai; let i0 be the smallest
such i. Similarly, if p ∤ g, then write g =

∑m
j=0 bm−jt

j as in (a) and pick the smallest j0

with 0 ≤ j0 ≤ m such that p ∤ bj0 . Then, p ∤ [t(m−i0)+(n−j0)]fg (check!) so that p ∤ fg.

■

Definition 1.5.16. A polynomial f ∈ R[t] is said to be primitive if the following equivalent
conditions hold:

(a) If α ∈ R is such that α | f , then α is a unit.
(b) There is no prime p ∈ R such that p | f , i.e. p | [ti]f for all i ≥ 0.
(c) The greatest common divisor of all coefficients of f is (1).

Note that 0 is not primitive. Any f ∈ K[t] can be written as f = cont(f) · f̃ for some
cont(f) ∈ K and primitive f̃ ∈ R[t]. If f ̸= 0, then cont(f) and f̃ are uniquely determined up
to units in R; then cont(f) is called the content of f , and f̃ is called the primitive part of f ,
defined uniquely only up to units in R.13 Here are some basic properties that we will need:

Lemma 1.5.17. If 0 ̸= f ∈ K[t], then

(a) deg f̃ = deg f ,
(b) cont(f) = f iff f is constant,
(c) f ∈ R[t] iff cont(f) ∈ R,
(d) if (c) holds, then f is primitive iff cont(f) is a unit in R, and

(e)
˜̃
f = f̃ .

Proof. Left to the reader. ■

The key result that allows us to relate R[t] and K[t] is

13One way to make this precise is to say that the fractional ideal (cont f) of R and the (integral) ideal (f̃) of
R[t] are uniquely determined. We will not need these notions. When we assert an equality involving cont(f) or
f̃ , that equality will always be assumed to hold up to units.
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Lemma 1.5.18 (Gauss’s Lemma).

(a) If f, g ∈ R[t] are primitive, then so is fg. In general, if we have nonzero f, g ∈ K[t],

then cont(fg) = cont(f) cont(g) and f̃g = f̃ g̃ (up to units). The same holds for any
number f1, . . . , fn of elements with n ≥ 1.

(b) If f, g ∈ R[t] are nonzero such that f | g in K[t] and f is primitive, then f | g in R[t].
(c) If f ∈ R[t] is primitive and prime in K[t], then f is prime in R[t].

Proof.

(a) The general case follows by induction, so we do the case n = 2. If f, g ∈ R[t] are primitive
and if a prime p ∈ R were to divide fg, then it would divide either f or g by Lemma
1.5.15(b). In general, given nonzero f, g ∈ K[t], we have fg = cont(f) cont(g) · f̃ g̃, and
f̃ g̃ is primitive by the first part, so by the uniqueness of this deomposition we must have
f̃g = f̃ · g̃, and hence that cont(fg) = cont(f) · cont(g).

(b) If g = fq for some nonzero q ∈ K[t], then cont(g) = cont(f) · cont(q). Since f, g ∈ R[t],
Lemma 1.5.17(c) tells us that cont(f), cont(g) ∈ R, and since f is primitive, Lemma
1.5.17(d) tells us that cont(f) is a unit, so that cont(q) = cont(g) cont(f)−1 ∈ R, and
hence by Lemma 1.5.17(c) again we conclude that q ∈ R[t].

(c) Suppose f ∈ R[t] is primitive and prime in K[t] (and hence nonzero), and suppose f |gh
for some g, h ∈ R[t]. Then f | gh also in K[t], and so by primality either f |g or f |h in
K[t], and hence also in R[t] by (b), showing that f is prime in R[t].

■

In Lemma 1.5.18(b), we certainly need f to be primitive; a simple counterexample
otherwise is given by taking R = Z and f(t) = 2t and g(t) = t. We are now ready to prove
Theorem 1.5.12.

Proof of Theorem 1.5.12. Suppose R is a UFD and K = FracR. By Proposition 1.5.8(c), it
suffices to show that every nonzero nonunit f ∈ R[t] is a product of finitely many primes. Since
f = cont(f) · f̃ , it suffices to show that each of cont(f) and f̃ is a product of finitely many
primes in R[t].14

Since 0 ̸= cont(f) ∈ R and R is a UFD, either cont(f) is a unit in R (and hence in
R[t]), or it is a product of one or more primes in R. Since primes in R are primes in R[t] by
Lemma 1.5.15(b), it follows that cont(f) is a product of finitely many primes in R[t].

Now consider the primitive part 0 ̸= f̃ ∈ R[t]. Since K[t] is a UFD, it follows that
either f̃ is a unit in K[t] or it is the product of one or more primes in K[t]. In the former case,
f̃ is constant15 and so since it is primitive, it must be a unit in R (by Lemma 1.5.17(b) and
(d)). In the latter case, f̃ is the product of one or more primes in K[t], say f̃ = f1 · · · fn for
some n ≥ 1, where for 1 ≤ j ≤ n, each fj ∈ K[t] is prime. Then using Lemma 1.5.17(e) and
Lemma 1.5.18(a), we find that

f̃ =
˜̃
f = f̃1 · · · f̃n.

For each j, the element f̃j ∈ R[t] is primitive and prime in K[t] (since it is a nonzero constant,
i.e. unit, times the prime fj in K[t]), and so by Lemma 1.5.18(c) is a prime in R[t]. Therefore,
we have exhibited f̃ as a product of one or more primes in R[t], finishing the proof. ■

14Note that finitely many also includes zero many–i.e. it is okay for cont(f) or f̃ to be a unit in R[t], but if
both are units in R[t], then so is f = cont(f) · f̃ .

15This is because the only units in K[t] are constants, i.e. elements of K× = K ∖ {0}. If you haven’t seen this
before, prove it!
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1.6 06/21/24 - Nullstellensatz, Irreduciblity II, and Unique Fac-
torization II

Last time, we proved that if R is a UFD, then so is R[t]. The same circle of ideas allows us to
compare irreducibles in R[t] and K[t]. Let’s prove two results in this direction, and then return
to the theory of curves to see their applications.

As before, in what follows we will take R to be a UFD and K = FracR to be its
fraction field.

Lemma 1.6.1.

(a) If f ∈ R[t] is irreducible and of positive degree, then f is irreducible in K[t].
(b) If f ∈ R[t] is primitive and irreducible in K[t], then f is irreducible in R[t].

Proof.

(a) In this case, f is a nonzero nonunit in K[t]. If f = gh for g, h ∈ K[t], then Lemma
1.5.18(a) tells us that f̃ = g̃h̃, and then f = (cont(f) · g̃) · h̃. Since f is irreducible in
R[t], either cont(f) · g̃ is a unit in R, in which case g̃ is a (nonzero) constant and hence
g ∈ K[t]× by Lemma 1.5.17(a), or simlarly h̃ is a unit in R, in which case h ∈ K[t]×.

(b) This is Lemma 1.5.18(c), given that the terms “prime” and “irreducible” are inter-
changable in R[t] and K[t] thanks to Proposition 1.5.8 and Theorem 1.5.12.

■

In any UFD S, we say that two elements f, g ∈ S are relatively prime if there is no
prime p ∈ S such that p | f and p | g.

Lemma 1.6.2. If f, g ∈ R[t] are relatively prime in R[t], then

(a) they are relatively prime in K[t], and
(b) there are a, b ∈ R[t] and 0 ̸= c ∈ R such that af + bg = c.

Proof.

(a) If there is a prime q ∈ K[t] such that q | f and q | g in K[t], then by rescaling we can
assume without loss of generality that q ∈ R[t] is primitive (how?), and then Lemma
1.5.18(b) tells us that q | f and q | g in R[t], and Lemma 1.5.18(c) tells us that q is prime
in R[t]. This can’t happen if f, g ∈ R[t] are relatively prime in R[t].

(b) This is clear from the Euclidean algorithm and backward substitution if R is a field (make
sure you understand this!). In the general case, the first observation and part (a) combine
to tell us that there are a1, b1 ∈ K[t] and 0 ̸= c1 ∈ K such that a1f + b1g = c1. Now we
can simply “clear denominators”: find a 0 ̸= d ∈ R such that a := a1 · d and b := b1 · d
are in R[t], and c := c1d ∈ R.

■

Example 1.6.3. Take R = Z and f(t) = t3+1 and g(t) = t2− 7. Then we can take a = −7t+1
and b = 7t2 − t+ 49 with c = −342 via the identity

(−7t+ 1)(t3 + 1) + (7t2 − t+ 49)(t2 − 7) = −342 = −2 · 32 · 19.

Note that the same polynomial identity holds over any ring R, but something special happens
over R = Z/2,Z/3 and Z/19: the polynomials f and g end up being not relatively prime. In

31



Chapter 1. Lecture Notes

fact, f and g are not relatively prime in Z/p iff p ∈ {2, 3, 19}. This fascinating observation has
to do with resultants again–see Remark 1.6.5.

Example 1.6.4. Consider the polynomials f(x, y) = x3−12x−y2 and g(x, y) = x2−xy−y2+5
in k[x, y] for some field k (e.g. k = C). Applying the above procedure to R = k[y] with variable
t = x yields

ay = (−2y2 + 17)x+ y(3y2 − y − 22),

by = (2y2 − 17)x2 + y(−y2 + y + 5)x+ (y4 + y3 − 46y2 + 289), and

cy = −y6 − 4y5 + 52y4 + 27y3 − 519y2 + 1445.

On the other hand, applying the above procedure to R = k[x] with variable t = y yields

ax = (−x)y + (x3 − 2x2 − 12x− 5),

bx = xy + (−x3 + x2 + 12x+ 5), and

cx = x6 − 3x5 − 23x4 + 26x3 + 154x2 + 120x+ 25.

Remark 1.6.5 (Resultants). If we fix integers m,n ≥ 1, and take R = Z[a0, . . . , am, b0, . . . , bn]
with f(t) = a0t

m + · · · + am and g(t) = b0t
n + · · · + bn, then Lemma 1.6.2 gives us a, b ∈ R[t]

and 0 ̸= c ∈ R such that af + bg = c.16 The c of least such degree is (up to a negative
sign perhaps) none other than the resultant Rest(f, g) of f and g with respect to t, essentially
because it is the “universal” polynomial which in the coefficients which tests the coprimality of
f and g. This is not a hard result, but we won’t need it directly, so I won’t give a proof; you
are invited to prove it (perhaps using the definition from Exercise 2.2.4) if you’d like. Lemma
1.6.2 then gives us the important consequence that the resultant of two polynomials can be
written as a polynomial-linear combination of them with coefficients in the ring generated by
their coefficients.

1.6.1 Finite Intersection of Curves, Nullstellensatz, and Irreducibility II

Let’s now return to the theory of curves. One important consequence of Lemma 1.6.2, evident
already from Example 1.6.4 is

Theorem 1.6.6 (Finite Intersection). If k is any field and f, g ∈ k[x, y] are nonconstant
relatively prime polynomials, then the intersection Cf ∩ Cg is finite.

Proof. Applying Lemma 1.6.2 to R = k[y] with variable t = x yields a, b ∈ k[x, y] and 0 ̸= c ∈
k[y] such that af + bg = c. Therefore, if (p, q) ∈ Cf ∩ Cg, then c(q) = 0, so q is one of the
finitely many roots of c, and hence can only take on finitely many values. Reversing the roles
of x and y, we conclude that p can only take on finitely many values as well, and hence Cf ∩Cg

is finite. ■

This result generalizes the one from Exercise 2.1.7 (how?). Geometrically, what is
happening is this: the roots of the polynomial c are (or at least include) the projections of
the points in Cf ∩ Cg to the y-axis, and similarly for the corresponding polynomial in x. This
yields a finite grid of horizontal and vertical lines, the finitely many intersection points of which
contain Cf ∩Cg. See Figure 1.7 for an illustration of this phenomenon for the polynomials f and
g of Example 1.6.4. We have now arrived at one of the most important results in this theory.

16Technically, you have to check that f(t) and g(t) are relatively prime in R[t], but this follows because they
are the “universal” polynomials–if they were not, then every pair of polynomials over any ring would have a
common factor, which is absurd.
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Figure 1.7: An illustration of Theorem 1.6.6 for the f and g in Example 1.6.4. The red curve
is Cf , the blue curve is Cg, the green lines correspond to the roots of cy, and the orange lines
correspond to the roots of cx. The intersection Cf ∩Cg is contained in the finitely many points
of the green-orange grid. Picture made with Desmos.

Theorem 1.6.7 (Hilbert’s Nullstellensatz for Curves). If k is an algebraically closed field,
and f, g ∈ k[x, y] are nonconstant polynomials, then Cg ⊂ Cf iff there is some integer
n ≥ 1 such that g | fn.

Proof. One direction is clear (which?). For the other direction, it suffices to show that if
q ∈ k[x, y] is a prime factor of g, then q | f . If there were a prime factor q for which this were
not the case, then q and f would be relatively prime in k[x, y], and so by Theorem 1.6.6, the
intersection Cq ∩Cf would be finite. But now, Cq ⊂ Cg ⊂ Cf implies that Cq ∩Cf = Cq, which
is infinite by the fact that q is nonconstant and Lemma 1.5.1.17 ■

Note that the Nullstellensatz–German for “the theorem on the location of zeroes”–uses
crucially that k is algebraically closed. We will henceforth return to our convention that k is
an algebraically closed field. One important corollary we can extract is

Corollary 1.6.8. If f, g ∈ k[x, y] are nonconstant polynomials with f irreducible, then
Cg ⊂ Cf implies Cg = Cf .

Proof. By Theorem 1.6.7, there is some n ≥ 1 such that g | fn. Then primality of f (using
Corollary 1.5.14 and Proposition 1.5.8) tells us that f | g, so the easy direction of Theorem
1.6.7 implies that Cf ⊂ Cg as needed. ■

We are now ready to prove Theorem 1.5.6, which we restate here.

17This is the only step where we use that k is algebraically closed.
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Theorem 1.5.6. If an f ∈ k[x, y] is irreducible, then Cf is irreducible, and conversely if
C ⊂ A2

k is an irreducible curve, then there is an irreducible f ∈ k[x, y] such that C = Cf .

Proof. If f is irreducible and Cf = Cg ∪ Ch for nonconstant g, h ∈ k[x, y], then Corollary 1.6.8
gives us that Cf = Cg = Ch, showing irreducibility of Cf . Conversely, if C = Cf0 ⊂ A2

k is an
irreducible curve for some f0 ∈ k[x, y], then we claim that there is an irreducible f ∈ k[x, y]
and an integer n ≥ 1 such that f0 = fn. If this were not the case, we would be able to write
f0 = gh for nonconstant relatively prime g, h, from which it would follow that C = Cg ∪ Ch.
Then irreducibility of C would tell us that either C = Cg or C = Ch; suppose, without loss of
generality, that C = Cg. Then Theorem 1.6.7 applied to the containment C ⊂ Cg would imply
that there is some n ≥ 1 such that f0 | gn, which is a contradiction to the factorization f0 = gh
in the UFD k[x, y], since g and h are relatively prime. ■

1.6.2 Unique Factorization II

Here’s the picture that we are building to: there is a parallel between the unique factorization
in k[x, y] and of curves in A2

k, namely each curve C ⊂ A2
k can be decomposed as a finite union

of irreducible curves
C = C1 ∪ C2 ∪ · · · ∪ Cn,

and these are determined uniquely upto ordering the factors. For this, the first question we can
ask is:

Question 1.6.9. To what extent does a curve C ⊂ A2
k determine a defining polynomial

f ∈ k[x, y], i.e. a polynomial f such that C = Cf?

The answer here is: almost, the only problem being multiplicity. Specifically, consider

Definition 1.6.10. Let R be a UFD.

(a) If a nonzero f ∈ R is decomposed as

f = cfm1
1 · · · fmn

n

where c ∈ R× is a unit, n ≥ 1 an integer, f1, . . . , fn ∈ R irreducibles andm1, . . . ,mn ≥
1, then we define the radical of f by

rad(f) := f1 · · · fn.

Note that this is well-defined up to units in R.
(b) We say that a nonzero f ∈ R is reduced if f = rad(f) (up to units).

Taking R = k[x, y] in this definition and given any nonconstant f ∈ k[x, y], the radical
rad(f) is again nonconstant, and we have that

Cf = Crad(f).

Therefore, a curve C cannot distinguish a polynomial from its radical. The Nullstellensatz tells
us, however, that the radical can however be recovered from the curve.
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Definition 1.6.11. Given a curve C ⊂ A2
k, the subset

I(C) := {g ∈ k[x, y] nonconstant : C ⊂ Cg} ∪ {0} ⊂ k[x, y]

is called the (vanishing) ideal of C.

We will define the term “ideal” properly next time. The key claim here is then

Theorem 1.6.12. If k is algebraically closed, and f ∈ k[x, y] is a nonconstant polynomial,
then a polynomial g ∈ k[x, y] is in I(Cf ) iff rad(f) | g. In particular, rad(f) is uniquely
determined (up to nonzero scalars) by the curve C.

Proof. If g is nonconstant, then Cf ⊂ Cg implies by Theorem 1.6.7 that for some n ≥ 1, we
have fn | g. Since rad(f) | fn, we are done. Finally, rad(f) is simply the nonzero polnyomial
of least degree in I(C) (up to nonzero scalars). ■

We say that rad(f) is a generator I(C), and call it the minimal polynomial of C.

Corollary 1.6.13 (Hilbert’s Nullstellensatz for Curves, Version II). Over an algebraically
closed field k, there is a bijective correspondence

{curves C ⊂ A2
k} {nonconstant reduced f ∈ k[x, y]}/(nonzero scalars)

given by sending an f to Cf and a curve C to its minimal polynomial.

Under this correspondence,

(a) the curve C is irreducible iff its minimal polynomial is, and
(b) the union of curves corresponds to taking the product of the minimal polynomials

(and then the radical).

Also,

(c) Two nonconstant reduced polynomials define the same curve iff they are nonzero
scalar multiples of each other.

This result is one of the earliest manifestations of the systematization of the parallels
between algebra and geometry, which is the heart and soul of algebraic geometry. We will
discuss more consequences of this bijective correspondence next time.
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1.7 06/24/24 - Ideals, Irreducible Components, Degree II

Today, I want to review some algebra to express our observations from last time in a cleaner
way.

1.7.1 Crash Course on Ideals

Definition 1.7.1. Let R be a ring. An ideal of R is an additive subgroup I ⊂ R such that
for all f ∈ I and g ∈ R, we have fg ∈ I.

The terminology historically comes from thinking of ideals as “ideal numbers”. In
the 19th century, people came to realize that in some natural rings in number theory, such as
Z[
√
−5], unique factorization into prime numbers failed. Kummer and Dedekind salvaged this

by saying that in these number rings, or in what are now known more generally as Dedekind
domains, we do get a unique factorization of numbers into prime ideal numbers, i.e. these
objects behave the way prime numbers “ideally” would.

If I ⊂ R is an ideal, we can define an equivalence relation on R called congruence
modulo I, by saying f ∼ g iff f − g ∈ I. The set of equivalence classes R/I then admits a
structure of a ring such that then natural surjection R → R/I is a ring homomorphism (and
this determines the ring structure on R/I completely). This ring R/I is called the quotient of
the ring R by the ideal I.

Example 1.7.2.

(a) In any ring R, the set I = {0} ⊂ R is an ideal called the zero ideal. Similarly, I = R, i.e.
all of R, is also an ideal. We say an ideal I ⊂ R is a proper ideal if I is a proper subset of
R, i.e I ⊊ R.

(b) Given a ring R and an element f ∈ R, we define the principal ideal generated by f to be
the ideal (f) := {g ∈ R : f | g}. An ideal I ⊂ R is said to be a principal ideal if I = (f)
for some f ∈ R; in general, this f is not unique. (E.g. (2) = (−2) in Z.) Note that (0) is
the zero ideal, whereas (1) = R; more generally, (u) = R iff u ∈ R is a unit.

(c) More generally, given any subset S ⊂ R, the ideal generated by S is the ideal

(S) =

{
n∑

i=1

aisi : ai ∈ R, si ∈ S

}
⊂ R.

This is the smallest (with respect to inclusion) ideal containing S, or equivalently the
intersection of all ideals containing S.

(d) Any additive subgroup S ⊂ Z is of the form (n) for some unique n ∈ Z≥0. In particular,
these are all the ideals in Z. (Proof: if S ∩ Z>0 = ∅, then S = (0); else, there is a least
n ∈ S ∩ Z>0 by the well-ordering principle, and then S = (n).) A ring R is said to be a
principal ideal ring if every ideal of R is principal; a domain R that is a principal ideal ring
is called a principal ideal domain, abbreviated PID.

In general, principal ideals don’t determine generators (e.g. in R = Z/6, we have
(2) = (4)); however, in domains18, principal ideals determine generators up to units.

18Fascinatingly, this is not quite a characterization of domains. Other rings, such as local rings, also satisfy
this property. I do not know of a complete characterization of rings with this property.
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Lemma 1.7.3. If R is a domain and f, g ∈ R, then (f) = (g) iff there is a unit u ∈ R×

such that f = ug. In other words, a principal ideal in R is determined by, and determines,
its generator up to units.

Proof. One direction is clear (which, and why?). For the other direction, by assumption, there
are u, v ∈ R such that f = ug and g = vf . Then f(uv − 1) = 0, so since R is a domain, one
of f and uv − 1 is zero. If f = 0, then g = vf = 0, and 0 = 1 · 0. Otherwise, uv = 1 implies
u ∈ R×. ■

Proposition/Definition 1.7.4. For a ring R and a proper ideal P ⊂ R, the following are
equivalent:

(a) If f, g ∈ R, then fg ∈ P implies either f ∈ P or g ∈ P .
(b) The quotient ring R/P is a domain.

A proper ideal P ⊂ R satisfying these equivalent conditions is called a prime ideal.

Example 1.7.5.

(a) A ring R is a domain iff (0) ⊂ R is a prime ideal.19

(b) An ideal I ⊂ Z is prime iff either I = 0 or I = (p) for some prime integer p.
(c) In general, if R is any ring, then and 0 ̸= f ∈ R, then f is a prime element iff (f) is a

prime ideal.

In Exercise 2.3.3, you are invited to find all prime ideals of the ring k[x, y] when k is
algebraically closed. Finally, we will need one more fact about ideals.

Proposition 1.7.6. Let R be a ring and I ⊂ R be a proper ideal (i.e. I ̸= R). Then there
is a prime ideal Q ⊂ R containing I.

Proof. Let  be the partially ordered set of all proper ideals of R containing I ordered by
inclusion; this is nonempty because I ∈ . If (Iα) is an ascending chain of ideals in , then⋃

α Iα ⊂ R is also a proper ideal of R (check!); this proves that every chain in  has an upper
bound, and hence  has a maximal element Q (this element need not be unique). We claim
that Q is prime. Indeed, if it were not, then there would p, q ∈ R such that pq ∈ Q but neither
p ∈ Q nor q ∈ Q. Then we claim that Q + pR is a strictly larger ideal in ; that it contains
I is clear, that it is strictly larger follows from p /∈ Q, and that it is proper follows from the
following argument. If Q + pR = R, then we can write 1 = s + pt for some s ∈ Q and t ∈ R.
Multiplying by q yields q = qs+pqt, but qs ∈ Q (because s ∈ Q) and pqt ∈ Q (because pq ∈ Q)
and hence q ∈ Q, which is a contradiction. ■

In fact, this maximal element Q of  as in the above proof if actually a maximal ideal
of R, i.e. an ideal not contained in any other proper ideals of R (almost by definition!), and it
is a general fact, which we showed in this proof, that any maximal ideal is prime.

1.7.2 Irreducible Components and Degree II

Let’s return to the theory of curves; recall that we are over an algebraically closed field k. The
idea here is that if C ⊂ A2

k is a curve, then the vanishing ideal I(C) of C defined in Definition

19Here, and always, we use the convention that domains are nonzero.
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1.6.11 is an ideal of the ring k[x, y], and, in fact, by Theorem 1.6.12, a principal ideal.

Definition 1.7.7. Given a curve C ⊂ A2
k, a minimal polynomial of C is a generator of the

principal ideal I(C) ⊂ k[x, y].

Note that any minimal polynomial must necessarily be reduced (why?). By Lemma
1.7.3, any two minimal polynomials of C differ by multiplication by units in k[x, y], i.e. nonzero
scalars–this is why we sometimes speak of “the minimal polyomial”. If C = Cf for a nonconstant
f ∈ k[x, y] then a minimal polynomial of C can be taken to rad(f). This gives us a perfect
translation between alegbra and geometry. For instance, we can use this to define the degree of
curve.

Definition 1.7.8 (Degree). Given a curve C ⊂ A2
k, the degree of C is defined to be the

degree of any minimal polynomial for C.

You may verify that if k = k, then this definition agrees with Definition 1.2.2. Similarly,
Corollary 1.6.13 can be restated as

Corollary 1.7.9 (Hilbert’s Nullstellensatz for Curves, Version III). Over an algebraically closed
field k, there is a bijective correspondence

{curves C ⊂ A2
k} {pr. ideals of k[x, y] gen. by nonconst. reduced f ∈ k[x, y]}

given by sending a curve C to I(C) and an ideal I to Cf for any generator f of I. Under
this correspondence, the curve C is irreducible iff I(C) is a prime ideal.

Finally, from unique factorization in k[x, y], we also obtain a decomposition for curves.

Theorem 1.7.10 (Unique Factorization/Irreducible Decomposition for Curves). If k = k, then
given any curve C ⊂ A2

k, there is an integer n ≥ 1 and irreducible curves C1, . . . , Cn ⊂ A2
k

such that Ci ̸= Cj for i ̸= j and

C = C1 ∪ C2 ∪ · · · ∪ Cn.

Further, if m ≥ 1 is any other integer and D1, . . . , Dm ⊂ A2
k irreducible curves such that

Di ̸= Dj for i ̸= j and
C = D1 ∪D2 ∪ · · · ∪Dm,

then m = n and for all i, we have Ci = Dσ(i) for some bijection σ : {1, . . . , n} → {1, . . . , n}.

Proof. If f is a minimal polynomial of C, and we write f = f1 · · · fn for some n ≥ 1 and distinct
irreducible f1, . . . , fn ∈ k[x, y], then taking Ci = Cfi for 1 ≤ i ≤ n gives us the indicated
decomposition, where we are using both that f is reduced and Corollary 1.6.8 to conclude that
Ci ̸= Cj for i ̸= j (how?). If we have a decomposition C = D1 ∪ · · · ∪Dm, and for each j with
1 ≤ j ≤ m, we take a minimal polynomial gj ∈ k[x, y] for Dj , then each gj is irreducible by
Corollary 1.6.13(a), and for i ̸= j, the polynomials gi and gj are not scalar multiples of each
other by the hypothesis that Di ̸= Dj . Then the reduced polynomials f and g := g1 · · · gm
define the same curve C, and hence by Corollary 1.6.13(c) are related by nonzero scalars; then
we are done by unique factorization in k[x, y], which is Corollary 1.5.14 (how?). ■
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The curves C1, . . . , Cn ⊂ C occuring in such a decomposition are called the irreducible
components of C, and they correspond to the irreducible factors of any minimal polynomial of
C. Finally, we can upgrade Theorem 1.6.6 slightly to get

Theorem 1.7.11 (Finite Intersection Revisited). If C,D ⊂ A2
k are two curves that don’t

share any common irreducible components, then the intersection C ∩D is finite.

Proof. Decompose C = C1 ∪ · · · ∪ Cn and D = D1 ∪ · · · ∪Dm into irreducible components as
in Theorem 1.7.10. For each pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m, if we take minimal
polynomials fi and gj of Ci and Dj respectively, then fi and gj are irreducible (by Corollary
1.6.13(a)) and Ci ̸= Dj implies that fi and gj are not scalar multiples of each other and hence
relatively prime. It follows from Theorem 1.6.6 that each Ci ∩Dj is finite, and hence so is

C ∩D =
⋃

1≤i≤n

⋃
1≤j≤m

Ci ∩Dj .

■

1.7.3 A Few Examples of Irreducible Curves

That’s enough general theory. Let’s work out a few specific examples.

Example 1.7.12. For any field k, the linearpolynomial ℓ = x + y + 1 ∈ k[x, y] is irreducible:
indeed, applying Lemma 1.6.1 to R = k[x] with t = y, it suffices to show that ℓ is irreducible
in K[y] where K = k(x), but that is true simply because ℓ ∈ K[y] is a linear polynomial.20

Therefore, the line Cℓ ⊂ A2
k is irreducible. The same argument shows that any line in A2

k is
irreducible, or many generally, that if f(x, y) ∈ k[x, y] is any polynomial that is linear in either
x or y, then f(x, y) is irreducible. For instance, the polynomial f(x, y) = y − x2 ∈ k[x, y] is
irreducible, so that the parabola C = {(t, t2) : t ∈ k} ⊂ A2

k is as well.

Example 1.7.13. For any field k, the polynomial f(x, y) := xy−1 ∈ k[x, y] is irreducible thanks
to Lemma 1.6.1 applied to R = k[x] with t = y–note that although f(x, y) is not monic in
y, it is still primitive. Over k = R, the polynomial f(x, y) = xy − 1 ∈ R[x, y] defines the
rectangular hyperbola C with two components. Why does this not contradict irreducibility?
Well, firstly: the connection between (topological) irreducibility of curves and polynomials only
works over algebraically closed fields such as k = C: over k = C, the “hyperbola” defined by f is
a topologically a sphere punctured at two points, which is connected. Secondly, the rectangular
hyperbola C ⊂ A2

R is still algebraically irreducible:

Lemma 1.7.14. If g(x, y) ∈ R[x, y] is a polynomial that vanishes on one branch of the
hyperbola C, (or, in fact, any infinite subset of C) then f | g in R[x, y], so that g must
also vanish on the second branch.

Proof. Either g is zero and we are done, or g is nonconstant, in which case we may consider
Cg(C) ⊂ A2

C. By hypothesis, Cg(C) and Cf (C) intersect in infinitely many points, so it follows
from Theorem 1.6.6 that f, g ∈ C[x, y] are not relatively prime. Since f ∈ C[x, y] is irreducible
by Example 1.7.13, this can only happen if f | g in C[x, y], so that g/f ∈ C[x, y] ∩ R(x, y) =
R[x, y]. ■

20This uses that we understand irreducibility in the polynomial ring K[y] in one variable y over a field K really
well.
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In other words, just one branch of the hyperbola C is not an algebraic curve by
itself. This proposition illustrates that sometimes we can prove results over non algebraically
closed fields by using Theorem 1.4.5, and also that curves are incredibly rigid: any polynomial
vanishing on any collection of infinite points of one curve must vanish on all of it. This is a
manifestation of the coarseness of the Zariski topology.

Example 1.7.15. For any field k, the polynomial f(x, y) := y2 − x3 + x ∈ k[x, y] is irreducible
as well. There are a few ways to prove this. One way is sketched in Exercise 2.3.1. Another
way to invoke Lemma 1.6.1 again to reduce the problem to showing that y2 − x3 + x ∈ K[y]
is irreducible where K = k(x). If it were not irreducible, then it would split into two linear
factors; we can assume without loss of generality that these factors of the form y ± p(x) for
some p(x) ∈ K (why?). Then p2 = x3 − x ∈ K, and there are many ways to see why this can’t
happen. One possible approach is to note that although x3 − x is not squarefree in general
(when chK = 2), the power of x dividing x3 − x is still exactly one, and in particular odd.
Therefore, if we use that k[x] is a UFD to write p = r/s for some coprime r, s ∈ k[x] with s ̸= 0,
then r2 = x(x2 − 1)s2 leads to a contradiction to unique factorization.

Again, over k = R, the curve Cf of Example 1.7.15 has two components. Again, how-
ever, Cf (C) is a punctured torus (hence connected, even irreducible) and the two components
visible in Cf (R) are vestiges of slicing this torus and the fact that R is not algebraically closed.
Finally, an argument identical to that in the proof of Lemma 1.7.14 shows that neither of the
pieces of Cf (R) are algebraic curves by themselves.

1.7.4 A Sneak Peek at Curve Intersections

Given two curves C,D ⊂ A2
k, in how many points do C and D intersect? Well, they could share

a component and have infinitely many points in common, but at least when they don’t share
a component this intersection is finite (this was Theorem 1.7.11). A little experimenting seems
to suggest that if C and D are curves of degree m and n respectively, then C and D usually
intersect in mn points, but this is not always true. For instance:

(a) When k = R, the parabola Cf defined by f(x, y) = y − x2 and the line Cℓ defined by
ℓ(x, y) = y − x + 1 do not intersect at all, since x2 − x + 1 ∈ R[x] has no real roots.
However, this problem doesn’t really appear over algebraically closed fields such as k = C.

(b) Even over fields such as k = C, we have to account for tangency. For instance, if we take
f(x, y) = y − x2 again and ℓ(x, y) := y − 2x + 1, then the polynomial x2 − 2x + 1 =
(x − 1)2 ∈ C[x] still has only one root over C. This is because this line Cℓ is tangent to
the parabola, and should really count as having “intersection multiplicity” two.

(c) Finally, even if we account for intersection multiplicites, we can have asymptotes or parallel
lines. For instance, the lines defined by ℓ1(x, y) := y − x and ℓ2(x, y) = y − x + 1 never
intersect in A2

k for any field k because they are “parallel”. To rectify this situation, we
need to account for intersections “at infinity”.

As it turns out, these are the only four problems. Our eventual goal is to show the
theorem of Bézout (Theorem 1.14.1) which says that if k is an algebraically closed field, then
any two projective plane curves C,D ⊂ P2

k of degrees m,n ≥ 1 respectively that do not share
a common component intersect in exactly mn points, when counted with multiplicity. Over
the next few lectures, we’ll develop tools to prove this theorem, starting with smoothness and
intersection multiplicity.
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1.8 06/26/24 - Smoothness, Multiplicity, Tangent Lines

Today, we will talk about smoothness of algebraic curves. What should smoothness mean–i.e.
what should it mean to say that a curve C ⊂ A2

k is smooth at a point P ∈ C? One definition
is that at each point, we have a well-defined tangent direction, i.e. that the curve is well-
approximated by a linear polynomial. Certainly, whatever this notion is, it should be invariant
under affine changes of coordinates, so we may focus on the case when P = (0, 0), and then
considering a few examples naturally leads us to the following definition.

Definition 1.8.1.

(a) A polynomial f(x, y) ∈ k[x, y] is said to be homogeneous of degree d ≥ 0 if in the
ring k[x, y, t], we have the polynomial identity

f(tx, ty) = tdf(x, y).

This is equivalent to saying that in an expression of the form f(x, y) =
∑

i,j≥0 ai,jx
iyj

with ai,j ∈ k, we have ai,j = 0 unless i + j = d. For each d ≥ 0, the set of all
polynomials in k[x, y] of degree d will be denoted by k[x, y]d.

(b) Any f(x, y) ∈ k[x, y] can be written uniquely as

f = f0 + f1 + · · ·+ fd,

where d = deg f ≥ 0, and for each i with 0 ≤ i ≤ d, the polynomial fi ∈ k[x, y] is
homogeneous of degree i. If 0 ̸= f , then there is a unique smallest index i0 such that
fi0 ̸= 0; in this case, we define the multiplicity of f at the origin O = (0, 0), written
mO(f), and the initial part of f , written in(f), to be, respectively,

mO(f) = i0 and in(f) := fi0 .

Example 1.8.2. If f(x, y) = y2 − x3, then mO(f) = 2 with in(f) = y2.

We say that a function F : A2
k → k is homogeneous of degree d ≥ 0 if for all (p, q) ∈ A2

k

and t ∈ k, we have F (tp, tq) = tdF (p, q). If a polynomial f ∈ k[x, y] is homogeneous of
degree d ≥ 0, then so is the associated function Ff , and the converse holds if k is infinite.
Note that the zero polynomial 0 ∈ k[x, y] is homogenous of degree d for every d ≥ 0, and for
each d ≥ 0, the subset k[x, y]d ⊂ k[x, y] is a vector subspace of dimension d + 1 with basis
xd, xd−1y, · · · , xyd−1, yd, with k[x, y] =

⊕
d≥0 k[x, y]d. Finally, if f ∈ k[x, y]d and g ∈ k[x, y]e,

then fg ∈ k[x, y]d+e. This structure on k[x, y] is called the structure of a graded k-algebra.

Lemma 1.8.3. If k = k, then for any d ≥ 0 and f ∈ k[x, y]d, there are homogeneous
linear polynomials ℓ1, . . . , ℓd ∈ k[x, y]1 such that f = ℓ1ℓ2 · · · ℓd. If f is nonzero, then these
factors are uniquely determined up to reordering and nonzero scalars.

Proof. Write f =
∑d

i=0 aix
d−iyi. If f ̸= 0, let i0 be the least index such that ai0 ̸= 0. Since

k = k, we can factor the polynomial f(t, 1) =
∑d

i=i0
ait

d−i of degree d− i0 as

f(t, 1) =

d∑
i=i0

ait
d−i = ai0

d−i0∏
j=1

(t− αj)

for some αj ∈ k, and then taking a−1
i0

ℓ1 = ℓ2 = · · · = ℓi0 = y and ℓi0+j = x − αjy for
j = 1, . . . , d− i0 suffices. Uniqueness is clear because k[x, y] is a UFD, and each ℓj is prime. ■
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Definition 1.8.4.

(a) Given a curve C ⊂ A2
k, we define the multiplicity of C at the origin O = (0, 0) to be

mO(C) := mO(fC),

where fC ∈ k[x, y] is any minimal polynomial for C. If in(fC) = ℓ1 · · · ℓm is the
factorization of in(fC) into linear factors as in Lemma 1.8.3, where m := mO(C),
then we define the tangent lines to C at O to be the lines Lj := Cℓj for j = 1, . . . ,m.
(These need not all be distinct, and are independent of the choice of fC .) Finally,
the tangent cone to C at O is define to be

TCO C := Cin(f) = L1 ∪ L2 ∪ · · · ∪ Lm.

(b) Given a curve C ⊂ A2
k and an arbitrary point P ∈ A2

k, we define the multiplicity of
C at P to be

mP (C) := mO(ϕ
−1C),

where ϕ : A2
k → A2

k is any affine change of coordinates such that ϕ(O) = P . We
define the tangent lines to C at P to be the lines ϕ(Lj) for j = 1, . . . ,m where
m = mP (C), and similarly the tangent cone to C at P to be

TCPC = ϕ(TCO(ϕ
−1C)).

(c) Given a curve C ⊂ A2
k and point P ∈ A2

k, we have mP (C) ≥ 1 iff P ∈ C, in which
case we say that P is a smooth point of C iff mp(C) = 1. The curve C is said to be
smooth if every P ∈ C is a smooth point. A point P ∈ C that is not a smooth point
is called a singular point or multiple point of C.a

aOutside of mathematics, the terms “singular” and “multiple” are usually antonyms; in this case,
they are not, because “singular” here means “exceptional” or “extraordinary” (see Theorem 1.9.7), while
“multiple” means “of higher (i.e. > 1) multiplicity”.

Note that a smooth point on a curve has a unique tangent line, which we will denote by
TPC. The coordinate-invariance of smoothness and multiplicity is baked into the definition–if
we can show that it is well-defined. To do this, we need that if ϕ : A2

k → A2
k is an affine change

of coordinates such that ϕ(O) = O, then for any polynomial f ∈ k[x, y] we have mO(f) =
mO(ϕ

∗(f)). By considering the homogeneous parts separately, this reduces to showing

Lemma 1.8.5. If ϕ : A2
k → A2

k is an affine change of coordinates such that ϕ(O) = O, and
if 0 ̸= f ∈ k[x, y] is homogeneous of degree n ≥ 0, then so is ϕ∗(f).

Proof. Note that ϕ is of the form ϕ(x′, y′) = (ax′ + by′, cx′ + dy′) for some a, b, c, d ∈ k with
ad− bc ̸= 0. The claim is clear when n = 0, since then f is a nonzero constant and ϕ∗(f) = f .
When n = 1, we have f = λx+ µy for some λ, µ ∈ k, not both zero, and then

ϕ∗(f) = λ(ax′ + by′) + µ(cx′ + dy′) = (aλ+ cµ)x′ + (bλ+ dµ)y′.

Now, since one of λ and µ is not zero, and since ad− bc ̸= 0, it follows easily that at least one of
aλ+cµ and bλ+dµ is nonzero (this is basic linear algebra, but can also be shown directly–how?).
Therefore, we are done in this case. If n ≥ 2, then by Lemma 1.8.3, we can write f = ℓ1 · · · ℓn
for some ℓj homogeneous of degree 1; then we are done by the case n = 1 and the observation
ϕ∗(f) = ϕ∗(ℓ1)ϕ

∗(ℓ2) · · ·ϕ∗(ℓn). This finishes the proof when k = k (which is the only case we
care about), but in general, we can use Theorem 1.4.5 to reduce to this case. ■
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Example 1.8.6. The parabola C defined by f(x, y) = y−x2 ∈ k[x, y] has is smooth at the point
(1, 1) ∈ A2

k with tangent line L defined by the vanishing of y − 2x+ 1 = 0.

Example 1.8.7. A curve C is said to have a simple node at P iff mP (C) = 2 and C has two
distinct tangent lines at P . For instance, the curve C defined by f(x, y) = y2−x2(x+1) ∈ k[x, y]
over a field k with ch k ̸= 2 has a simple node at the origin, with tangent lines L1, L2 defined
by the vanishing of y± x, and tangent cone TO(C) = L1 ∪L2. (What happens when ch k = 2?)

Of course, this definition is not very convenient when we want to locate all singular
points of a given curve C. For this, we need a more convenient criterion. This is provided by

Theorem 1.8.8 (Affine Jacobi Criterion). Suppose we are given a curve C ⊂ A2
k and a point

P = (p, q) ∈ A2
k. Let f ∈ k[x, y] be a minimal polynomial for C. Then

(a) P ∈ C iff f |P := f(p, q) = 0, and in this case
(b) P is a singular point of C iff

∂f

∂x

∣∣∣∣
P

=
∂f

∂y

∣∣∣∣
P

= 0.

(c) If P ∈ C is a smooth point, then the tangent line TPC is defined by the vanishing of

∂f

∂x

∣∣∣∣
P

(x− p) +
∂f

∂y

∣∣∣∣
P

(y − q) ∈ k[x, y].

Wait, what? What are these partial derivative symbols? Why can we do this over any
field k? We’ll discuss this more next time, but for now let’s work out an example to see how
conveniently Theorem 1.8.8 allows us to locate singular points of a curve C.

Example 1.8.9. If f(x, y) = y − x2, then ∂f/∂y ≡ 1 tells us that f is smooth everywhere. At
the point P = (t, t2), the tangent line to C is given by the vanishing of

−2t(x− t) + 1(y − t) = y − 2tx+ t2 ∈ k[x, y].

Note that when ch k = 2, this tangent line is always horizontal–which is incredibly weird. In
general, weird stuff happens to curves of degree p in characteristic p–watch out for this over the
next few weeks!

Example 1.8.10. If f(x, y) = y2 − x3, then the system of equations we need to solve for the
singular points of C is

y2 − x3 = 0,

−3x2 = 0,

2y = 0,

which in any characteristic has the unique solution (x, y) = (0, 0) (check!). Therefore, the
unique singular point of C is the origion O, where C has the unique tangent line y = 0, i.e. the
x-axis.
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1.9 06/28/24 - Derivations, Intersection Multiplicity

Today, we’ll prove the Jacobi Criterion (Theorem 1.8.8), and start talking about intersection
multiplicity for two curves.

1.9.1 Derivations and the Jacobi Criterion

We want to first discuss an algebraic way to differentiate things, for which we introduce deriva-
tions.

Definition 1.9.1. Let k be a field, and R be a ring containing k. A k-derivation on R is a
k-linear map D : R → R satisyfing the Leibniz rule, i.e. a map D : R → R such that

(a) for all a, b ∈ k and f, g ∈ R, we have D(af + bg) = a ·D(f) + b ·D(g), and
(b) for all f, g ∈ R, we have D(fg) = D(f) · g + f ·D(g).

The set of all k-derivations of R is denoted by Derk(R).

Remark 1.9.2. The definition works also if k is any ring–then R can be any k-algebra, i.e. a ring
with a homomorphism ρ : k → R. Note that Derk(R) is an R-module and a k-Lie algebra.21

Note that if D ∈ Derk(R), then D(c) = 0 for all c ∈ k. This follows from

D(1) = D(12) = D(1) · 1 + 1 ·D(1) = 2D(1),

so that D(1) = 0 and D(c) = c ·D(1) = 0. Therefore, a k-derivation on R captures the notion
of differentiating elements of R, where elements of k function as “constants”.

Example 1.9.3. If R = k[x], then the operation
∑

i≥0 aix
i 7→

∑
i≥1 iaix

i−1 is a k-derivation on
R, denoted ∂x or ∂/∂x. Note that if c ∈ R is any element, then the operation f 7→ c · ∂xf is
also a derivation of R. More generally, if R = k[x1, x2, . . . , xn], then the operations ∂xj are all
derivations on R, and hence so are

∑n
j=1 cj∂xj . In fact, these are all the k-derivations of R.

Theorem 1.9.4. Let k be a field, and let R = k[x1, . . . , xn] be the polynomial ring over R
in n ≥ 1 variables x1, . . . , xn. Then

Derk(R) =
n⊕

j=1

R · ∂xj .

In other words, given any c1, c2, . . . , cn ∈ R, there is a unique k-derivation D : R → R
such that D(xj) = cj for each j = 1, . . . , n.

Proof. It follows from the Leibniz rule that if D : R → R is any derivation and f ∈ R, then

D(f) =

n∑
j=1

∂xj (f) ·D(xj).

Therefore, a k-derivation D of R is determined by D(xj) for j = 1, . . . , n, showing uniqueness.
Conversely, if c1, . . . , cn are given, taking D =

∑n
j=1 cj∂xj works, showing existence. ■

21As usual, if you don’t know what this means, you can ignore it. If you do, what is the Lie algebra structure
on Derk(R)?
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It is now possible to derive algebraically the multivariable chain rule for polynomials.
Let’s do a special case–the only case we will need–to illustrate the process.

Lemma 1.9.5. Let ϕ : A2
k(x

′, y′) → A2
k(x, y) be an affine change of coordinates of the form

(x, y) = ϕ(x′, y′) = (ax′+by′+p, cx′+dy′+q), where a, b, c, d, p, q ∈ k satisfy ad−bc ̸= 0. If
ϕ∗ : k[x, y] → k[x′, y′] denotes the associated ring homomorphism, then for any f ∈ k[x, y],
we have

∂x′(ϕ∗f) = a · ϕ∗(∂xf) + c · ϕ∗(∂yf) and

∂y′(ϕ
∗f) = b · ϕ∗(∂xf) + d · ϕ∗(∂yf).

In particular, given any Q ∈ A2
k and f ∈ k[x, y], we have

∂xf |Q = ∂yf |Q = 0 ⇔ ∂x′(ϕ∗f)|ϕ−1(Q) = ∂y′(ϕ
∗f)|ϕ−1(Q) = 0.

The more traditional way to express the change of variables formula from Lemma 1.9.5
is to write

∂f

∂x′
=

∂f

∂x
· ∂x
∂x′

+
∂f

∂y
· ∂y

∂x′
and

∂f

∂y′
=

∂f

∂x
· ∂x
∂y′

+
∂f

∂y
· ∂y
∂y′

,

written which way, this formula is valid for other types of changes of coordinates as well.

Proof. We’ll show the first identity; the proof of the second is similar. Since ϕ∗ is a ring
isomorphism, in light of Theorem 1.9.4, it suffices to show that the map

D : k[x, y] → k[x, y] defined by D(f) = (ϕ∗)−1∂x′(ϕ∗f)

is a k-derivation, and that D(x) = a and D(y) = c. This last part is easy: indeed,

D(x) = (ϕ∗)−1∂x′(ϕ∗x) = (ϕ∗)−1∂x′(ax′ + by′ + p) = (ϕ∗)−1a = a,

and similarlyD(y) = c. To check that thisD is a derivation, note that condition (a) in Definition
1.9.1 is clear because ϕ∗, ∂x′ and (ϕ∗)−1 are all k-linear, and condition (b) follows from the check
that for all f, g ∈ k[x, y] we have

D(fg) = (ϕ∗)−1∂x′(ϕ∗(fg))

= (ϕ∗)−1∂x′(ϕ∗f · ϕ∗g)

= (ϕ∗)−1 [∂x′(ϕ∗f) · ϕ∗g + ϕ∗f · ∂x′(ϕ∗g)]

=
(
(ϕ∗)−1∂x′(ϕ∗f)

)
· (ϕ∗)−1ϕ∗g + (ϕ∗)−1ϕ∗f ·

(
(ϕ∗)−1∂x′(ϕ∗g)

)
= D(f) · g + f ·D(g).

The second statement follows from the first by the same linear algebra as before, since again[
a b
c d

]
has nonzero determinant, i.e. is an invertible matrix. ■

We are now ready to prove the Jacobi criterion, which we restate here for convenience.
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Theorem 1.8.8 (Affine Jacobi Criterion). Suppose we are given a curve C ⊂ A2
k and a point

P = (p, q) ∈ A2
k. Let f ∈ k[x, y] be a minimal polynomial for C. Then

(a) P ∈ C iff f |P := f(p, q) = 0, and in this case
(b) P is a singular point of C iff

∂f

∂x

∣∣∣∣
P

=
∂f

∂y

∣∣∣∣
P

= 0.

(c) If P ∈ C is a smooth point, then the tangent line TPC is defined by the vanishing of

∂f

∂x

∣∣∣∣
P

(x− p) +
∂f

∂y

∣∣∣∣
P

(y − q) ∈ k[x, y].

Proof. The statement in (a) is clear. First , let’s prove (b) and (c) for P = O = (0, 0). If we
write f = f1 + f2 + · · · + fd, where d = deg f and each fj is homogeneous of degree j (note
P ∈ C is equivalent to f0 = 0), then

f1 = λx+ µy

for some λ, µ ∈ k. Then
∂xf = λ+ ∂xf2 + · · ·+ ∂xfd,

and for each j ≥ 2, we have ∂xfj |P = 0, whence ∂xf |P = λ. Similarly, ∂yf |P = µ. Therefore,

mP (C) ≥ 2 ⇔ f1 = 0 ⇔ λ = µ = 0 ⇔ ∂x(f)|P = ∂y(f)|P = 0.

Since
f1 = ∂xf |P · (x− 0) + ∂yf |P · (y − 0),

the result of (c) is also clear. In general, let ϕ : A2
k → A2

k be an affine change of coordinates
such that ϕ(O) = P . It is easy to see then that ϕ∗f is a minimal polynomial for ϕ−1C, and so
we have

mP (C) ≥ 2 ⇔ mO(ϕ
−1C) ≥ 2

⇔ ∂x′(ϕ∗f)|O = ∂y′(ϕ
∗f)|O = 0

⇔ ∂xf |P = ∂yf |P = 0

as needed, where in the last step we have used Lemma 1.9.5. The proof of (c) is similar, but
can be simplified even more by noting that it suffices to consider a change of coordinates of the
simple form (x, y) = ϕ(x′, y′) = (x′ + p, y′ + q); the details are left to the reader. ■

From this criterion, we can derive many important results. Here are a couple.

Theorem 1.9.6. A plane curve is singular at the points of intersection of its components.
In particular, an affine curve is smooth iff its components are both individually smooth
and pairwise disjoint.

Proof. Let f, g be two distinct irreducibles, and suppose C = Cf ∪Cg = Cfg; the general case is
similar. By Theorem 1.8.8, it suffices to show that if P ∈ Cf∩Cg, then ∂x(fg)|P = ∂y(fg)|P = 0,
but this is clear because, for instance, we have

∂x(fg)|P = ∂x(f)|P · g|P + f |P · ∂x(g)|P = 0

because f |P = g|P = 0. ■

Recall now our base assumption that k is algebraically closed.
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Theorem 1.9.7. If C ⊂ A2
k is any curve, then C has only finitely many singular points.

Proof. Let C = C1 ∪C2 ∪ · · · ∪Cn be the irreducible decomposition of C (Theorem 1.7.10). For
each 1 ≤ i < j ≤ n, the intersection Ci ∩ Cj is finite by Theorem 1.7.11; therefore, it suffices
to show the result for an irreducible C. Let f ∈ k[x, y] be a minimal polynomial for C; then f
is irreducible by Corollary 1.6.13(a). By Theorem 1.8.8, it suffices to show that the system of
polynomial equations

f = ∂xf = ∂yf = 0

has only finitely many solutions in A2
k.

22 First suppose that ∂xf ̸= 0 (i.e. as a polynomial in
k[x, y]). Since deg ∂xf < deg f , it follows that either ∂xf is a nonzero constant (in which case C
is smooth, and we are done), or that f and ∂xf are relatively prime (since f is prime and ∂xf
cannot be a nonzero polynomial multiple of f for degree reasons), in which case we are done by
Theorem 1.6.6. Similarly, if ∂yf ̸= 0, we are done.

This finishes the proof when ch k = 0, because if ch k = 0 and f ∈ k[x, y] is any
nonconstant polynomial, then one of ∂xf and ∂yf is nonzero. Unfortunately, when ch k = p > 0,
there are nonconstant f ∈ k[x, y] such that ∂xf = ∂yf = 0, such as f = xp + yp. We will show
that this cannot happen if f is irreducible: we will show that even if ch k = p > 0, as long as
f ∈ k[x, y] is irreducible, then one of ∂xf and ∂yf is nonzero. Indeed, suppose not. Then to
say that ∂xf = 0 means that if we write f =

∑
i,j ai,jx

iyj , then ai,j = 0 unless p | i. Similarly,
∂yf = 0 implies that ai,j = 0 unless p | j. Therefore, we conclude that

f =
∑
i,j≥0

api,pjx
pixpj .

Since k is algebraically closed, for each i, j ≥ 0, we can find a pth root αi,j ∈ k of api,pj , i.e. an
element such that αp

i,j = api,pj . Then, since we are in characteristic p,

f =
∑
i,j≥0

αp
i,jx

piypj =

∑
i,j≥0

αi,jx
iyj

p

= gp,

where g :=
∑

i,j≥0 αi,jx
iyj , contradicting irreducibility of f . This completes the proof when

k = k; in general, we can reduce to this case by Theorem 1.4.5 as before. ■

Example 1.9.8. For any field k, consider the circle C defined by f(x, y) := x2+ y2− 1 ∈ k[x, y].
This has partial derivatives

∂xf = 2x and ∂yf = 2y.

When ch k ̸= 2, it follows that this system f = ∂xf = ∂yf = 0 has no solutions, so that C
is smooth. When ch k = 2, it seems that ∂xf = ∂yf = 0, so that any point on C should be
singular–why does this not contradict Theorem 1.9.7? Well, if we are to follow the proof of
Theorem 1.9.7, we will observe that when ch k = 2, in fact, we have that

f(x, y) = (x+ y + 1)2 ∈ k[x, y],

so that f is not reduced. In this case, the curve C is just a line with minimal polynomial
g(x, y) = x+ y + 1, which is also smooth. This example shows that when applying the Jacobi
Criterion (Theorem 1.8.8), it is crucial to use a minimal polynomial for your curve. Another way
to think about this is: a “curve” defined by a nonreduced polynomial is singular everywhere.
This can be made precise using the language of schemes; we won’t discuss this in this course.

22Here, I’m being a little sloppy about the distinction between polynomials and polynomial functions–given
that we’re in week 3, I’ll presume you know what I mean and how to make this rigorous.
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1.9.2 Intersection Multiplicity

Given curves C,D ⊂ A2
k and a point P ∈ C ∩ D, we want to make precise what we mean by

the intersection multiplicity of C and D at P . Again, whatever this notion means, it should
be invariant under affine (or even other kinds of) changes of coordinates, and as we observed
in the previous sections, it is helpful to have this notion already for polynomials and not just
curves–after all, we want to capture nonreduced behavior.

The goal, therefore, is to find a function

i : (k[x, y]∖ {0})× (k[x, y]∖ {0})× A2
k → Z≥0 ∪ {∞}, (f, g, P ) 7→ iP (f, g)

that satisfies some reasonable properties. What properties should we have? Here I list a few.

(1) (Symmetry) iP (f, g) = iP (g, f) for all f, g, P .
(2) (Finiteness for Proper Intersection) iP (f, g) = ∞ iff f and g have a common component

through P , i.e. there is a q ∈ k[x, y] such that q | f and q | g and q|P = 0.
(3) (Non-Intersection) iP (f, g) = 0 iff P /∈ Cf ∩ Cg, i.e. either f |P ̸= 0 or g|P ̸= 0.
(4) (Additivity) iP (f1f2, g) = iP (f1, g) + iP (f2, g) for all f1, f2, g ∈ k[x, y]∖ {0} and P ∈ A2

k.
(5) (Coordinate Ring Dependence) iP (f, g) = iP (f, g + hf) for all f, g, h ∈ k[x, y]∖ {0}.
(6) (Invariance under ACOCs) If ϕ : A2

k → A2
k is an ACOC, then iP (f, g) = iϕ−1(P )(ϕ

∗(f), ϕ∗(g)).
(7) (Normalization) For P = O = (0, 0), we have iO(x, y) = 1.

The amazing result is, then, that these properties characterize intersection multiplicity
uniquely.

Theorem 1.9.9. There is a unique function i satisfying (1)-(7) above.

We’ll sketch a proof next time; today, let’s work out a few examples this time. Firstly,
by (3) and (4), scaling f or g by nonzero scalars does not change the intersection multiplicity.

Example 1.9.10. If f = y2 − x2(x+ 1) and g = x and P = (0, 0), then

iP (y
2 − x2(x+ 1), x) = iP (y

2, x) = 2iP (x, y) = 2.

If g = y − tx for t ∈ k, then

iP (y
2 − x2(x+ 1), y − tx) = iP (y − tx, y2 − x2(x+ 1)− (y + tx)(y − tx))

= iP (y − tx, x2(−x+ t2 − 1))

= 2iP (y − tx, x) + iP (y − tx,−x+ t2 − 1)

= 2 +

{
1, if t2 − 1 = 0,

0, else.

This confirms our intuition that each line through P intersects the curve Cf at least twice, with
even higher multiplicity (at most three) iff it is tangent to Cf at P .

Example 1.9.11. If C is a smooth curve with tangent line L = TPC at P ∈ C such that C ̸= L,
and f and ℓ are minimal polynomials for C and L, then iP (f, ℓ) ≥ 2. Indeed, we can choose a
suitable coordinate system so that P = (0, 0) and ℓ = y; then f0 = 0 and f1 = y, whence

iP (f, ℓ) = iP (y + (f − y), y) = iP (f − y, y) ≥ 2,

where in the last step we have used that f − y is nonzero and homogeneous of degree at least
2. (How does this result follow?)
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Example 1.9.12. Let p(x) ∈ k[x] be a nonconstant polynomial of x alone, and let f := y− p(x)
and g = y. Then P is a point of intersection of the curves Cf (i.e. the graph of p) and Cg (i.e.
the x-axis) iff P = (α, 0) for some root α of p. To compute the intersection multiplicity at this
point, we factor p(x) = (x − α)mq(x) for some integer m ≥ 1 and q(x) ∈ k[x] with q(α) ̸= 0,
and then note that

iP (f, g) = iP ((x− α)mq(x), y) = m · iP (x− α, y) + iP (q(x), y) = m · 1 + 0 = m.

Therefore, the intersection multiplicity of f and g at P is exactly the multiplicity mα(p) of α
as a root of p(x). In particular, we have∑

P∈Cf∩Cg

iP (f, g) =
∑

α:p(α)=0

mp(α) = deg p = (deg f)(deg g).

This is one simple manifestation of Bézout’s Theorem, which we will soon get to. When p(x) = 0,
every point on the x-axis is a point of infinite multiplicity, while if p(x) = c is a nonzero constant,
then there are no points of intersection, althought (deg f)(deg g) = 1; this is because the lines
Cf and Cg are parallel (i.e. meet “at infinity”). We will soon develop tools to make this more
precise.
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1.10 07/01/24 - Intersection Multiplicity, the Projective Plane

Today, we’ll finish the proof of Theorem 1.9.9, and start talking about the projective plane and
projective curves.

1.10.1 Intersection Multiplicity

Let’s proceed to the proof of Theorem 1.9.9. We need to show two things: existence and
uniqueness of i. We’ll start with uniqueness.

Proof of Uniqueness in Theorem 1.9.9. We will give an algorithm that takes as input (f, g, P )
and returns iP (f, g) in finitely many steps, using only the axioms (1) - (7).

(a) By (6), we can reduce to the case P = (0, 0).
(b) By (2) and (3), we are done if either f and g have a common component through P , or

if P /∈ Cf ∩ Cg, so assume that we are not in either of these cases (we then say that Cf

and Cg intersect properly at P ).
(c) Consider the polynomials f(x, 0), g(x, 0) ∈ k[x], and suppose they have degrees d, e ≥ 0

respectively, where we use the convention that deg 0 = 0. By (1), we may assume by
switching f and g if needed that 0 ≤ d ≤ e. Now we split into two cases:

Case 1. If d > 0, then we may perform the Euclidean algorithm to produce an integer n ≥ 1
and polynomials q1, q2, . . . , qn+1, r1, . . . , rn, rn+1 ∈ k[x] such that for i = 0, 1, . . . , n,
we have

ri−1 = ri · qi+1 + ri+1,

and deg ri+1 < deg ri, where r−1 := g(x, 0), r0 := f(x, 0), r1 · · · rn ̸= 0, and rn+1 = 0;
then rn = gcd(f(x, 0), g(x, 0)). Define polynomials h1, . . . , hn, hn+1 ∈ k[x, y] by

hi = hi−2 − qi · hi−1

for i = 1, . . . , n + 1, where we set h−1 := g and h0 = f . We find inductively using
(5) that

iP (f, g) = iP (h1, f) = iP (h2, h1) = · · · = iP (hn, hn−1) = iP (hn+1, hn),

and hi(x, 0) = ri(x) for each i = 1, . . . , n+ 1, and hence hn+1(x, 0) = 0. We replace
(f, g) by (hn+1, hn) and land on

Case 2. If d = 0, then y | f , and so we can write f = yNp for some N ≥ 1 and p ∈ k[x, y]
such that y ∤ p. Then by (4) we have

iP (f, g) = N · iP (y, g) + iP (p, g).

By (5), we have

iP (y, g) = iP (y, g(x, 0)) = iP (y, y − g(x, 0)) = m0(g(x, 0)),

where in the last step we have used the computation in Example 1.9.12 (this uses (7)).
By our assumption that g|P = 0, we have m0(g(x, 0)) ≥ 1, and hence iP (y, g) ≥ 1,
whence iP (p, g) < iP (f, g). Either iP (p, g) = 0, in which case we are done; else,
return to the beginning of Step (c) with (f, g) replaced by (g, p).

■
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It is clear that if such an i exists, then the above algorithm terminates in finitely many
steps, and determines the function i uniquely. Let’s work out an example in detail to see this
in practice.

Example 1.10.1. Let’s take

f(x, y) = y2 − x3 + x,

g(x, y) = (x2 + y2 − 3x)2 − 4x2(2− x),

and P = (0, 0). For simplicity, we work out the case when ch k ̸= 2, and leave this (easier) case
to the reader. Note that Cf and Cg do not share a component because f is irreducible and
Cf ̸⊆ Cg: and plugging in y2 = x3 − x into g recovers nonzero polynomial

x2(x− 1)(x3 + 3x2 − 4x− 8),

which has finitely many roots. Let’s now apply Step (c).

(1) We have
f(x, 0) = −x(x− 1)(x+ 1) and g(x, 0) = x2(x− 1)2,

so that d = 3 and e = 4. Applying the Euclidean algorithm gives us n = 1 with

q1(x) = −x+ 2, r1(x) = 2x(x− 1),

q2(x) = −1

2
(x+ 1), r2(x) = 0.

Then

h1 = y4 + (2x2 − 5x− 2)y2 + 2x(x− 1) and

h2 =
1

2
y2

(
(1 + x)y2 + x(2x2 − 3x− 7)

)
.

Setting (f1, g1) := (h2, h1), we are now in Case 2.
(2) Here N = 2 and

p1 =
1

2

(
(1 + x)y2 + x(2x2 − 3x− 7)

)
.

Then
iP (f1, g1) = 2 ·m0(g1(x, 0)) + iP (p1, g1) = 2 + iP (p1, g1).

Setting (f2, g2) := (g1, p1) (switching for degree reasons), we are again in Case 1.
(3) We have

f2(x, 0) = 2x(x− 1) and g2(x, 0) =
1

2
x(2x2 − 3x− 7),

so that d = 2 and e = 3. Again, we get n = 1 with

q1(x) =
1

2
x− 1

4
, r1(x) = −4x,

q2(x) = −1

2
x+

1

2
, r2(x) = 0.

Then

h1 =

(
−1

2
x+

1

4

)
y4 + x

(
−x2 + 3x+

1

4

)
y2 − 4x

h2 = −1

8
y2

(
(2x2 − 3x− 7)y2 + (4x4 − 16x3 − 5x2 + 41x+ 16)

)
.

Setting (f3, g3) := (h2, h1), we are now in Case 2.
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(4) Here again N = 2 and

p3 = −1

8

(
(2x2 − 3x− 7)y2 + (4x4 − 16x3 − 5x2 + 41x+ 16)

)
.

Then
iP (f3, g3) = 2 ·m0(g3(x, 0)) + iP (p3, g3) = 2 + iP (p3, g3).

At this point, we have iP (p3, g3) = 0, and the algorithm terminates.

We conclude that iP (f, g) = 4. Get Desmos to draw some pictures to make sure you believe
this!

To show existence, we first define the local ring of A2
k at a point P ∈ A2

k.

Definition 1.10.2. Given a P ∈ A2
k, the local ring of A2

k at P , denoted P or A2
k,P

, is the
ring

P := {r ∈ k(x, y) : there are s, t ∈ k[x, y] s.t. r = s/t and t|P ̸= 0.} ⊂ k(x, y).

Since k[x, y] is a UFD and k(x, y) = Frac k[x, y], this ring can equivalently be defined
as the set of r ∈ k(x, y), which, when written in lowest terms as r = s/t with s, t ∈ k[x, y] and
t ̸= 0 satisfy t|P ̸= 0. We are now ready to sketch the proof of existence.

Proof Sketch of Existence in Theorem 1.9.9. Define

iP (f, g) := dimk P /(f, g)P .

Properties (1), (5), and (6) are reasonably clear. To show (7), note that for P = O = (0, 0),
there is an evaluation map

evalP : P → k;

this is clearly surjective, and it is easy to see that its kernel is generated by x and y, whence we
get an isomorphism

P /(x, y)P →∼ k

and so iP (x, y) = 1. To show (3), note that if f |P ̸= 0, then f ∈ ×
P , and so (f, g)P = P ,

and similarly if g|P ̸= 0. Conversely, if f |P = g|P = 0, then (f, g)P ⊂ ker evalP , so

P /(f, g)P ↠ P / ker evalP ∼= k implies that iP (f, g) ≥ 1.

To show (2), we may assume P = O = (0, 0). First suppose that we have such a q; then
(f, g)P ⊂ (q)P , and we get P /(f, g)P ↠ P /(q)P , so it suffices to show that P /(q)P

is not finite dimensional over k. To do this, we may assume by a linear change of coordinates
that y ∤ q; we show that the classes of 1, y, y2, . . . in P /(q)P are linearly independent. If they
were not, then there would be a nonzero p ∈ k[y] of least degree such that p ∈ (q)P , which is
to say that p = qs/t for some nonzero s, t ∈ k[x, y] with t|P ̸= 0. Then p|P = 0 implies y | p,
so if y ∤ q, then y | s, and we may cancel a y from both sides, contradicting our choice of p.
Conversely, suppose that f and g have no common components through P . Since irreducible
factors of f and g not through P are units in P , we may assume by dividing by these factors
that f and g are relatively prime in k[x, y]. Then, as in Example 1.6.4, Lemma 1.6.2 tells us
that there are nonzero p ∈ k[x] and q ∈ k[y] such that p, q ∈ (f, g)k[x, y] ⊂ (f, g)P . Now if we
write p = xmp0 for some m ≥ 0 and p0 ∈ k[x] with p0(0) ̸= 0, then m ≥ 1 because p ∈ ker evalP ,
and p0 ∈ ×

P , so that xm ∈ (f, g)P . Similarly, from q we get an integer n ≥ 1 such that
yn ∈ (f, g)P . Then it follows that any rational function of the form 1/t with t|P ̸= 0 can be
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expanded in P /(f, g)P as
∑

i≥0(1− t)i, where all but finitely many terms are zero because of

[xn] = [ym] = 0. It is then easy to see that the classes of the monomials xiyj with 0 ≤ i ≤ m−1
and 0 ≤ j ≤ n− 1 span P /(f, g)P as a k-vector space. Finally, to show (4), the result boils
down to showing that there is a short exact sequence of the form

0 → P /(f1, g)P
·f2−−→ P /(f1f2, g)P → P /(f1, g)P → 0,

and the rank-nullity theorem. For full details, see [3, §3.3, Theorem 3] or [4, Chapter 2]. ■

1.10.2 The Projective Plane

As we have observed before, to count intersection points of curves properly, we have the need for
a systematic way to study intersection points “at infinity”. One way to do this is to note that
every collection of parallel lines has a unique representative through the origin, and so points
at infinity should correspond to lines through the origin–which are determined by their slope.
Therefore, one approach would be to parametrize points at infinity via a parameter t ∈ k, where
t corresponds to the point at infinity along the line y − tx = 0. However, this misses exactly
one line: namely the vertical line x = 0, for which the value of t “would be” ∞.

A more symmetrical approach is to note that lines through the origin can be written
as λx− µy = 0, where λ, µ ∈ k are not both zero, and the pair (λ, µ) determines the same line
as (cλ, cµ) for every c ∈ k ∖ {0}, so when µ ̸= 0, this corresponds to the above with t = λ/µ,
but when µ = 0, this adds the line x = 0. In this case, we denote the “coordinates” of the line
by [λ : µ] to emphasize that only the ratio between the coordinates matters. This gives us a
way to think of the “projective plane” P2

k as the disjoint union of points (p, q) ∈ A2
k and the

directions [λ : µ], but in fact there is a more symmetric way to do it. This leads us to

Definition 1.10.3. The projective plane over k, denoted P2
k, is the set of equivalence classes

of ordered triples (X,Y, Z) of elements of k, not all zero, subject to the equivalence relation
that (X,Y, Z) ∼ (λX, λY, λZ) for all λ ∈ k ∖ {0} = k∗, i.e.

P2
k =

{
(X,Y, Z) ∈ k3 ∖ {(0, 0, 0)}

}
(X,Y, Z) ∼ (λX, λY, λZ)∀λ ∈ k∗

.

The class of a triple (X,Y, Z) in P2
k is usually denoted by [X : Y : Z], and X,Y, Z

are called the homogeneous coordinates on P2
k.

Note that the homogeneous coordinates are not well-defined functions on P2
k–only their

ratios are, and those too only away from the loci where the denominator vanishes. Note also
that [0 : 0 : 0] is not a well-defined point in P2

k. Homogeneous coordinates were introduced
by Möbius in his 1827 treatise Der Barycentrische Calcül. This way of thinking about P2

k is
in a sense the same as that from before: if Z ̸= 0, then the point [X : Y : Z] has a unique
representative of the form [x : y : 1] where x := X/Z and y := Y/Z, and these are the points
that compose the A2

k ⊂ P2
k. When Z = 0, however, we get points of the form [X : Y : 0], and

these are exactly the points at ∞. One way to think about them is to think of them as the points
that are limits of affine the form [X/ε : Y/ε : 1] as ε → 0. The advantage of this formulation is
that it makes some additional symmetry–namely that between X,Y, and Z, obvious–which we
will leverage to great effect.

Note that in the case of the projective plane, the distinction between polynomials and
polynomial functions becomes even more crucial: an arbitrary polynomial F ∈ k[X,Y, Z] does
not even define a well-defined function F : P2

k → k because picking a different representatives
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(X,Y, Z) of a point P = [X : Y : Z] will in general (i.e. for nonconstant F ) yield different
values under the polynomial function (on A3

k) arising from F . However, if F is homogenous of
degree d ≥ 0, then we see that for any c ∈ k× we have

F (cX, cY, cZ) = cdF (X,Y, Z),

whence the locus of points P = [X : Y : Z] ∈ P2
k where F |P = 0 still makes sense. This leads

us to

Definition 1.10.4. A projective plane algebraic curve is the vanishing locus of a nonconstant
homogeneous polynomial F in the projective plane, i.e. a subset C ⊂ P2

k of the form

C = CF := {P ∈ P2
k : F |P = 0}

for a nonconstant homogeneous polynomial F (X,Y, Z) ∈ k[X,Y, Z].

Next time, we’ll define the homogenization of a polynomial and the projective closure
of algebraic curves in more detail. Today, I want to end with one example.

Example 1.10.5. Consider the hyperbola Cf defined by f(x, y) = xy − 1 ∈ k[x, y]. Then the
homogenization of f is F = fh = XY − Z2 ∈ k[X,Y, Z], and the projective closure of C is the
curve

Cf = CF = {P = [X : Y : Z] ∈ P2 : XY − Z2 = 0}.

The intersection CF ∩A2
k is exactly Cf ; on the other hand, the new points at infinity correspond

to solutions to XY − Z2 = Z = 0, which are the two points [1 : 0 : 0] and [0 : 1 : 0]. These are
the two points corresponding to the two asymptotes of Cf , namely the lines x = 0 and y = 0.
In particular, over k = R, the two branches which are disjoint in A2

R connect up to form one
“continuous loop” in P2

R.
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1.11 07/03/24 - Projective Duality, (De)Homogenization, Pro-
jective Nullstellensatz

Last time, we introduced the projective plane and projective curves. Let’s start by looking at
an extended example first.

1.11.1 Projective Lines and Projective Duality

Definition 1.11.1. A projective line is a projective curve of the form L = CF ⊂ P2
k for a

nonconstant linear homogeneous polynomial F ∈ k[X,Y, Z]1.

Once we have the notion of degrees for projective curves below (§1.11.3), then we’ll
see that a projective line is a projective curve of degree 1.

Example 1.11.2. If F = Z, then L = CF is called the line at infinity and denoted L∞.

Any linear homogeneous F is specified as F = AX + BY + CZ, where A,B,C ∈ k
are not all zero. Note that multiplying F by a nonzero scalar λ ∈ k× does not affect CF .
Analogously to the affine case, we will see (in Theorem 1.11.17) that L = CF recovers F
up to nonzero scalars, and hence we get a bijection between the set of lines L ⊂ P2

k and
the set of ordered triples (A,B,C) of elements of k, not all zero, subject to the equivalence
(A,B,C) ∼ (λA, λB, λC) for all λ ∈ k∗–but that’s just another projective plane! We denote
this projective plane by P2∗

k := P2
k(A,B,C), so we have a bijection

{lines L ⊂ P2
k} ↔ P2∗

k .

Note that points in P2∗
k correspond to lines in P2

k, but the symmetry of the equation

AX +BY + CZ = 0

tells us that lines in P2∗
k correspond to points in P2

k–and indeed, if a point P ∈ P2
k corresponds

to the line P ∗ ∈ P2∗
k , and the line L ⊂ P2

k corresponds to the point L∗ ∈ P2∗
k , then we have

P ∈ L ⇔ P ∗ ∋ L∗.

This funny phenomenon of interchanging the set of lines in one projective plane with the set
of points in another is called the phenomenon of projective duality. Duality is a powerful tool
that allows us to start with statements about points, lines, and incidences, and produce corre-
sponding “dual” statements–effectively doubling the number of statements we can prove about
the projective plane with very little effort. This is because this duality carries with it a lot of
structure.

Consider, for instance, the following asymmetry: in A2
k, given any two points, there is

a unique line passing through them, but given any two lines, they either interesect in a unique
point or not at all (i.e. if they are parallel). In the projective plane, duality asserts that this
asymmetry cannot happen.

Proposition 1.11.3. Given any two distinct points P1, P2 ∈ P2
k, there is a unique line

L ⊂ P2
k through them, and given two distinct lines L1, L2 ⊂ P2

k, they intersect in a unique
point.
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Proof. The second assertion follows from the first applied to P2∗
k (i.e. by duality), and so it

suffices to show the first one. Suppose we write P1 = [X1 : Y1 : Z1] and P2 = [X2 : Y2 : Z2];
then we are trying to solve simultaneously the system of equations

AX1 +BY1 + CZ1 = 0

AX1 +BY2 + CZ2 = 0

for A,B,C, not all zero, up to scaling. Multiplying the first equation by Y2 and the second by
Y1 and subtracting yields

A(X1Y2 −X2Y1) + C(Z1Y2 − Z2Y1) = 0.

Similarly, we obtain two other equations of this sort. It follows easily (check!) that there is a
solution to the above system of equations, up to scalars, given by

[A : B : C] = [Y1Z2 − Y2Z1 : Z1X2 − Z2X1 : X1Y2 −X2Y1],

where at least one of the expressions Y1Z2 − Y2Z1, Z1X2 − Z2X1, and X1Y2 −X2Y1 is nonzero
because P1 ̸= P2 (why?). ■

Similarly, the question of collinearity of three points in P2
k is answered by

Proposition 1.11.4. Given points P1, P2, P3 ∈ P2
k, write Pi = [Xi : Yi : Zi] for i = 1, 2, 3.

The points P1, P2 and P3 are collinear iff

det

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

 = 0.

Proof. The points P1, P2, P3 are collinear iff there are A,B,C ∈ k, not all zero, such that
AXi +BYi + CZi = 0 for i = 1, 2, 3. This can be rephrased by asking for A,B,C, not all zero,
such that X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

AB
C

 =

00
0

 ,

and then the result follows from simple linear algebra: if the determinant of this matrix were
nonzero, it would be invertible (by Cramer’s rule, say), and so we would conclude from such
an equation that A = B = C = 0, and conversely, if the determinant is zero, then there is a
nonzero vector in the kernel of the linear map determined by it. ■

Note that projective duality tells us that concurrent triples of lines L1, L2, L3 ⊂ P2
k

correspond exactly to collinear triples of points in P2∗
k , and we get a corresponding criterion for

concurrency of lines, which I will leave to you to formulate.

Of course, this statement automatically implies a corresponding statement in the affine
plane (Corollary 1.11.5)) as well, but somehow I have always found the projective ase easier to
understand conceptually.
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Corollary 1.11.5. Given points p1, p2, p3 ∈ A2
k with coordinates pi = (xi, yi), we have that

p1, p2, p3 are collinear iff∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = (x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1) = 0.

Proof. The points pi are collinear in A2
k iff the points Pi := [xi : yi : 1] are collinear in P2

k. ■

Remark 1.11.6. Note that similarly to how projective lines in P2
k are parametrized by another P2

k,
it is clear that curves C ⊂ P2

k of a fixed degree (interpreted appropriately, i.e. with multiplicity)
are also parametrized by a projective space of higher dimension. For instance, a conic section
C ⊂ P2

k is specified by a homogeneous quadratic polynomial

F = AX2 +BXY + CY 2 +DXZ + EXZ + FZ2,

which amounts to giving a 6-tuple (A,B,C,D,E, F ) of elements of k, not all zero, up to
simultaneous scaling: in other words, the set of all conics C ⊂ P2

k is a P5
k. More generally, the

set of all degree d ≥ 1 curves C ⊂ P2
k is a projective space Pd(d+3)/2

k , and even more generally, the

set of all degree d ≥ 1 hypersurfaces Z ⊂ Pn
k for n ≥ 1 is given by a projective space P(

d+n
n )−1

k .
(Think about what this could mean–I haven’t defined projective spaces of higher dimensions for
you yet!) This idea of parameter spaces in our own category is unique to algebraic geometry–for
instance, the set of submanifolds of a smooth manifold does not have the structure of a finite-
dimensional manifold in any way. This notion of parameter spaces is one of the most powerful
tools in modern algebraic geometry: the geometry of a parameter space often dictates the
behavior of the objects it parametrizes. I will not dwell on this further, but I would encourage
you to think about this as and when this idea shows up in your further studies.

1.11.2 (De)Homogenization, Projective Closure and Affine Part

Let’s now start talking about the relationship between affine and projective curves. For this,
we first need some algebraic definitions.

Definition 1.11.7.

(a) Given a polynomial f ∈ k[x, y] of degree d ≥ 0, we define its homogenization, written
fh, to be

fh(X,Y, Z) := Zdf

(
X

Z
,
Y

Z

)
∈ k[X,Y, Z]d.

In other words, if f ̸= 0 and we write f = f0+f1+ · · ·+fd with each fi homogeneous
of degree i, and fd ̸= 0, then we have

fh(X,Y, Z) = Zdf0(X,Y ) + Zd−1f1(X,Y ) + · · ·+ fd(X,Y ).

(b) Given a homogeneous polynomial F ∈ k[X,Y, Z], we define the inhomogeneous part
or dehomogenization of F with respect to Z, denoted F i, to be

F i(x, y) := F (x, y, 1) ∈ k[x, y].

We will use simple properties of these operations such as (fg)h = fhgh for nonzero
f, g ∈ k[x, y] without further comment. Note that although we have for any f ∈ k[x, y] that
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(fh)i = f , the operations f 7→ fh and F 7→ F i are not inverse bijections in general. For any
nonzero f ∈ k[x, y] of degree d, the homogenization fh is homogeneous of degree d = deg f , and
Z ∤ fh because fd ̸= 0; therefore, if Z | F , then we cannot possibly have F = (F i)h. However,
this is the only problem: we have for any nonzero F ∈ k[X,Y, Z] that is homogeneous of degree
d ≥ 0 that if F = ZmF0 for some m ≥ 0 and F0 ∈ k[X,Y, Z]d−m not divisible by d, then
(F i)h = F0, whence F = Zm(F i)h. In particular, if Z ∤ F , then F = (F i)h. Phrased slightly
differently, we have

Lemma 1.11.8. For any d ≥ 0, the operations f 7→ fh and F 7→ F i give inverse bijections
between the set of all nonzero polynomials f ∈ k[x, y] of degree d and the set of all nonzero
homgeneous polynomials F ∈ k[X,Y, Z] of degree d such that Z ∤ F .

The parallel definitions in geometry are as follows.

Definition 1.11.9.

(a) Given an affine curve C ⊂ A2
k, we define its projective closure, denoted C, to be

C := Cfh , where f ∈ k[x, y] is any polynomial such that C = Cf . Given any affine

curve C ⊂ A2
k, we define the set of points at infinity along C to be C ∩ L∞.

(b) Given a projective curve C ⊂ P2
k, we define its affine part in the chart defined by

Z ̸= 0 to be C◦ := C ∩ A2
k = {P ∈ C : P = [X : Y : Z] and Z ̸= 0} = CF i , where

F ∈ k[X,Y, Z] is any homogeneous polynomial such that C = CF .

The first thing to note here is that if f, g ∈ k[x, y] are polynomials such that Cf = Cg,
then Cfh = Cgh , making the projective closure well-defined; similarly, if F,G ∈ k[X,Y, Z] are
homogeneous polynomials such that CF = CG, then CF i = CGi (which is somewhat easier to
see from the alternative description). Next, we note that if C ⊂ A2

k has degree d ≥ 1, then C
is obtained by attaching at most d new points to C (i.e. there are at most d points at infinity
along C); namely, if we write f = f0 + · · · + fd, then points of C ∖ C correspond to roots
of the homogeneous polynomial fd(X,Y ), of which there are at most d distinct values. This
observation has the amusing consequence that an algebraic curve of degree d in A2

k can have at
most d distinct asymptotes.23 Finally, we have as before that if C ⊂ A2

k is an affine curve, then
(C)◦ = C, but the operations C 7→ C and C 7→ C◦ are not inverse bijections: if we consider the
line at infinity L∞, then L◦

∞ = ∅, whence L◦
∞ = ∅ as well. Again, this is the only problem, and

if C ⊂ P2
k is any projective curve other than L∞, then C◦ is a nonempty affine curve. In fact,

we have

Lemma 1.11.10. If C ⊂ P2
k is a projective curve, then either L∞ ̸⊂ C, in which case we

have C = C◦, or we have C = C◦ ∪ L∞.

Proof. Left to the reader. ■

Remark 1.11.11. The terminology “projective closure” comes from topology: there is a topology
on P2

k called the Zariski topology, in which C is just the ordinary topological closure of C ⊂
A2
k ⊂ P2

k. Understanding the Zariski topology is absolutely fundamental to appreciating more
advanced algebraic geometry, but we don’t need to worry too much about it right now.

The goal of this translation is that it allows us to port over the work that we did in
the affine case to the projective case without a lot of additional effort. This is what we do now.
Let’s do a couple of examples.

23What are those?
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Proposition 1.11.12. If C,D ⊂ P2
k are projective curves, then so is C ∪D.

Proof. If C = CF and D = CG, then C ∪D = CF ·G. ■

Proposition 1.11.13. If k is an algebraically closed field and C ⊂ P2
k is a projective curve,

then C = C(k) is infinite.

Proof. Either C = L∞, in which case we are done because k is infinite (how?), or C◦ is an affine
curve, so we are done by Lemma 1.5.1. ■

Let’s now move on to a few more things that follow easily.

1.11.3 Homogeneous Unique Factorization, Nullstellensatz, etc.

Lemma 1.11.14. If F,G ∈ k[X,Y, Z] are such that F is homogeneous and G | F , then G
is homogeneous.

Proof. Write F = GH, and suppose that the degrees of F,G,H are d,m, n ≥ 0 with m+n = d.
If m = 0 or n = 0, then the result is clear; hence assume that m,n ≥ 1, so d ≥ 2. Expand
G = G0 +G1 + · · ·+Gm and H = H0 + · · ·+Hn with each Gi (resp. each Hj) homogeneous of
degree i (resp. j), and Gm ̸= 0 (resp. Hn ̸= 0). Let i be the least non-negative integer such that
Gi ̸= 0, so that 0 ≤ i ≤ m; similarly, let j be the least non-negative integer such that Hj ̸= 0.
Then the degree i+ j component of F = GH is GiHj , which is nonzero; since we assumed that
F is homogeneous of degree d, this implies that i + j = d, whence i = m and j = n, showing
that both G and H are homogeneous. ■

From this, we immediately obtain a homogeneous analog of unique factorization in
k[X,Y, Z], namely

Theorem 1.11.15 (Homogeneous Unique Factorization). Every nonconstant homogeneous
F ∈ k[X,Y, Z] can be factored as

F = F1 · · ·Fn,

a product of finitely many homogeneous irreducible elements F1, . . . , Fn ∈ k[X,Y, Z], and
this factorization is unique up to the order of the elements and multiplication by units.

I will leave to you to make the last statement precise (say along the lines of Definition 1.5.7.)

Proof. Immediate consequence of unique factorization in k[X,Y, Z] (Corollary 1.5.14) and the
Lemma 1.11.14 above. ■

Now we can mimic the affine theory as follows. Firstly, the analog of Theorem 1.6.6 is

Theorem 1.11.16 (Projective Finite Intersection). Let F,G ∈ k[X,Y, Z] be nonconstant
relatively prime homogeneous polynomials. Then CF ∩ CG is finite.
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Proof. Note that Z cannot divide both F and G; without loss of generality, suppose that Z ∤ G.
Since

CF ∩ CG ⊂ (C◦
F ∩ C◦

G) ∪ (L∞ ∩ CG),

it suffices to show that both C◦
F∩C◦

G and L∞∩CG are finite. The latter is easy: if degG = d ≥ 0,
and we write

G = ZdG0(X,Y ) + Zd−1G1(X,Y ) + · · ·+Gd(X,Y ),

where each Gj(X,Y ) ∈ k[X,Y ]j is homogeneous of degree d, then Z ∤ G implies that Gd ̸=
0, whence L∞ ∩ CG corresponds to the finitely many roots of the homogeneous polynomial
Gd(X,Y ), of which there are at most d.24 To show the former, note that C◦

F ∩C◦
G = CF i ∩CGi ,

so in light of Theorem 1.6.6, it suffices to show that if F,G ∈ k[X,Y, Z] are nonconstant
relatively prime homogeneous polynomials, then the dehomogenizations F i, Gi ∈ k[x, y] are
also relatively prime (although no longer necessarily nonconstant). To show this statement, it
suffices note that if q ∈ k[x, y] is such that q|F i, then F i = pq for some p ∈ k[x, y], whence
qh | phqh = (F i)h | F ; then, if a nonconstant q ∈ k[x, y] were to divide both F i and Gi, then the
nonconstant25 qh ∈ k[X,Y, Z] would divide F and G, contradicting their relative primality. ■

This theorem was the key to the Nullstellensatz, and all of its corollaries, which we
collect in one theorem here.

Theorem 1.11.17 (Projective Nullstellensatz). Suppose that k is an algebraically closed
field.

(a) If F,G ∈ k[X,Y, Z] are nonconstant homogeneous polynomials, then CG ⊂ CF iff
there is some integer n ≥ 1 such that G | Fn.

(b) If F,G ∈ k[X,Y, Z] are nonconstant homogeneous polynomials with F irreducible,
then CG ⊂ CF implies CG = CF .

(c) If F ∈ k[X,Y, Z] is a nonconstant homogeneous polynomial, then CF is irreducible.a

Conversely, if C ⊂ P2
k is an irreducible projective curve, then there is an irreducible

homogeneous F ∈ k[X,Y, Z] such that C = CF .

aYou were invited to define the notion of irreducibility for projective curves in Exercise 2.4.2.

Proof.

(a) Identical to the proof of Theorem 1.6.7: if Q is a prime factor of G, then Q is homogeneous
by Lemma 1.11.14, and then if Q and F were relatively prime, then CQ∩CF = CQ would
be finite by Theorem 1.11.16 but infinite by Proposition 1.11.13.

(b) Identical to the proof of Corollary 1.6.8 using (a) instead of Theorem 1.6.7.
(c) Identical to the proof of Theorem 1.5.6, and left to the reader.

■

Similarly to the affine case, given a projective curve C ⊂ P2
k, we can try to define a

vanishing ideal I(C) ⊂ k[X,Y, Z] of C consisting of homogeneous polynomials vanishing on C,
but the problem is that the sum of two homogeneous polynomials of different degrees is not
homogeneous. The correct definition is

24In other words, we have [X0 : Y0 : Z0] ∈ L∞ ∩ CG iff Z0 = 0 and Gd(X0, Y0) = 0, but the latter condition
constrains the ratio [X0 : Y0] to be one of the homogeneous roots of Gd(X0, Y0), i.e. if we factor Gd using Lemma
1.8.3 (and Theorem 1.4.5 if needed) as Gd =

∏d
i=1(λiX + µiY ), then [X0 : Y0] can only be one of the d possible

choices for [−µi : λi].
25This uses deg qh = deg q.
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Definition 1.11.18. Given a projective curve C ⊂ P2
k, we define the vanishing ideal of C to

be

I(C) := {F ∈ k[X,Y, Z] : if F = F0+· · ·+Fd with Fj ∈ k[X,Y, Z]j then C ⊂ CFj for all j.}

This is, in fact, an ideal of k[X,Y, Z]–and, indeed, a special kind of ideal called a
homogeneous ideal.26 Then the analog of Theorem 1.6.12 still holds: I(C) is a principal ideal
generated by rad(F ) for any homogeneous F ∈ k[X,Y, Z] such that C = CF . A generator of
I(C) is again called a minimal polynomial of C; any two of these differ by a nonzero scalar, and
we define the degree of C to be the degree of any minimal polynomial for C. The analog of
Corollary 1.6.13 still holds: over k = k, there is a bijective correspondence between projective
curves C ⊂ P2

k and principal ideals of k[X,Y, Z] generated by nonconstant reduced homogeneous
F ∈ k[X,Y, Z], and the curve C is irreducible iff I(C) is a prime ideal. Finally, we also have an
analog of Theorem 1.7.10; let’s write this down in some detail.

Theorem 1.11.19 (Projective Unique Decomposition). If k = k, then given any curve C ⊂
P2
k, there is an integer n ≥ 1 and irreducible curves C1, . . . , Cn ⊂ P2

k such that Ci ̸= Cj for
i ̸= j, such that

C = C1 ∪ C2 ∪ · · · ∪ Cn.

The integer n is uniquely determined, as are the Cj up to reordering.

Proof. Identical to the proof of Theorem 1.7.10. ■

The curves C1, . . . , Cn ⊂ C occuring in such a decomposition are called the irreducible
comopnents of C. Finally, the analog of Theorem 1.7.11 is

Theorem 1.11.20 (Projective Finite Intersection Revisited). If C,D ⊂ P2
k are two curves that

don’t share any common irreducible components, then the intersection C ∩D is finite.

Proof. Identical to the proof of Theorem 1.7.11. ■

The three things from the affine case that we haven’t transferred yet are (a) parametric
curves, (b) changes of coordinates, and (c) (intersection) multiplicity. This we will do in the
next two lectures.

1.11.4 Addendum: Irreducible Projective Curves

I did not have time to cover this in lecture, but I do want to explain the relationship between
minimal polynomials and irreducibility of affine curves and their projective counterparts. This
is the content of

26Can you come up with a good definition of this notion?
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Theorem 1.11.21.

(a) If f ∈ k[x, y] is irreducible (resp. reduced), then so is fh ∈ k[X,Y, Z]. Conversely, if
a homogeneous F ∈ k[X,Y, Z] is irreducible (resp. reduced), then so is F i ∈ k[x, y],
unless F = λZm for some λ ∈ k× and m ≥ 0 (resp. m = 0, 1), in which case, and
only in which case, F i = λ is a nonzero constant.

(b) If an affine curve C ⊂ A2
k has minimal polynomial f , then its projective closure C

has minimal polynomial fh; in particular, degC = degC. If C ⊂ P2
k has minimal

polynomial F , then its affine part C◦, if nonempty, has minimal polynomial F i and
either

(i) L∞ ⊂ C and degC◦ = degC − 1 (where degC◦ = 0 says just that C◦ = ∅), or
(ii) L∞ ̸⊂ C and degC◦ = degC.

(c) If C ⊂ A2
k is an irreducible affine curve, then its projective closure C is an irreducible

projective curve. If C ⊂ P2
k is an irreducible projective curve, then either C◦ = ∅

(which happens iff C = L∞), or C◦ is an irreducible affine curve.

Proof.

(a) Let’s treat irreducibility; the proof for reducedness is similar and left to the reader. If given
an f ∈ k[x, y], there is a G ∈ k[X,Y, Z] such that G | fh and 0 < degG < deg fh = deg f ,
then G is homogeneous by Lemma 1.11.14 and Z ∤ G because Z ∤ fh, from which we get
that Gi | (fh)i = f and 0 < degGi = degG < deg f ; therefore, if f is irreducible, then so
is fh. Conversely, given a homogeneous F ∈ k[X,Y, Z] that is not of the form λZm, we
must have degF i ≥ 1; if g ∈ k[x, y] is such that g | F i and 0 < deg g < degF i ≤ degF ,
then gh | (F i)h | F with 0 < deg gh = deg g < degF ; therefore, if F is irreducible, then so
is F i.

(b) If an affine curve C has minimal polynomial f , then f is reduced, and so by (a) so is
fh; since fh is a reduced homogeneous polynomial vanishing on C, it follows that fh is a
minimal polynomial for C. I will leave the rest to the reader.

(c) If C is an irreducible affine curve, then any minimal polynomial f for C is irreducible;
then fh is irreducible by (a) and a minimal polynomial for C by (b), and so it follows that
C is an irreducible projective curve. The converse is again left to the reader.

■

Finally, the symmetry in X,Y, Z tells us that irreducibility of a given homogeneous
F ∈ k[X,Y, Z] is testable by dehomogenization with respect to any of the variables.
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1.12 07/05/24 - Projective Changes of Coordinates, Multiplic-
ity and Smoothness, Classification of Projective Conics

1.12.1 Projective Changes of Coordinates

We defined affine changes of coordinates by setting x and y to be linear polynomials in x′ and
y′ subject to a nondegeneracy condition. We want to mimic the situation in the projective case:
we want to set X,Y, Z to be three homogeneous linear polynomials L,M,N ∈ k[X ′, Y ′, Z ′], but
now we need to ensure nondegeneracy as well. If L,M,N were concurrent in P2, then this point
of concurrency would be mapped to [0 : 0 : 0], which doesn’t make any sense; therefore, we
need to at least ask that L,M,N be nonconcurrent. It turns out that in the projective case,
this condition is also sufficient. The discussion in §1.11.1 gives us a direct condition to check to
ensure nonconcurrency, and leads us to

Definition 1.12.1. A projective change of coordinates is a transformation

Φ : P2
k(X

′, Y ′, Z ′) → P2
k(X,Y, Z)

of the form

[X : Y : Z] = Φ[X ′ : Y ′ : Z ′] = [AX ′+BY ′+CZ ′ : DX ′+EY ′+FZ ′ : GX ′+HY ′+ IZ ′]

for some A,B,C,D,E, F,G,H, I ∈ k such that

det

A B C
D E F
G H I

 ̸= 0.

Again, the nondegeneracy condition on the determinant ensures that the transforma-
tion is both well-defined and, in fact, invertible: this is because the transformation is given
before homogenization (i.e. quotienting by the equivalence relation of scaling) by the mapXY

Z

 =

A B C
D E F
G H I

X ′

Y ′

Z ′

 ,

so if this transformation matrix has nonzero determinant, then by Cramer’s rule it is an invert-
ible matrix, and we can recover [X ′ : Y ′ : Z ′] from [X : Y : Z] usingX ′

Y ′

Z ′

 =

A B C
D E F
G H I

−1 XY
Z

 .

Since, of course, two such transformation matrices define the same transformation if
they differ by scalar multiples, the group of all projective changes of coordinates is the group
PGL3 k ⊂ P8

k of all 3× 3 matrices in k with nonzero determinant up to simultaneously scaling
by a nonzero scalar, i.e. GL3 k subject to the equivalence relation M ∼ λM for all M ∈ GL3 k
and λ ∈ k×. This scaling invariance implies that, unlike the affine case, a projective change
of coordinates Φ does not quite give us a pullback map on the homogeneous polynomial ring
Φ∗ : k[X,Y, Z] → k[X ′, Y ′, Z ′], but we can always choose such a pullback map which does what
we want27; such a pullback map would then necessarily be an isomorphism, and any two such
maps would be related by a nonscalar scalar.

27What do we want?
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The key fact to note here is that projective changes of coordinates respect incidence.
This is captured by

Lemma 1.12.2. Let Φ : P2
k(X

′, Y ′, Z ′) → P2
k(X,Y, Z) be a projective change of coordinates.

Then three points P1, P2, P3 ∈ P2
k(X

′, Y ′, Z ′) are collinear iff Φ(P1),Φ(P2) and Φ(P3) are.

Proof. Write Pi = [X ′
i : Y ′

i : Z ′
i] for i = 1, 2, 3. Using Proposition 1.11.4 and the fact that

determinants are multiplicative and invariant under taking transposes, we conclude that

P1, P2, P3 are collinear ⇔ det

X ′
1 X ′

2 X ′
3

Y ′
1 Y ′

2 Y ′
3

Z ′
1 Z ′

2 Z3

 = 0

⇔ det

A B C
D E F
G H I

X ′
1 X ′

2 X ′
3

Y ′
1 Y ′

2 Y ′
3

Z ′
1 Z ′

2 Z3

 = 0

⇔ Φ(P1),Φ(P2),Φ(P3) are collinear.

■

Lemma 1.12.2 and Proposition 1.11.3 tell us that projective changes of coordinates
preserve all incidence geometry of P2

k: they take lines to lines, and incidences of points on lines
to incidence of points on lines, concurrency of lines to concurrency of lines, etc.

Example 1.12.3. An affine change of coordinates of the form (x, y) = (ax′+by′+p, cx′+dy′+q)
is the affine “shadow” of a projective change of coordinates given by the matrixa b p

c d q
0 0 1

 ,

where the affine and projective nondegeneracy conditions are identical because the determinant
of this matrix is ad − bc. Note that this “projectivization” of any affine change of coordinates
fixes the line at infinity L∞ ⊂ P2

k as a set (although perhaps not pointwise!), and conversely, any
projective change of coordinates that fixes the line at infinity must arise from an affine change
of coordinates. Projective changes of coordinates are, however, more powerful, and treat all
points (resp. lines) “equally,” including points (resp. the line) at infinity.

From the construction itself, it is pretty clear that given any three tuple L,M,N ∈
k[X,Y, Z]1 of homogeneous linear polynomials which vanish on three nonconcurrent lines, there
is a change of coordinates taking the lines given by the vanishing of X,Y, Z to those given
by L,M,N ; in Exercise 2.4.8 you are invited to make this precise, and to explore whether
such a transformation is unique. This incredible flexibility of projective transformations often
makes explicit computations with projective curves really easy. Here’s some terminology and a
proposition we will have repeated ocassion to use.

Definition 1.12.4. A subset S ⊂ P2
k is said to be in general position if no three points in S

are collinear. We also say that the points Pj ∈ S are in general position.
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Proposition 1.12.5. Given any two ordered 4-tuples

P = (P1, P2, P3, P4) and Q = (Q1, Q2, Q3, Q4)

of points in P2
k, both in general position, there is a unique projective change of coordinates

Φ : P2
k → P2

k taking one to the other, i.e. such that Φ(Pi) = Qi for i = 1, 2, 3, 4.

Proof. It suffices to show the result when

P1 = E1 := [1 : 0 : 0], P2 = E2 := [0 : 1 : 0], P3 = E3 := [0 : 0 : 1] and P4 = E4 := [1 : 1 : 1],

because then we can first uniquely take an arbitrary 4-tuple P to this standard 4-tuple E
(because projective changes of curves are invertible), and then further take this standard 4-
tuple to an arbitrary collection Q.28 If we write Qi = [Xi : Yi : Zi], then any Φ taking Ei 7→ Qi

for i = 1, 2, 3 must be given by a matrix of the formX1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

λ 0 0
0 µ 0
0 0 ν


for some λ, µ, ν ∈ k×; that this matrix has nonzero determinant uses that Q1, Q2, Q3 are
non-collinear. Then the condition E4 7→ Q4 uniquely determines the triple (λ, µ, ν), up to
simultaneous scaling, by the requirement thatX1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

λµ
ν

 = t ·

X4

Y4
Z4


for some t ∈ k×, since the matrix on the left is invertible; the fact that the resulting λ, µ, ν from
this matrix equation are nonzero then is equivalent to saying that Q4 does not lie in the lines
Q2Q3, Q1Q3 and Q1Q2 respectively.29 ■

1.12.2 Multiplicity, Smoothness, and Intersection Multiplicity

We would like to define the notions of multiplicity, smoothness, tangent lines, and intersection
multiplicity in a way that is both invariant under projective changes of coordinates and compat-
ible with dehomogenization. One way to do this is to define these local notions by first changing
coordinates so that the point in consideration is P = [0 : 0 : 1], and then use dehomogeniza-
tion, and then rehomogenize–so for instance, the tangent line to a projective curve at a point
would be the projective closure of its affine tangent line in some chart. This approach works,
but has the disadvantage that checking invariance under projective changes of coordinates is a
much more daunting task than in the affine case. A slightly more elegant approach is given by
thinking about local rings.

Recall from Definition 1.10.2 that given a point P ∈ A2
k, we define its local ring

A2
k,P

⊂ k(x, y) to consist of all rational functions on A2
k which can be evaluated at P , in which

case evaluation at P gives us a ring homomorphism

evalP : A2
k,P

→ k

with kernel
IA2

k,P
:= ker evalP

28Make this statement precise, particularly if it doesn’t obviously make sense!
29Check this! This uses Cramer’s rule.
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consisting of all rational functions that vanish at P .30 If P = (0, 0) is the origin, then IA2
k,P

is an ideal of A2
k,P

generated by x and y. It follows from this that I2A2
k,P

is generated by

x2, xy, and y2, or more generally that for any n ≥ 1, the ideal InA2
k,P

is generated over A2
k,P

by

xn, xn−1y, . . . , xyn−1, yn. In particular, we have that⋂
n≥0

InA2
k,P

= 0,

and hence given any nonzero polynomial f ∈ k[x, y] ⊂ A2
k,P

, there is a unique largest integer

m ≥ 0 such that f ∈ k[x, y] ∩ ImA2
k,P

. A moment’s reflection shows that this m is nothing

but the multiplicity mP (f) of f at P . This could have been used as an alternative definition
of multiplicity, and this notion would then be somewhat visibly invariant under changes of
coordinates, since the local ring A2

k,P
and its maximal ideal IA2

k,P
visibly behave well under

changes of coordinates. Further, the above discussion gives us some added flexibility: the
same definition applies to any nonzero element of A2

k,P
, and so we are now allowed to talk

about intersection multiplicities of rational functions that one can evaluate at P . This is a
crucial generalization needed to check the invariance of multiplicity under projective changes
of coordinates irrespective of the chosen definition. Similarly, the notion of local intersection
multiplicity is local: we observed in the proof of existence in Theorem 1.9.9 that iP (f, g) is just
dimk A2

k,P
/(f, g)A2

k,P
, again dependent only on the local ring.

The above discussion tells us that if we can define projective analogs of the rational
function field of A2

k and of these local rings in a way that is compatible with taking affine charts,
then we would be in good shape to define multiplicity in this case. And indeed, this is possible.

Definition 1.12.6. The rational function field of P2
k is the subfield

k(P2
k) :=

{
F

G
∈ k(X,Y, Z) : F,G are homogeneous of the same degree

}
⊂ k(X,Y, Z).

Given a point P ∈ P2
k, we define the local ring of P2

k at P to be the ring

P2
k,P

:= {r ∈ k(P2
k) : r = F/G for some homogeneous F,G ∈ k[X,Y, Z] s.t. G|P ̸= 0.}

Evaluation at P gives us a surjective map

evalP : P2
k,P

→ k

whose kernel we will denote by IP2
k,P

. Finally, given any integer n ≥ 1 and homoge-

neous F1, . . . , Fn ∈ k[X,Y, Z], we define the ideal (F1, . . . , Fn)P2
k,P

to consist of all linear
combinations of the form

n∑
i=1

Hi

Gi
· Fi,

where the Hi, Gi ∈ k[X,Y, Z] are homogeneous such that degHi = degFi + degGi and
after cancellation of common factors we have Gi|P ̸= 0.

Given this, we are now ready to handle defining multiplicity of a homogeneous poly-
nomial at a point P ∈ P2

k and the intersection multiplicity of two polynomials, etc.

30Some textbooks denote this kernel by mA2
k
,P or mP to emphasize that it is a maximal ideal of A2

k
,P , but we

will not need this idea and I will stick to IA2
k
,P or IP .
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Definition 1.12.7. Let P ∈ P2
k be a point.

(a) Given a nonzero homogeneous polynomial F ∈ k[X,Y, Z], we define the multiplicity
of F at P to be the largest integer m ≥ 0 such that

(F )P2
k,P

⊂ ImP2
k,P

.

(b) Given a curve C ⊂ P2
k and point P ∈ P2

k, we define the multiplicity of C at P to be

mP (C) := mP (F )

where F is any minimal polynomial for C.
(c) Given two nonzero homogeneous polynomials F,G ∈ k[X,Y, Z], we define the local

intersection multiplicity of F and G at P to be

iP (F,G) := dimk P2
k,P

/(F,G)P2
k,P

.

(d) Given two curves C,D ⊂ P2
k and point P ∈ P2

k, we define the intersection multiplicity
of C and D at P to be

iP (C,D) := iP (F,G)

where F,G are any minimal polynomials for C and D.

These definitions have the advantage of being visibly invariant under projective changes
of coordinates, but we observe also that they are compatible with definitions from the affine
case: setting x := X/Z and y := Y/Z gives us an isomorphism

k(P2
k) →∼ k(x, y)

with the property that if P = [x0 : y0 : 1] ∈ A2
k ⊂ P2

k, then this map takes

P2
k,[x0:y0:1] →

∼ A2
k,(x0,y0) and IP2

k,[x0:y0:1] →
∼ IA2

k,(x0,y0).

From this isomorphism and our above discussion on multiplicity, it follows immediately that if
P ∈ A2

k ⊂ P2
k and F ∈ k[X,Y, Z] is a nonzero homogeneous polynomial, then

mP (F ) = mP (F
i),

and similarly that if F,G ∈ k[X,Y, Z] are nonzero homogeneous polynomials, then

iP (F,G) = iP (F
i, Gi).

It follows from this that the function i satisfies axioms similar to (1)-(7) and is also completely
characterized by them. Henceforth, we will use notions of (intersection) multiplicity for projec-
tive curves without further comment.

Remark 1.12.8. One can reasonably ask: which subring of k(x, y) does P2
k,P

map to when

P ∈ L∞? The answer is pretty fun to work out and straightforward: if P = [1 : 0 : 0], then
P2

k,P
⊂ k(x, y) corresponds to the ring

k

[
y

x
,
1

x

]
(y/x,1/x)

⊂ k(x, y)

which is the localization of the polynomial ring k[y/x, 1/x] at the maximal ideal (y/x, 1/x). If
you do not know what this remark means, you can safely ignore it.
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1.12.3 Projective Jacobi Criterion

One useful result that we would like to have in our toolkit is a projective analog of Theorem
1.8.8. For this, we will need

Lemma 1.12.9 (Euler). Suppose F ∈ k[X,Y, Z] is a homogeneous polynomial of degree
d ≥ 0. If ∂XF (resp. ∂Y F , ∂ZF ) denotes the formal partial derivative of F with respect
to X (resp. Y, Z), then

X · ∂XF + Y · ∂Y F + Z · ∂ZF = d · F.

Proof. Both sides of the equation are k-linear in F , so it suffices to show the result for a
monomial of the form F = XaY bZc, where a+ b+ c = d; but then the statement is clear. ■

Of course, there is nothing special about the polynomial ring in three variables, and
a similar result holds in any number of variables. Lemma 1.12.9 tells us also that if ch k ∤ d
(in particular always in characteristic zero), then the conditions ∂XF |P = ∂Y F |P = ∂ZF |P = 0
also imply F |P = 0. We are now ready to prove

Theorem 1.12.10 (Projective Jacobi Criterion). Suppose we are given a curve C ⊂ P2
k and

a point P ∈ P2
k. Let F ∈ k[X,Y, Z] be a minimal polynomial for C. Then

(a) P ∈ C iff F |P = 0, and in this case
(b) P is a singular point of C iff

∂XF |P = ∂Y F |P = ∂ZF |P = 0.

(c) If P ∈ C is a smooth point, then the tangent line TPC is defined by the vanishing of

∂XF |P ·X + ∂Y F |P · Y + ∂ZF |P · Z = 0,

where in these evaluations we use the same representative (X0, Y0, Z0) for the point
P = [X0 : Y0 : Z0].

Proof. The statement in (a) is clear. As in the proof of Theorem 1.8.8, all parts are invariant
under projective coordinate changes,31 so it suffices to do the case P = [0 : 0 : 1], and so we
may work in the affine chart A2

k. For (b), we note that P is a singular point for C iff it is a
singular point for C◦, which by Theorem 1.11.21 has minimal polynomial F i. Theorem 1.8.8
tells us that this happens iff

∂xF
i|P = ∂yF

i|P = 0.

But now we observe that

∂xF
i = (∂XF )i,

∂yF
i = (∂Y F )i, and

∂ZF |P = d · F |P ,

where in the last equality we are using Lemma 1.12.9. It follows that if (a) holds, then

∂xF
i|P = ∂yF

i|P = 0 ⇔ ∂XF |P = ∂Y F |P = ∂ZF |P = 0,

31Check! This is the reason for the symmetric shape of the statement, although we will break the symmetry
by invoking the affine Jacobi criterion below.
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proving (b). Theorem 1.8.8 also tells us that the affine tangent line to C◦ at P is

∂xF
i|(0,0) · x+ ∂yF

i|(0,0 · y = 0

which has projective closure

∂XF |P ·X + ∂Y F |P · Y + ∂ZF |P · Z = 0

as needed. ■

One immediate consequence of this criterion is an analog of Theorem 1.9.7; this is

Theorem 1.12.11. If C ⊂ P2
k is any curve, then C has only finitely many singular points.

Proof. Identical to the proof of Theorem 1.9.7, using Theorem 1.12.10 instead of Theorem
1.11.21. We can also reduce to the affine case. I leave the details to the reader. ■

That’s more than enough abstract theory for now. Let’s return to some concrete
examples now.

1.12.4 Bézout’s Theorem for a Line, Classification of Projective Conics up
to Changes of Coordinates

Let’s first prove Bézout’s theorem for a line.

Theorem 1.12.12. If k is an algebraically closed field, C ⊂ P2
k is a curve of degree d ≥ 1,

and L ⊂ P2
k is a line such that L ̸⊂ C, then∑

P∈C∩L
iP (C,L) = d.

Of course, degL = 1, so that d = (degC)(degL).

Proof. By a projective change of coordinates, we can assume L = L∞. By Theorem 1.11.21,
if F is a minimal polynomial for C, then C◦ has minimal polynomial f := F i, and L∞ ̸⊂ C
implies that Z ∤ F and so deg f = degF = degC = d. If we write f = f0 + · · ·+ fd, where each
fj ∈ k[x, y] is homogeneous of degree j, then

F = fh = Zdf0(X,Y ) + · · ·+ fd(X,Y ).

Then points P ∈ C ∩ L are exactly points of the form [X0 : Y0 : 0], where fd(X0, Y0) = 0,
and there are exactly d such points counted with multiplicity, by Lemma 1.8.3, where the two
notions of multiplicity coincide by the computation in Example 1.9.12; I leave the details of this
verification to the reader, since we will do the more general case soon. ■

We can now use this to classify all projective conics–at least when the base field k is
algebraically closed.
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Theorem 1.12.13. If k is algebraically closed and Q ∈ k[X,Y, Z]2 is a nonzero homoge-
neous polynomial of degree 2, then there is a projective change of coordinates Φ : P2

k → P2
k

and a lift to the homogeneous polynomial ring Φ∗ : k[X,Y, Z] → k[X,Y, Z] such that Φ∗Q
is either X2, XY or Y Z −X2.

It is also clear that three cases are disjoint, since the corresponding projective curves
are not isomorphic. One immediate consequence of this algebraic result is

Corollary 1.12.14 (Classification of Projective Conics). If k is an algebraically closed field
and C ⊂ P2

k a conic (i.e. curve of degree 2), then there is a projective change of coordinates
Φ : P2

k → P2
k taking C to one, and only one, of the following forms:

(a) C = CXY , which is a union of two lines that is singular at [0 : 0 : 1], and
(b) C = CY Z−X2 , which is a smooth conic.

In particular, it follows that any irreducible conic is smooth; compare this with the
proof of this result from Exercise 2.3.4(b).

Proof of Theorem 1.12.13. Either Q = ℓ2 for some L ∈ k[X,Y, Z]1, in which case we can take
ℓ to X via some Φ∗; or Q = ℓ1ℓ2 for some distinct irreducibles ℓ1, ℓ2 ∈ k[X,Y, Z]1, in which
case we can take ℓ1 7→ X and ℓ2 7→ Y by a simple application of Proposition 1.12.5; or Q is
irreducible. Consider the curve C defined by Q; then C is also irreducible. By Proposition
1.11.13, C is infinite, but by Theorem 1.12.11, C has only finitely many singular points; in
particular, all but finitely many points on C are smooth.

Let P1, P2 ∈ C be any two distinct smooth points, and let Li = TPiC for i = 1, 2
be the tangent lines at those points. We claim that P1 /∈ L2 (and so, by symmetry, we have
P2 /∈ L1), and in particular L1 ̸= L2. Indeed, if P1 ∈ L2, then we get that∑

P∈C∩L2

iP (C,L2) ≥ iP1(C,L2) + iP2(C,L2) ≥ 1 + 2 = 3,

where iP2(C,L2) ≥ 2 because L2 is tangent to C at P2 (check!). This, combined with Theorem
1.12.12 tells us that L2 ⊂ C, which by 1.11.17(b) implies that L2 = C, contradicting the fact
that degC = 2.32 Since L1 ̸= L2, we conclude from Proposition 1.11.3 that L1 and L2 intersect
in a unique point, say P3. Since P1 /∈ L2, it follows that P1 ̸= P3; similarly, P2 ̸= P3. In fact,
it follows that P1, P2, P3 are not collinear: if they were collinear, then Proposition 1.11.3 would
tell us that the line containing them would have to be both L1 and L2, contradicting L1 ̸= L2.

It then follows from 1.12.5 that there is a projective change of coordinates Φ taking
P1 7→ [0 : 0 : 1], P2 7→ [0 : 1 : 0] and P3 7→ [1 : 0 : 0]. In this coordinate system, L1 is the line
Y = 0, and L2 is the line Z = 0. For this Φ and any choice of Φ∗, if we write

Φ∗Q = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2,

then f = 0 (because P1 ∈ C), c = 0 (because P2 ∈ C), d = 0 (because L1 = CY ) and b = 0
(because L2 = CZ). In particular, we will have

Φ∗Q = aX2 + eY Z.

Now neither a nor e is zero, because otherwise Q would be reducible. Then we may scale Φ∗

by −a−1 and further change coordinates so Y is replaced by −ae−1Y to bring Q into the form
Y Z −X2. ■

32The fact that P1 /∈ L2 uses crucially that C is a conic–for instance, a tangent to a cubic or higher degree
curve meets the curve in at least one other point in general.
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Remark 1.12.15. A careful analysis of the proof shows that we did not really use, in the last
case, that k is algebraically closed, but only that C has at least two points. The above proof
can be upgraded, with some care, to also obtain a classification over other fields: namely that
if k is any field and Q ∈ k[X,Y, Z]2 is a homogeneous irreducible element of degree 2 such that
CQ has at least two points, then, after a suitable change of coordinates, Q = Y Z−X2. This is,
in fact, the best we can do in general: if k = R, then the possibilities for Q include, in addition
to X2, XY, Y Z −X2, also the “conics” X2 + Y 2 (which defines one point) and X2 + Y 2 + Z2

(which defines the empty set). The classification of projective conics over an arbitrary field is
closely related to the classification of binary quadratic forms in 3 variables over that field. See,
for instance, [5, §1.6] for another perspective on this result via this approach.

Next time, we will start by discussing very cool applications of these results–including
Pascal’s Theorem!
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1.13 07/08/24 - Parametric Projective Curves, Pascal’s Theo-
rem, and More on Conics

Today, I want to prove Bézout’s theorem for conics, and derive some delicious applications. For
this, I will need to talk about parametric projective curves.

1.13.1 Parametric Projective Curves and Bézout’s Theorem for a Conic

In the affine case, we defined a parametric curve to be an image of A1
k under two rational

functions. In the projective case, we can always clear denominators and work with P1
k instead.

This leads us to

Definition 1.13.1. A parametric projective algebraic curve is the image of a map Ψ : P1
k → P2

k

of the form
Ψ[U : V ] = [F1(U, V ) : F2(U, V ) : F3(U, V )],

where Fi(U, V ) ∈ k[U, V ] for i = 1, 2, 3 are homogeneous polynomials of the same degree,
not all zero.

This definition corresponds to the affine one by considering A1
k ⊂ P2

k as the set where
V ̸= 0 with coordinate t = U/V , in which case the affine part of this parametric projective
curve is given by

t 7→
(
F1(t, 1)

F3(t, 1)
,
F2(t, 1)

F3(t, 1)

)
,

which is a parametric affine curve. One can show, either using techniques similar to those in
§1.3 or by reducing to the affine case, that a parametric projective algebraic curve is, in fact, a
projective algebraic curve (at least when not all Fi are proportional, in which case the image is
a single point). I will not do this here, but I encourage you to carry this out yourselves.

Remark 1.13.2. Note that I did not ask for the Fj(U, V ) to not have a common root on P1
k,

because if they did, then I would very easily be able to just cancel this common factor from
each Fj(U, V ). This is a manifestation of the completeness of projective curves–projective curves
have no holes, and rational maps out a smooth projective curve always eextends to a regular
morphism out of it. As usual, if this doesn’t make sense, please ignore it.

Example 1.13.3. The smooth conic defined by Y Z −X2 ∈ k[X,Y, Z]2 can be parametrized via
the map Ψ given as

Ψ[U : V ] = [UV : U2 : V 2].

This is the projective version of affine parametrization t 7→ (t, t2) of the parabola defined by
y − x2 = 0. By Corollary 1.12.14, this gives us a parametrization of every smooth conic curve.
In particular, every smooth conic curve admits a parametrization.

From this parametrization, we can now prove Bézout’s theorem for a conic.

Theorem 1.13.4. If k is an algebraically closed field, C ⊂ P2
k is a conic (i.e. a curve with

degC = 2), and D ⊂ P2
k a curve of degree d ≥ 1 such that C and D do not share a

component, then ∑
P∈C∩L

iP (C,D) = 2d.

Of course, degC = 2 and so 2d = (degC)(degD).
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Proof. By Corollary 1.12.14, we can choose coordinates such that C is either the union of the
two lines CX and CY , or that C = CY Z−X2 ; make a change of coordinates so that we are
working with this coordinate system. In the first case, neither of the two lines CX or CY can be
contained in D, and we are done by additivity of intersection multiplicity and Theorem 1.12.12
(make sure you believe this!). In the second case, C is irreducible and Example 1.13.3 tells us
that we can parametrize C as the image of the map

[U : V ] 7→ [UV : U2 : V 2].

If F is a minimal polynomial for D, then F is a homogeneous polynomial of degree d, and the
intersection points of C and D correspond exactly to [U0 : V0] ∈ P1

k such that

F (U0V0, U
2
0 , V

2
0 ) = 0.

Now F (UV,U2, V 2) ∈ k[U, V ]2d is a homogeneous polynomial of degree 2d. If it is identically
zero, then we conclude that C ⊂ D, contrary to assumption that C and D do not share any
components; therefore, this polynomial is not identically zero, and so has exactly 2d roots
counted with multiplicity, again by Lemma 1.8.3. I will again leave it to the reader to check,
perhaps using techniques similar to those from Example 1.9.12, that the intersection multiplicity
of C and D at a point [U0V0 : U2

0 : V 2
0 ] agrees with the multiplicity of [U0 : V0] as a root of

F (U0V0, U
2
0 , V

2
0 ) = 0.33 ■

We are now ready for some delicious applications!

1.13.2 Pascal’s Theorem, Pappus’s Theorem, Brocard’s Theorem, etc.

Theorem 1.13.5 (Pascal). Let k be an algebraically closed field, C ⊂ P2
k a smooth conic

and P1, . . . , P6 distinct points on C. For i = 1, . . . , 6, let Li be the line joining Pi and Pi+1

(where P7 := P1), and for j = 1, 2, 3, let Qj := Lj ∩Lj+3. Then the points Q1, Q2, Q3 ∈ P2
k

are collinear, i.e. there is a line L0 ⊂ P2
k such that Qj ∈ L0 for j = 1, 2, 3.

Let’s first make a few observations about the statement:

(a) The lines Li are all distinct: if Li = Li′ for some i ̸= i′, then this line intersects C in at least
3 distinct points, and is hence contained in C (by either Theorem 1.12.12 or 1.13.4); this
would mean that C is reducible and hence (by Corollary 1.12.14 if needed) not smooth.
In particular, by Proposition 1.11.3, the points Q1, Q2, Q3 are uniquely determined.

(b) Each Pi lies on exactly two lines Li′ , namely Li−1 and Li, and, in particular, these lines
have indices that differ by 1 (modulo 6); conversely, each Li contains exactly two points
Pi and Pi+1 of C, because again if it contained a third point of C, it would be contained
in C entirely.

(c) We have Pi ̸= Qj for all i, j. Indeed, let us take the indices i, j modulo 6; then Pi = Qj

cannot happen because this implies that Pi ∈ Lj ∩ Lj+3, violating the observation (b).
(d) Finally, we have Q1, Q2, Q3 /∈ C. Indeed, if some Qj ∈ C, then Qj ∈ Lj ∩C = {Pj , Pj+1}

implies that Qj = Pi for some i, j, violating (c).
(e) In fact, although we will not need this for the proof, all the 9 points Pi, Qj are distinct:

Let’s now proceed to the proof, which is rather simple given the tools we have.

33I’m being lazy partly because, in the proof of Pascal’s Theorem (Theorem 1.13.5) below, we will only need
the result that C and D intersect in at most 2d points unless they share a component, and this we have already
proven. Also, we shall do a full proof of the general Bézout Theorem very soon.
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Proof. For i = 1, . . . , 6, let ℓi ∈ k[X,Y, Z]1 be a homogeneous linear polynomial vanishing on
Li. Consider the family DΛ of cubic curves parametrized by Λ = [λ : µ] ∈ P1

k, where DΛ is
defined by the vanishing of the polynomial

λℓ1ℓ3ℓ5 + µℓ2ℓ4ℓ6.

Note that each curve DΛ in this family passes through all the Pi’s and Qj ’s, and we have that
D[1:0] = L1∪L3∪L5 and D[0:1] = L2∪L4∪L6.

34 Now pick a point R ∈ C∖{P1, . . . , P6}, which
exists because C is infinite (Proposition 1.11.13). From observation (b) above, we conclude that
R /∈ D[1:0]∪D[0:1], from which it follows that there is a unique Λ0 ∈ P1

k such that R ∈ DΛ0 .
35 Let

D = DΛ0 . Since D is a cubic curve and C and D intersect in at least 7 points, it follows from
Theorem 1.13.4 that C and D share a component. Since C is irreducible (Corollary 1.12.14)
and degD = 3, this can only happen if C ⊂ D and D = C ∪ L0 for some line L0 ⊂ P2

k. But
now, D contains Q1, Q2, Q3 (because each DΛ does), while C does not contain Q1, Q2, Q3 (this
was observation (c) above), and hence Q1, Q2, Q3 ∈ L0. ■

See Figure 1.8 for a visual demonstration of the proof technique.

Figure 1.8: Pascal’s Theorem. The conic (here ellipse) C and the line L0 are in thick black
style. The various colorful curves represent various members of the one parameter family DΛ,
one member of which is also C ∪ L0. Picture made with Geogebra.

Remark 1.13.6. Note that the actual statement of Theorem 1.13.5 does not use an ordering
whatsoever on the points P1, . . . , P6–indeed, for general fields, it does not even make sense to
order points of a conic. In particular, if we start with a collection of 6 distinct unordered points
on a conic C, then they can be connected into a hexagon in 60 different ways, and resulting in
60 different instances of Pascal’s Theorem and 60 different “Pascal” lines; this configuration of
60 lines associated to 6 points on a hexagon is often called the Hexagrammum Mysticum. Finally,
although we have proven the theorem over algebraically closed fields, it follows also immediately

34If you were not convinced of this already, then this observation tells us that every curve DΛ has degree 3:
indeed, if it did not, then some DΛ would be either a line or a union of two lines, neither of which can contain
all the Pi’s, since no three of them are collinear (why?).

35Indeed, if we pick a representative (X0, Y0, Z0) for R = [X0 : Y0 : Z0], then neither of ℓ1ℓ3ℓ5|(X0,Y0,Z0) and
ℓ2ℓ4ℓ6|(X0,Y0,Z0) is zero, and this unique Λ0 is Λ0 = [−ℓ2ℓ4ℓ6|(X0,Y0,Z0) : ℓ1ℓ3ℓ5|(X0,Y0,Z0)] ∈ P1

k.
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over all fields (e.g. over k = R), thanks to Theorem 1.4.5 and the observation that Proposition
1.11.3 does not use that the base field is algebraically closed, which implies, for instance, that
if three points Q1, Q2, Q3 ∈ P2

R ⊂ P2
C are collinear in P2

C, then they are collinear in P2
R, i.e.

the line joining them is real. Over the real numbers, other proofs can also be given; after all,
Pascal did not actually have Bézout’s Theorem. One approach involves using a variant of the
classification of projetive conics over R (see Remark 1.12.15) to conclude that any smooth conic
can be taken by a projective change of coordinates over R to a circle X2 + Y 2 − Z2 = 0, and
then to use other techniques from Euclidean geometry (e.g. Menelaus’s Theorem).

In the proof of Pascal’s Theorem, we did not really use that C was a smooth conic
other than to rule out certain degenerate cases. Therefore, the same proof technique also yields

Theorem 1.13.7 (Pappus). Let k be any field. Let L1, L2 ⊂ P2
k two distinct lines, and

P1, Q1, R1 ∈ L1 ∖ L2 and P2, Q2, R2 ∈ L2 ∖ L1 be distinct points. If

S1 = Q1R2 ∩Q2R1,

S2 = P1R2 ∩ 2R1, and

S3 = P1Q2 ∩ P2Q1.

. Then S1, S2, S3 ⊂ P2
k are collinear.

Proof. By Theorem 1.4.5 and Proposition 1.11.3, we may replace k by an algebraically closed
field and still have the same result (check!), and then the same proof technique as in Theorem
1.13.5 works. I leave the verification of the nondegeneracy conditions to the diligent reader. ■

Finally, Pascal’s Theorem can also be applied with “multiplicities”. The key result
needed to do this is

Lemma 1.13.8. Let C ⊂ P2
k be a curve and P ∈ C be a smooth point. Let F be a

minimal polynomial for C, and let G,H ∈ k[X,Y, Z] be homogeneous polynomials such
that G,H,G+H ̸= 0. Then

iP (F,G+H) ≥ max{iP (F,G), iP (F,H)}

with equality if iP (F,G) ̸= iP (F,H).

Proof Sketch. This is a local property invariant under changes of coordinates, and so we may
work in the affine chart Z ̸= 0 and assume that P = (0, 0) and that the tangent line to C at P
is the x-axis Cy. Let f = F i. The claim is that for any 0 ̸= g ∈ P , there is a unique integer
n ≥ 0 such that for some unit u ∈ ×

P we have g − uxn ∈ (f)P . Uniqueness is clear, because
then iP (f, g) = iP (f, ux

n) = n. For existence, scale f and write it as f = y + xnp + y2q for
some p ∈ k[x] such that p(0) ̸= 0 and then y − p(1 + yq)−1xn ∈ (f)P , proving the claim for
g = y. The statement for g = x is clear, and so is the fact that if such an n exists for g and h,
then it does also for g · h. Showing the result for the sum g+ h when 0 ̸= g+ h is slightly more
involved, but in any case if g ≡ uxn (mod fP ) and h ≡ vxm (mod fP ) for some n,m ≥ 0
and u, v ∈ ×

P , then f + g ≡ (uxn−m+ v)xm (mod fP ) showing that the result holds for f + g
(as well as the claim in the lemma), unless we have n = m and u+ v = 0; this case needs some
more effort, but is not too difficult. See, for instance, the discussion in the proof of [3, §3.3,
Theorem 3(8)]. ■
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Remark 1.13.9. The grown-up way to prove (and understand) Lemma 1.13.8 is to say that if
C ⊂ P2

k is a curve and P ∈ C is a smooth point, then the local ring C,P of C at P is a discrete
valuation ring with uniformizer given by the class of any line not tangent to C at P . I haven’t
defined what those terms are yet, so do not worry too much about this at the moment.

Given Lemma 1.13.8, however, it is very straightforward to extend the proof of Pascal’s
Theorem to cases where the points “degenerate”. Here’s one example of how to do this; you
are invited to explore other examples of this sort in Exercise 2.5.3.

Theorem 1.13.10 (Brocard). Let k be an algebraically closed field and C ⊂ P2
k be a smooth

conic and P1, P2, P3, P4 ∈ C be distinct points. For i = 1, . . . , 4, let Ti := TPiC, and for
1 ≤ i, j ≤ 4, let Lij be the line joining Pi and Pj . Let

S1 = L12 ∩ L34,

S2 = L23 ∩ L41,

Q13 = T1 ∩ T3,

Q24 = T2 ∩ T4.

The points S1, S2, Q13 and Q24 in P2
k are collinear.

I will leave to the reader the verification of many implicit claims in the statement of the theorem,
e.g. the definition of S1 uses Proposition 1.11.3 and that L12 ̸= L34. The line joining S1, S2, Q13

and Q24 is called the polar of the last intersection point S3 := L13 ∩ L41 with respect to the
conic C. Again, the ordering of the points P1, P2, P3, P4 does not matter, and we end up with
3 different such configurations.

Proof. It suffices to show that S1, S2 and Q13 are collinear, because then S2, S1 and Q24 are
collinear by an application of the proven claim to P2, P3, P4, P1 in that order. To show the
first claim, apply Pascal’s Theorem (Theorem 1.13.5) to the “hexagon” P1P1P2P3P3P4. To say
more, take

L1 = T1,

L2 = L12,

L3 = L23,

L4 = T3,

L5 = L34, and

L6 = L41

in the setup of Theorem 1.8, so that Q1 = Q13, Q2 = S1 and Q3 = S2. Take linear polynomials
as ℓi as before, and again consider the 1-parameter family DΛ. Again, take a new point R
and a unique Λ0 such that R ∈ D. Since L1 ∪ L3 ∪ L5 and L2 ∪ L4 ∪ L6 each meet C in
multiplicity at least 2 at both P1 and P3, it follows from Lemma 1.13.8 then every memebr of
the family DΛ meets C both passes through the points P1, P2, P3, P4, S1, S2 and Q13, and meets
C to multiplicity at least two at both P1 and P3. It follows as before from Bézout’s Theorem
for a conic (Theorem 1.13.4), but this time applied with multiplicities, that C ⊂ D, and the
rest of the proof is identical to that of Theorem 1.13.5. ■

See Figure 1.9 for an illustration of Theorems 1.13.7 and 1.13.10.

Remark 1.13.11. Over k = R or k = C, the proof of these “degenerate” cases can also be given
by continuity. Similarly, once you have Pascal’s Theorem, you can also derive from it Pappus’s
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Figure 1.9: Theorems of Pappus and Brocard. Pictures made with Geogebra.

Theorem by continuity (by letting a hyperbola degenerate to a pair of lines). Such proofs are
also available over other fields, but only with significantly more sophisticated tools.

1.13.3 More on Conics

Finally, let’s talk about how Bézout’s Theorem can be used to solve interpolation problems, i.e.
problems involving finding curves of certain degrees passing through given points in P2

k.

Theorem 1.13.12. Let S ⊂ P2
k be a set with 5 elements.

(a) There is a conic C ⊂ P2
k passing through S, i.e. such that S ⊂ C.

(b) If no four distinct points in S are collinear, then such a conic as in (a) is unique.
(c) If no three distinct points in S are collinear (i.e. S is in general position), then the

unique conic as in (b) is smooth.

Note that (b) and (c) are the best possible refinements of (a): if four points in S
were collinear, then (at least if k is infinite), there would be infinitely many (reducible) conics
containing S, and similarly if three points in S are collinear, then there is no hope of a conic
containing S being irreducible or equivalently smooth (thanks again to Theorem 1.13.4).

Proof.

(a) Let S = {P1, . . . , P5}, and pick representatives (Xi, Yi, Zi) for Pi = [Xi : Yi : Zi] for
i = 1, 2, . . . , 5. The vector space of homogeneous quadratic polynomials in

(b) If there are two distinct conics C,D ⊂ P2
k through S, then by Bézout’s Theorem (Theo-

rem 1.13.4), C and D must have a common component. Then neither C nor D can be
irreducible, and, in fact, we must have C = L1 ∪ L2 and D = L2 ∪ L3 for some distinct
lines L1, L2, L3 ⊂ P2

k (check!). In this case, S ⊂ C ∩D = L2 ∪ (L1 ∩L3). Since L1 ∩L3 is
one point, at least four points of S must lie on L2.

(c) If the unique conic C as in (b) is singular, then it is reducible and hence a union of two
lines. By the Pigeonhole Principle, at least three elements of S must lie on a line.

■

Remark 1.13.13. You are invited to explore similar interpolation problems in Exercise 2.5.1. In
the above result, there is some subtlety involving whether of not we’re working over algebraically
closed fields; I’ll let you work through the details of that. Remark 1.12.15 may be of some help.

We will have just a little more to say about conics in the next few lectures–when we
talk about one-parameter families (i.e. pencils) of conics. Next time, we will finally go over two
proofs of Bézout’s Theorem.
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1.14 07/10/24 - Proof(s) of Bézout’s Theorem

We are now finally ready to prove Bézout’s Theorem, which we state here.

Theorem 1.14.1 (Bézout). If k is an algebraically closed field, and C,D ⊂ P2
k algebraic

curves that do not share a common component, then∑
P∈C∩D

iP (C,D) = (degC)(degD).

We showed in Theorem 1.11.20 that if C and D do not share a component, then C
and D intersect in finitely many points. We will give two proofs of Theorem 1.14.1 below. The
proof strategy in both case is going to be to choose a suitable coordinate system in which C
and D do not intersect at infinity–that it all what we will need the projective plane for. Having
done that, the rest of the proof becomes a computation in the affine plane.

1.14.1 Proof 1: Dimension Count

Proof 1 of Theorem 1.14.1. Pick a line L not meeting C∩D (this is possible by Theorem 1.11.20
and the correct salvage to Exercise 2.6.7), and choose a system of coordinates such that (i.e.
assume by a projective change of coordinates that) L = L∞. Then neither C nor D contains L
as a component–indeed, if, say, L ⊂ C, then it would follow from Theorem 1.12.12 that L ∩D
is nonempty, and then L ∩ C ∩ D is nonempty, contrary to assumption. In particular, if F
(resp. G) is a minimal polynomial for C (resp. D), and we let f := F i (resp. g := Gi) and
degC = n ≥ 1 (resp. degD = m ≥ 1), then we have by Theorem 1.11.21 that

deg f = degF = degC = m and deg g = degG = degD = n.

If we write f = f0 + · · · + fm and g = g0 + · · · + gn, where each fi and gi is homogeneous of
degree i in x and y, then fmgn ̸= 0, and it follows from the assumption that L ∩ C ∩ D = ∅
that fm, gn ∈ k[x, y] are relatively prime (for instance, thanks to Lemma 1.8.3). Finally, the
fact that C and D do not share a common component implies that f and g are relatively prime.
We now divide the rest of the proof into two lemmas, whose proofs we postpone for a moment.

Lemma 1.14.2. If k is an algebraically closed field and f, g ∈ k[x, y] are relatively prime,
then the following map is an isomorphism:

k[x, y]/(f, g) →∼
∏

P∈Cf∩Cg

P /(f, g)P .

Lemma 1.14.3. If k is a field and f, g ∈ k[x, y] have degree m,n ≥ 1 such that f and g
are relatively prime and the leading terms fm and gn are relatively prime, then

dimk k[x, y]/(f, g) = mn.

By our definition of intersection multiplicity (as in the existence part of the proof of
Theorem 1.9.9), the two lemmas above combined prove Theorem 1.14.1. ■

The first lemma is a local-to-global principle (often called Max Noether’s af + bg
theorem), and is a sort of Chinese Remainder Theorem for curves, if you will. The second
result is the global dimension computation that proves the result. Let’s now prove the lemmas.
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Lemma 1.14.2. If k is an algebraically closed field and f, g ∈ k[x, y] are relatively prime,
then the following map is an isomorphism:

k[x, y]/(f, g) →∼
∏

P∈Cf∩Cg

P /(f, g)P .

Proof. To show surjectivity, note that we showed in the proof of existence in Theorem 1.9.9 that
if f, g ∈ k[x, y] are relatively prime and if P = (p, q) ∈ Cf ∩ Cg, then there is an N ≥ 1 such
that (x− p)N , (y − q)N ∈ (f, g)P . Since, by Theorem 1.6.6, the intersection Cf ∩ Cg is finite,
there is an N ≥ 1 that works for all P ∈ Cf ∩ Cg. In other words, there is an N ≥ 1 such that
if we enumerate Cf ∩ Cg = {Pi} with Pi = (pi, qi), then (x− pi)

N , (y − qi)
N ∈ (f, g)Pi for all

i. Now, to show injectivity, it suffices to show that for each i, there is a polynomial fi ∈ k[x, y]
such that fi maps to 0 in Pj/(f, g)Pj for all j ̸= i, but to a unit in Pi/(f, g)Pi ; for this,
simply take

fi :=
∏

j:pj ̸=pi

(x− pj)
N

∏
j:qj ̸=qi

(y − qj)
N ,

which maps to zero in each Pj/(f, g)Pj for j ̸= i because of our choice of N , while it is a unit
already in Pi and hence also in Pi/(f, g)Pi .

36

To show injectivity, we have to show that if h ∈ k[x, y] is such that h ∈ (f, g)P for
all P ∈ Cf ∩ Cg, then h ∈ (f, g)k[x, y]. For that, given an h, consider the ideal

I := {q ∈ k[x, y] : qh ∈ (f, g)} ⊂ k[x, y].

Then I ⊃ (f, g)k[x, y], and we want to show that 1 ∈ I, i.e. that I = k[x, y].37 If I is not a
proper ideal, then by Proposition 1.7.6, there is a prime ideal Q ⊂ k[x, y] containing I.38 Since
Q cannot be 0 or of the form (r) for some irreducible r ∈ k[x, y] (because f, g ∈ Q are nonzero
and relatively prime), by Exercise 2.3.3, we must have Q = (x− p, y− q) for some p, q ∈ k (this
uses that k is algebraically closed). Now f, g ∈ Q = (x − p, y − q) implies that if P = (p, q),
then P ∈ Cf ∩ Cg. Since, by hypothesis, we have h ∈ (f, g)P , we conclude that there are
a, b, c ∈ k[x, y] such that ch = af + bg with c|P ̸= 0. But this implies that c ∈ I ∖Q, which is a
contradiction, finishing the proof. ■

Lemma 1.14.3. If k is a field and f, g ∈ k[x, y] have degree m,n ≥ 1 such that f and g
are relatively prime and the leading terms fm and gn are relatively prime, then

dimk k[x, y]/(f, g) = mn.

Proof. For each integer d ≥ 0, let k[x, y]≤d denote the k-vector subspace of k[x, y] consisting
of polynomials of degree at most d, which has dimension

(
d+2
2

)
over k. The proof idea is to

approximate dimk k[x, y]/(f, g) by the images of the projections of k[x, y]d for d ≫ 1. To do
this, for any d ≥ m+ n, consider the sequence of k-vector spaces and k-linear maps given by

0 → k[x, y]≤d−m−n
α−→ k[x, y]≤d−m × k[x, y]≤d−n

β−→ k[x, y]≤d
πd−→ k[x, y]/(f, g), (1.2)

36The surjectivity result does not actually need k to be algebraically closed.
37The ideal I is often called the ideal quotient of (f, g) by (h) and is denoted (f, g) : (h).
38In our case, we did not quite need a fact this general, since we already have f, g ∈ I and so we may conclude

from this that there are polynomials in x only and y only in I, but Proposition 1.7.6 (which is a good fact to
know in general) simplifies things tremendously.
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where

α : c 7→ (cg,−cf),

β : (a, b) 7→ af + bg,

and πd is the restriction of the natural projection map π : k[x, y] → k[x, y]/(f, g) to the subspace
k[x, y]≤d] ⊂ k[x, y]. In the sequence (1.2), the compositions of each pair of successive maps are
all zero, i.e. β ◦α = 0 and πd◦β = 0. The key claim is that, under our hypotheses, this sequence
(1.2) is exact, i.e. α is injective, and we have imα = kerβ and imβ = kerπd. Assuming this,
we conclude from repeated applications of the Rank-Nullity Theorem that

dimk imπd =

(
d+ 2

2

)
− dimk kerπd

=

(
d+ 2

2

)
− dimk imβ

=

(
d+ 2

2

)
−
(
d−m+ 2

2

)
−
(
d− n+ 2

2

)
+ dimk kerβ

=

(
d+ 2

2

)
−
(
d−m+ 2

2

)
−
(
d− n+ 2

2

)
+ dimk imα

=

(
d+ 2

2

)
−
(
d−m+ 2

2

)
−
(
d− n+ 2

2

)
+

(
d−m− n+ 2

2

)
= mn,

where the last step is a trivial simplification. In particular, for all d ≥ m+ n, the dimension of
imπd is independent of d. Since the imπd ⊂ k[x, y]/(f, g) for d ≥ 0 form an increasing sequence
of subspaces with union imπ = k[x, y]/(f, g), it follows from this constancy of dimensions that

imπm+n = imπm+n+1 = imπm+n+2 = · · · = imπ = k[x, y]/(f, g),

and hence
dim k[x, y]/(f, g) = dim imπm+n = mn.

It remains to show that under our hypothesis, the sequence (1.2) is exact, which we do now.

(a) The map α is visibly injective, since k[x, y] is a domain and f, g ̸= 0.
(b) Clearly, imα ⊂ kerβ. Conversely, if (f, g) ∈ kerβ, then af + bg = 0. Since f and g

are relatively prime, it follows from this that g | a and f | b, and in fact that there is a
c ∈ k[x, y] such that a = cg and b = −cf . If deg a ≤ d −m and deg b ≤ d − n, then we
must also have deg c ≤ d−m− n. This proves that kerβ ⊂ imα.

(c) Again, clearly imβ ⊂ kerπd. Conversely, if h ∈ kerπd, then h ∈ (f, g). Write h = af + bg
for some a, b ∈ k[x, y] and suppose that this representation is chosen so that deg a is
minimal (here we take deg 0 = 0). We will show that deg a ≤ d −m and deg b ≤ d − n,
from which it follows that h ∈ imβ, finishing the proof. Suppose to the contrary that
p := deg a > d − m or that q := deg b > d − n, so that either af or bg contains a term
of degree greater than d. Since deg h ≤ d and h = af + bg, it follows that the leading
terms of af and bg must cancel, i.e. p+m = q + n and if we write a = a0 + · · ·+ ap and
b = b0 + · · ·+ bq, where each ai, bi is homogeneous of degree i with apbq ̸= 0, then

apfm + bqgn = 0.

Now, since the terms fm and gn are relatively prime, it follows as before that there is some
nonzero c ∈ k[x, y] of degree p− n = q −m such that ap = gcn and bq = −cfm. Then

h = (a− cg)f + (b+ cf)g

is another representation of h with deg(a− cg) < deg a, contrary to our choice of a.

■
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1.14.2 Proof 2: Resultants

Sketch of Proof 2 of Theorem 1.14.1. Consider the finite set S consisting of all lines that join
two or more points of C∩D and all tangent lines to C andD at all the points of intersection C∩D.
Pick a point P0 ∈ P2

k that is not on C ∪D and not on any line in S. Pick a coordinate system
so that P0 = [1 : 0 : 0]. It follows from this choice that each “horizontal” line Z0Y − Y0Z = 0
meets at most one point of C ∩D, i.e. all the points of intersection have distinct y-coordinates.
The idea of the proof is to project the intersection points C ∩D onto the y-axis, and use this
to count then number intersection points (with multiplicity).

For this, let degC = m (resp. degD = n), and let F (resp. G) be a minimal polynomial
for C (resp. D). Write

F = F0X
m + · · ·+ Fm and G = G0X

n + · · ·+Gn,

where each Fi (resp. Gi) is a polynomial only of Y and Z and homogeneous of degree i. The
assumption that P0 /∈ C∪D implies that F0G0 ̸= 0. Since F,G are relatively prime in k[X,Y, Z],
by Lemma 1.6.2(b) there are A,B ∈ k[X,Y, Z] and 0 ̸= R ∈ k[Y,Z] such that AF + BG = R.
In fact, we can choose R to be the resultant

R = ResX(F,G) ∈ k[Y,Z]mn

with A and B homogeneous as well.39 Then a point [Y0 : Z0] is a root of R iff the polynomials
F (X,Y0, Z0) and G(X,Y0, Z0) have common root X0 over k (Exercise 2.2.4(d)), which happens
iff the horizontal line Z0Y − Y0Z = 0 intersects the curve. In other words, the roots of R
correspond exactly to the projection of the intersection of F and G to the y-axis, since we chose
our coordinate system so that no two points of intersection lie on the same horizontal line.

Since R has exactly mn roots counted with multiplicity, to complete the proof, it
suffices to show that for each root [Y0 : Z0] of R, the intersection multiplicity of C and D
at the unique point of intersection on the line Z0Y − Y0Z = 0 is exactly the multiplicity of
[Y0 : Z0] as a root of R. There are many ways to do this. One way to show this is to prove
that this definition satisfies (with respect to any choice of P0) satisfies the axioms (1)-(7), and
use the uniqueness result from Theorem 1.9.9; this is, for instance, the approach followed in [6,
Theorem 3.18]. Another way to do this is to note that the problem is local at P , so by an affine
translation (so preserving P0), we may assume that P = (0, 0) is the point of intersection on line
y = 0. Since resultants are stable under dehomogenization, we conclude that if f and g are the
dehomogenizations of F and G, then we have to show that iP (f, g) is the multiplicity m0(r) of
r = Resx(f, g) at 0, which is the highest power of y dividing r. Let this highest power be N . The
claim then follows from the observation in the local ring P , we have (f, g)P = (x+yq, yN )P

for some q ∈ k[x, y]. The result follows from this from because then

iP (f, g) = dimk P /(f, g)P = iP (x+ yq, yN ) = N · iP (x+ yq, y) = N · ip(x, y) = N.

To show that (f, g)P = (x + yq, yN )P , note first that r ∈ (f, g)k[x, y] can be
written as yNr0 for some r0 ∈ k[y] with r0(0) ̸= 0, whence yN ∈ (f, g)P . Also, we can write
f = xf1 + yf2 and g = xg1 + yg2 for some polynomials f1, g1 ∈ k[x] and f2, g2 ∈ k[x, y]. Then
the assumption that P is the only intersection point of C and D on y = 0 implies that f1
and g1 are coprime, whence from Bézout’s Lemma it follows that there are a, b ∈ k[x] such that
af1+bg1 = 1. It follows then that af+bg = x+yq for q = af2+bg2, and hence x+yq ∈ (f, g)P .
This shows (x+ yq, yN )P ⊂ (f, g)P . The other inclusion is similar, but needs more work of
reconstructing the polynomials f and g from the resultant and powers of x. ■

39We haven’t quite shown this, but it is not very hard to do with the tools that we have developed. A fuller
discussion of the theory of resultants would include this result. The resultant R is homogeneous of degree mn
precisely because F0G0 ̸= 0.
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1.15 07/12/24 - More Applications, Pencils of Curves, Intro-
duction to Elliptic Curves

Today, we’ll do more applications of Bézout’s Theorem and start talking about elliptic curves,
which will be our main focus for the last few lectures. Before we do that though, it is helpful
to have a few handy corollaries and ideas. Here are two immediate applications of Bézout’s
Theorem.

Theorem 1.15.1. Let k be an algebraically closed field.

(a) If C,D ⊂ P2
k are any two projective curves, then C ∩D ̸= ∅.

(b) Any smooth projective curve is irreducible.

Proof. The statement (a) is an immediate corollary of Bézout’s Theorem (Theorem 1.14.1). For
(b), if a projective curve has multiple components, then some two of these components must
intersect somewhere by (a), and then by Theorem 1.9.6, this point of intersection is a singular
point of the curve. ■

Note that (a) is sharp in the sense that it is possible for two curves of any degrees
m,n ≥ 1 to intersect in a single point with multiplicity mn. We shall have occasion to use (b)
repeatedly below.

1.15.1 Pencils of Curves and the Quartic Equation

Let’s now talk about linear one parameter families of curves, starting with a couple of examples.

Example 1.15.2. The family  = {Cλ}λ∈k of curves, where Cλ is the horizontal line defined by
y − λ = 0 is a one-parameter family of curves of degree 1. When λ → ∞, curve Cλ seems to
disappear; one way to rectify this is to write this family projectively as given by the vanishing
locus of µY − λZ = 0 for Λ = [λ : µ] ∈ P1

k, so when λ is “infinity”, i.e. Λ = [1 : 0], then the
corresponding line is simply Z = 0, the line at infinity–we could have predicted that. Note that
in this case, each member of the family has degree exactly 1.

Example 1.15.3. Now consider the family  = {CΛ}Λ∈P1
k
of curves, where CΛ for Λ = [λ : µ] is

the vanishing locus of λY Z − µX2 = 0. This is a one-parameter family of conics (specifically
parabolae), and the member CΛ is singular iff Λ = [1 : 0] or Λ = [0 : 1]; in the former case, it is
the union of the x-axis and L∞, and in the latter case, it is the (“doubled”) y-axis. Note that
degCΛ = 2 for all Λ except [0 : 1], where degC[0:1] = 1.

These examples motivate the following definition.

Definition 1.15.4.

(a) A pencil  of projective plane curves of degree d is a one-parameter linear family
 = {CΛ}Λ∈P1

k
of projective curves, all but finitely many members of which have

degree d.
(b) Given a pencil  of curves, we define the base locus of  to be

BL() :=
⋂
C∈

C

the intersection of all the curves in the pencil.
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Concretely, a pencil  of degree d is given by specifying two linearly independent
F,G ∈ k[X,Y, Z]d and then defining

CΛ := CλF+µG

for Λ = [λ : µ] ∈ P1
k. In this case, we have

BL() = CF ∩ CG.

Of course, the choices for F and G are not unique: any two F ′, G′ that form a basis for the
span k⟨F,G⟩ of F and G can be chosen as our F and G spanning the pencil, at the cost of
changing the parameter Λ representing each curve CΛ (by a projective change of coordinates
in P1

k.) Saying that all but finitely many members of  have degree d is equivalent to saying
that there is no homogeneous polynomial H ∈ k[X,Y, Z] such that H2 | F,G (check!); this is a
condition we will assume from henceforth as well.

Remark 1.15.5. With our description of the parameter space Pd(d+3)/2
k for all curves of degree

d ≥ 1, a pencil corresponds exactly to a line P1
k
∼= L ⊂ Pd(d+3)/2

k . Similarly, a two-parameter
family (given by a plane P2

k
∼= Λ ⊂ Pd(d+3)/2) is called a net and a three-parameter family is

called a web (which are some rather pictorial names); in general, a k-dimensional linear family
of curves of degree d is also called a k-dimensional linear system of degree d curves. Note also
that we cannot, in general, expect all curves in our pencil to have degree exactly d, as Example
1.15.3 illustrates that we cannot ask all members of our pencil to have the same degree; this
can be done (e.g. if we consider the “double” y-axis to have degree 2), but needs the language
of schemes. As we shall see below, the notion of base locus also behaves most nicely when we
are in the world of schemes, so we can keep track of tangency of the members of our pencil as
well.

Example 1.15.6. A pencil of lines is just the family of all lines in P2
k passing through some fixed

point P ∈ P2
k; in particular, there is only one kind of pencil of lines up to projective changes of

coordinates, and the family of all pencils of lines in P2
k is exactly P2

k.

Example 1.15.7. Over an algebraically closed field of characteristic other than 2, there are
exactly 8 types of pencils of conics up to projective changes of coordinates. Ifa pencil  contains
at least one smooth member, then the base locus of  consists of at most 4 distinct points, and
the intersection multiplicities of at the base locus add up to 4; in other words, family containing
one smooth member are indexed by partitions of 4, of which there are five. Conversely, if two
pencils, each containing one smooth member, give rise to the same partition, then either one
can be taken to the other by a projective change of coordinates. If all members of  are singular,
then the base locus can be either a point, the union of a point and a line not passing through
it, or a line. If it is a point P0, then the pencil consists only of pairs of lines intersecting at
that point, and no line is common to all such pairs. If it is the union {P0} ∪ L for some point
P0 and line L such that P0 /∈ L, then the pencil consists of all reducible conics of the form
CΛ = L ∪ LΛ, where LΛ is the pencil of all lines through P0 (see Example 1.15.6). Finally, if
the base locus is a line L, then there is a point P0 ∈ L such that the pencil again consists of
all reducible conics of the form CΛ = L ∪LΛ, where LΛ is the pencil of all lines through P0. In
these three degenerate case, the base locus completely determines the pencil up to projective
changes of coordinates.40 See Figure 1.10 for a picture illustrating these eight types, as well as
their names. You are invited to prove these results in Exercise 2.6.2.

Example 1.15.8. We met examples of pencils of cubic curves in the proof of Pascal’s Theorem
(Theorem 1.13.5); see Figure 1.8 for an illustration.

40This happens also in the first case (i.e. when  has at least one smooth member), if we think of the base
locus scheme-theoretically, i.e. as remembering what the multiplicities at each point of intersection are.
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Figure 1.10: The eight types of pencils of conics up to projective changes of coordinates. Pic-
ture(s) made with Desmos.

Unfortunately, there are only finitely many types of pencils of degree d curves in P2
k,

up to projective changes of coordinates, iff d ∈ {1, 2}. In general, for d ≥ 3, classification of all
pencils of curves of degree d, even in P2

k, is a very difficult problem. We will discuss the case of
d = 3 in detail when we talk about the classification of elliptic curves in P2

k.

Here’s one cool thing we can say about pencils of conics.

Theorem 1.15.9. Let k be an algebraically closed field of characteristic other than 2, and
let  be a pencil of conics in P2

k. Then either every member of  is reducible, or at most
3 are.

Proof. Note that if ch k ̸= 2, then a quadratic homogeneous polynomial Q ∈ k[X,Y, Z]2 can be
written as

Q =
[
X Y Z

] A H E
H B F
E F C

XY
Z

 ,

where the matrix in the middle determines, and iis uniquely determined, by Q.41 If we denote

41This is the reason that the classification of projective conics is intimately related to the theory of binary
quadratic forms. See Remark 1.12.15.
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this matrix by MQ, then we see that∂XQ
∂Y Q
∂ZQ

 = 2 ·MQ ·

XY
Z

 .

In particular, it follows from the Projective Jacobi Criterion (Theorem 1.12.10) that the conic
CQ defined by Q (when Q ̸= 0) is singular iffMQ has a nonzero kernel (i.e. a nonzero eigenvector
with eigenvalue 0), which happens iff detMQ = 0, as we have talked about several times. Now
given two such linearly independent Q1, Q2 and corresponding matrices Mi := MQi for i = 1, 2,
the pencil  containing Ci = CQi for i = 1, 2 is given by taking CΛ to be the curve defined by
the vanishing of λQ1 + µQ2 = 0. The matrix representative of this quadric is given exactly by

λMQ1 + µMQ2 .

By the first observation, the reducible conics of the pencil  correspond exactly to the roots Λ
of the equation

det(λMQ1 + µMQ2) = 0.

Since this is homogeneous cubic equation in λ and µ, it is either identically zero (in which case
every member of  is reducible), or it has at most three roots, in which case at most three
members of  are reducible, and the rest smooth. ■

Note that a pencil can have any number of singular members between 1 and 3 (inclusive)–
the precise number corresponds to the multiplicities of the roots of the cubic polynomial
det(λMQ1 + µMQ2), and can also be read off from the geometry of the base locus (how?).

Example 1.15.10. Let k be an algebraically closed field and let C,D ⊂ P2
k be two conics that

intersect in exactly 4 distinct points P1, . . . , P4. In this case, these four points must be in general
position (Definition 1.12.4); indeed, if some three of them were to lie on a line L, then every
conic through them would have to contain L (by Bézout’s Theorem for lines or conics), and
hence any two distinct conics passing through them would intersect in all points along L, of
which there are infinitely many (Proposition 1.11.13).

In this case, the pencil of conics containing C and D is said to be a general pencil;
see the case 1 in Figure 1.10 for an illustration of this type of pencil. The claim is that
such a pencil consists of all conics passing through these four points (and, in particular, always
contains smooth members). This can be proven using Max Noether’s Fundamental Theorem
(Theorem 1.16.1) which we will use to prove Chasles’s Theorem (Theorem 1.15.14) next time,
or using a dimension argument on the number of linear constraints imposed on conics by four
points in general position, but an alternative, direct, proof runs as follows. Let E be any other
conic passing through these four points, and pick a fifth point P5 on E distinct from P1, . . . , P4.
Since no four of P1, . . . , P5 are collinear, it follows that E is the unique conic passing through
P1, . . . , P5 (Theorem 1.13.12(b)). In particular, if we can find a conic E′ in the pencil spanned
by C and D that contains P5, then we would have shown that E = E′ and hence that E is in
the pencil spanned by C and D.

For this, we claim first that P5 /∈ C ∪D; indeed, if P5 ∈ C, then by Bézout’s Theorem
for conics (Theorem 1.13.4), we know that E and C share a component. Since E and C are
distinct conics, this can only happen in E = L1 ∪ L2 and C = L2 ∪ L3 for some distinct lines
L1, L2, L3 ⊂ P2

k with P5 ∈ L2. Since L2 contains exactly two of the four points Pi, say P1 and P2,
and both E and C pass through P3 and P4 as well, it follows that both L1 and L3 are lines joining
P1 and P4, whence L1 = L3, which is a contradiction. Therefore, as in the proof of Theorem
1.13.5, if we take F and G to be homogeneous equations defining C and D respectively, and
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pick a representative (X0, Y0, Z0) for P5 = [X0 : Y0 : Z0], then F (X0, Y0, Z0) ·G(X0, Y0, Z0) ̸= 0,
and the curve E′ = CΛ = CλF+µG in the pencil spanned by C and D, where

Λ = [λ : µ] = [−G(X0, Y0, Z0) : F (X0, Y0, Z0)]

contains P5, and we are done. (That Λ is well-defined uses that P /∈ C ∪D, or at least that one
of P /∈ C and P /∈ D holds.)

Therefore, we have shown that a general pencil of conics is exactly the set of all conics
that pass through four points P1, . . . , P4 in P2

k in general position. Since any such tuple of points
can be taken to any other by a projective change of coordinates (this was Proposition 1.12.5),
it follows that any two general pencils are related by a projective change of coordinates. This
is an 1/8th of the solution to Exercise 2.6.2.

Finally, note that if  is a general pencil of conics through the points P1, . . . , P4, then
we can see explicitly what the exactly three reducible conics in , as suggested by Theorem
1.15.9 are: namely, they are the three pairs of lines that are opposite edges of the complete
quadrilateral with vertices P1, . . . , P4; i.e. if for 1 ≤ i < j ≤ 4, we let Lij be the line joining Pi

and Pj , then the three reducible conics are exactly L12 ∪ L34, L13 ∪ L24 and L14 ∪ L23.

This observation gives us a way to find the intersection points of two conics that inter-
sect in 4 points as follows. Given equations Q1 and Q2 of conics intersecting in 4 distinct points,
we find the roots of the cubic polynomial det(λMQ1 + µMQ2) (say via Cardano’s method), and
use this to find the singular members of the pencil spanned by Q1 and Q2. Then we decom-
position the equation of these singular members into equations of the corresponding lines (by
solving quadratic equations). Finally, the four intersection points of the original conics will
be contained in the 6 pairwise intersection points of these lines, and lines are easy enough to
intersect.

Example 1.15.11. Here’s an example of how to use pencils of conics to solve the quartic equation,
at least when the characteristic of the base field is other than 2. Suppose we are trying to solve
the equation

x4 + ax3 + bx2 + cx+ d = 0

over a field k with ch k ̸= 2. It is easy to see (check!) that solving this equation is equation
amounts to finding the intersection points of the two parabolae given by the vanishing of the
homogeneous polynomials

Q1 = Y 2 + aXY + bY Z + cXZ + dZ2, and

Q2 = Y Z −X2,

since they do not intersect on the line at infinity. Then the corresponding matrices MQ1 and
MQ2 are easily seen to be

MQ1 :=

 0 a/2 c/2
a/2 1 b/2
c/2 b/2 d

 and MQ2 :=

−1 0 0
0 0 1/2
0 1/2 0

 ,

whence

det(λMQ1 + µMQ2) = −1

4

[(
a(ad− bc) + c2

)
λ3 + (ac− b2 + 4d)λ2µ+ 2bλµ2 − µ3

]
.

Then, we may solve this cubic, and use this as suggested in Example 1.15.10 to find the inter-
section points of CQ1 and CQ2 , and hence the roots of the quartic equation. You are invited to
work out one (carefully chosen) example in detail in Exercise 2.6.3. The whole procedure above
can be simplified slightly by first depressing the quartic (i.e. replacing X by X − (1/4)a) and
then applying the above procedure. For a (slightly) more detailed explanation of the procedure
and its connection to Galois theory, as well as references, see [5, §1.14].
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1.15.2 An Introduction to Elliptic Curves

We now want to focus on the next simplest case of curves after the conics, namely the cubic
curves. We already classified all singular plane cubics up to projective changes of coordinates
(at least over algebraically closed fields of characteristic other than 3) in Exercise 2.4.4, so we
may now focus on the case of smooth cubics–it turns out that such curves admit a very rich
theory, which makes them very powerful objects in modern algebraic geometry.

Definition 1.15.12. An elliptic curve (over a field k) is a pair (E,O), where E ⊂ P2
k is a

smooth cubic curve, and O ∈ E.

The reader will not lose much by imagining k to be algebraically closed (otherwise our
definition of smoothness is not quite the right one), and soon we will be assuming ch k ̸= 2, 3
as well for convenience, but it is helpful to have the right level of generality and to be able to
talk about points of elliptic curves over finite fields, for instance.

Now consider the binary operation + : E × E → E defined as follows: given a pair
(A,B) ∈ E × E, let the line42 LA,B joining A and B intersect the curve E in the third point
D.43 Then we define A+ B := +(A,B) to be the third point of intersection of E and the line
LO,D joining O and D. See Figure 1.11. The key claim, from which the power of elliptic curves
comes, is

Theorem 1.15.13. Let (E,O) be an elliptic curve. Then the binary operation + : E×E →
E defined above makes E into an abelian group with identity O.

Proof. Commutativity of + is clear, as is the fact that A+O = A for all A ∈ E: indeed, if the
line LA,O meets the curve again in A′, then the line LO,A′ meets the curve again in A. To find
inverses, consider once and for all the point O′ ∈ E which is the third point of intersection of
the tangent line LO,O = TOE with E; then it is easy to see that given any A ∈ E, the third
intersection point A′′ of LAO′ with E has the property that A + A′′ = O. Finally, we have to
show associativity.

For this, consider points A,B,C ∈ E. Let D denote the third intersection of LA,B

with E, let F denote the third intersection of LA+B,C with E, and let G denote the third
intersection of LB,C with E. (See Figure 1.11.) To show associativity, it suffices to show that
the line LA,B+C passes through F (check!). Temporarily denote the third intersection point of
LA,B+C with E by F ′; then we have to show that F = F ′.

Consider the cubic curves Γ := LA,B ∪ LC,F ∪ LO,G and Σ := LB,C ∪ LA,B+C ∪ LO,D,
and note that

E ∩ Γ = {O,A,B,C,D,G,A+B,B + C,F} and

E ∩ Σ = {O,A,B,C,D,G,A+B,B + C,F ′}.

In particular, Σ is a cubic curve that passes through 8 of the 9 intersection points of the cubic
curves E and Γ. Therefore, the proof is finished by the following theorem (Theorem 1.15.14). ■

42When A = B, we take LA,B to be the tangent line to E at A, which we can do uniquely since E smooth.
43Here we are using Bézout’s Theorem (Theorem 1.14.1 or at least Theorem 1.12.12). We do not disallow the

possibility that D = A,B,O. For instance, D = A if A ̸= B but the line LA,B is tangent to E at A, or if A = B
and LA,B meets E with multiplicity three at A (i.e. A is an inflection point of E). I will leave such considerations
to the reader, but see also Remark 1.15.16.
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Figure 1.11: The addition law on an elliptic curve. Picture made with GeoGebra.

Theorem 1.15.14 (Chasles). Let D,E ⊂ P2
k be two cubic curves that intersect in 9 points,

and suppose one of D or E is irreducible. If X ⊂ P2
k is another cubic curve that passes

through 8 of 9 of these points, then X also passes through the 9th one.

There are many ways to prove Theorem 1.15.14. One approach is to use a dimension
count: each point of intersection imposes one linear condition on the space P9

k of homogeneous
cubic equations, and so imposing 8 such general conditions brings us down to a P1

k ⊂ P9
k, i.e. a

pencil of cubic curves. If C and D are two members of this pencil, then any other cubic curve
passing through these 8 points belongs to the pencil spanned by C and D and hence also passes
through the 9th point. For this argument to work, the points need to be in sufficiently general
position–it turns out to be sufficient to assume that no 7 of the points P1, . . . , P9 lie on a conic.
For an argument along these lines, see either [5, Prop. 2.6], or this blog post [7] by Terry Tao.
This 8 ⇒ 9 phenomenon can be fruitfully generalized in the direction of the number of linear
conditions imposed by points in projective space, resulting in the so-called the Cayley-Bacharach
Theorem. Sometimes Theorem 1.15.14 itself is called the Cayley-Bacharach theorem, but this
is a misnomer–see this paper [8] by Eisenbud, Green, and Harris44 for an explanation of the
Cayley-Bacharach Theorem and its relation to Chasles’s Theorem. Next time, we will give a
proof of Theorem 1.15.14 using a local-to-global principle called Max Noether’s Fundamental
Theorem (Theorem 1.16.1).

Remark 1.15.15. Chasles’s Theorem (Theorem 1.15.14) immediately implies those of Pascal
(Theorem 1.13.5) and Pappus (Theorem 1.13.7); for instance, to deduce Pascal’s Theorem in
the notation used in that section, we can take the two cubic curves to be D := L1 ∪ L3 ∪ L5

and E := L2 ∪ L4 ∪ L6 (so the intersection points are P1, . . . , P6, Q1, Q2, Q3), and then take X
to be the union of the conic C and the line L joining Q1 and Q2.

44Harris was my advisor!
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Remark 1.15.16. The proof of Theorem 1.15.13 and the statement of Theorem 1.15.14 certainly
work as written when all the 9 involved points are distinct, but that is not quite sufficient
to prove Theorem 1.15.13. We also need to take into account intersection multiplicites and
tangencies. There are a few ways to get around this. Over fields such as k = R or k = C, we
may use continuity arguments, as in indicated for instance in [5, §I.2]. Over general fields, we
can use a similar argument, but using the rigidity of complete varieties instead, as explained
in [9, Chapter 3]. Alternatively, one can write down explicit formulae for the group law and
verify all the claims directly via (very) tedious computation. Finally, we can treat the whole
theory as above somewhat more carefully using the notion of intersection multiplicities already
introduced, and note that Theorem 1.15.14 also works when we counts point with intersection
multiplicity.45 This last one is, generally speaking, the approach we will take, as we shall see in
the proofs next time.

Remark 1.15.17. Suppose that an elliptic curve E defined over a field k is smooth over its
algebraic closure k. The above addition law tells us then that the set of k-rational points
E(k) of E form a subgroup of E(k)–indeed, this follows from the group law because the third
intersection point of a L joining two k-points with a cubic curve defined over k is also defined
over k, because a cubic equation with coefficients in k and two roots in k must also have its last
root in k.

In particular, for instance, it makes sense to talk about, say, the subgroup real points of
a complex elliptic curve which is defined over the real numbers and has O ∈ E(R). Such a “real
elliptic curve” is then a topological–even Lie–group. It seems also from Figure 1.11 above that
the sums A+B,B+C and A+B+C lie on the same component of the two-component elliptic
curve as A,B,C, as long as this component contains O, i.e. that the component containing O
of a real two-component elliptic curve is a subgroup of the whole curve under the addition law,
although it is not an algebraic curve itself (Example 1.7.15). You are invited to explore this in
Exercise 2.6.8.

Next time, we will prove Theorem 1.15.14 and start working with explicit examples of
elliptic curves.

45For instance, if instead of 9 distinct points P1, . . . , P9 we have only 8 distinct points P1, . . . , P8 of intersection
but tangency at P8, then the statement says also that if X passes through P1, . . . , P8, then it is also tangent to
both D and E at P8.
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1.16 07/15/24 - Max Noether’s Theorem, Proof of Chasles’s
Theorem, Weierstrass Normal Form

The first order of business today is to prove Chasles’s Theorem, for which we will need

Theorem 1.16.1 (Max Noether). Let F,G,H ∈ k[X,Y, Z] be relatively prime homogeneous
polynomials of degrees m,n, d ≥ 1 such that F and G are relatively prime. Then H can
be written as

H = AF +BG

for some homogeneous A,B ∈ k[X,Y, Z] of degrees d−m, d− n iff for each point P ∈ P2
k,

we have
(H)P2

k,P
⊂ (F,G)P2

k,P
.

This theorem, often called Max Noether’s AF + BG Theorem, or Max Noether’s
Fundamental Theorem, is again an upgraded version of the local-to-global principal Lemma
1.14.2, and says that H is globally a polynomial-linear combination of F,G iff it is locally a
polynomial-linear combination of F and G at each point P .

Proof. One direction is clear. For the other, assume that (H)P2
k,P

⊂ (F,G)P2
k,P

for all P ∈ P2
k,

and suppose by a projective change of coordinates that all points of CF ∩ CG are in the finite
plane, i.e. not on L∞. If f, g, h ∈ k[x, y] are the dehomogenizations of F,G,H respectively,
then it follows that h ∈ (f, g)P for all P ∈ Cf ∩ Cg, so from Lemma 1.14.2, it follows that
h ∈ (f, g)k[x, y], i.e. h = af + bg for some a, b ∈ k[x, y]. Homogenization then yields

ZrH = AF +BG

for some r ≥ 0 and A,B ∈ k[X,Y, Z] homogeneous of degrees d+r−m and d+r−n respectively.
The result then follows by induction from the following lemma. ■

Lemma 1.16.2. Let F,G ∈ k[X,Y, Z] be relatively prime homogeneous polynomials of
degrees m,n ≥ 1 such that CF ∩ CG ∩ L∞ = ∅. If H ∈ k[X,Y, Z] is a homogeneous
polynomial of degree d ≥ 1 such that

ZH = AF +BG

for some homogeneous A,B ∈ k[X,Y, Z] of degrees d+ 1−m, d+ 1− n respectively, then
there are A′, B′ ∈ k[X,Y, Z], homogeneous of degrees d−m, d− n respectively such that

H = A′F +B′G.

In other words, if CF and CG do not intersect on the line at infinity, then multiplication
by Z is injective on the quotient ring k[X,Y, Z]/(F,G).

Proof. For P ∈ k[X,Y, Z], let P ◦ denote the specialization P ◦ := P (X,Y, 0) ∈ k[X,Y, Z]; then
Z | P iff P ◦ = 0. Specializing the equation ZH = AF +BG yields

A◦F ◦ +B◦G◦ = 0.

Since CF ∩ CG ∩ L∞ = ∅, the polynomials F ◦, G◦ ∈ k[X,Y ] are relatively prime, and hence
there is a C ∈ k[X,Y ] such that A◦ = CG◦ and B◦ = −CF ◦. In this case, the polynomial
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A−CG has the property that (A−CG)◦ = A◦ −CG◦ = 0, whence there is an A′ ∈ k[X,Y, Z]
such that A−CG = A′Z. Similarly, there is a B′ ∈ k[X,Y, Z] such that B+CF = B′Z. These
A′ and B′ work. ■

We are now ready to prove Chasles’s Theorem. For simplicity, I will do the case when
the nine points of intersection are distinct, leaving the general case (with multiplicities) to the
dedicated reader. This is not too unfair, since we have developed all the necessary tools for
this extension already. The advantage of working with distinct points is that it makes Theorem
1.16.1 very easy to apply.

Lemma 1.16.3. Let D,E ⊂ P2
k be projective curves of degrees m,n ≥ 1 which intersect

in exactly mn distinct points, and let Y ⊂ P2
k be a curve that passes through all mn of

these points. If F,G,H ∈ k[X,Y, Z] are minimal polynomials forD,E, Y respectively, then
there are homogeneous polynomialsA,B ∈ k[X,Y, Z] of degrees deg(H)−deg(F ),deg(H)−
deg(G) respectively such that H = AF +BG.

Proof. By Theorem 1.16.1, it suffices to show that (H)P2
k,P

⊂ (F,G)P2
k,P

for all P ∈ P2
k.

When P /∈ D ∩E, this is clear, since the right hand side is all of P2
k,P

. Now suppose that P ∈
D∩E. Our hypothesis coupled with Bézout’s Theorem implies that iP (D,E) = 1, and we have
to show that this combined with P ∈ Y implies the result. This is clearly a local computation,
so we can pass to the affine case; let f, g, h denote the respective dehomogenizations. Then
evalP : A2

k,P
→ k is surjective with kernel containing (f, g) such that the quotient A2

k,P
/(f, g)

has dimension one; this gives us an isomorphism evalP : A2
k,P

/(f, g) → k. In particular, Y ∋ P

iff h lies in the kernel of this evaluation map iff h ∈ (f, g)A2
k,P

. ■

The only difference in the general case is that one needs to check the “Noether condi-
tion” (H)P2

k,P
⊂ (F,G)P2

k,P
by hand for each P ∈ D ∩ E, so to speak. See [3, §5.5]. We are

now ready to prove

Theorem 1.15.14 (Chasles). Let D,E ⊂ P2
k be two cubic curves that intersect in 9 points,

and suppose one of D or E is irreducible. If X ⊂ P2
k is another cubic curve that passes

through 8 of 9 of these points, then X also passes through the 9th one.

Proof. Suppose that D is irreducible, and write D ∩ E = {P1, . . . , P9}, with Pi ∈ X for i =
1, . . . , 8. Let the ninth point of intersection of X with D be Q, and suppose for the sake of
contradiction that Q ̸= P9. Pick a general line L through P9; it suffices to take one not passing
through Q and meeting D in two distinct other points R,S. Then E ̸∋ R,S. Applying Lemma
1.16.3 to Y := X ∪ L, we conclude that if F,G,H are the homogeneous cubic polynomials
defining D,E,X respectively, then there are homogeneous linear polynomials A,B ∈ k[X,Y, Z]
such that

LH = AF +BG.

(Here we are using L also to denote the linear polynomial defining the line L; we will also do
this for A and B.) Now R,S /∈ E implies that the line G contains R and S, and hence must
be identical with L. It follows that L | AF , but since F is assumed to be irreducible, this can
only happen if L = A (upto scaling). Cancelling the factor of L tells us that H = αF + βG for
some scalars α, β ∈ k, i.e. that X is in the pencil spanned by D and E. In particular, X ∋ P9,
which is a contradiction. This shows that our assumption Q ̸= P9 is false, proving X ∋ P9 as
needed. ■
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With this we have now completed the proof of the associativity of the elliptic curve
addition law–at least as long as all the points involved are distinct; see Remark 1.15.16. Let us
now move on to some explicit examples illustrating how to work with elliptic curves.

1.16.1 Weierstrass Normal Form and Legendre Form, Two and Three Tor-
sion

Recall our convention that k is an algebraically closed field of characteristic other than 2 or 3.
In these circumstances, we given a smooth cubic E ⊂ P2

k, we can make a convenient choice of
basepoint O ∈ E and coordinates that makes the study of the elliptic curve (E,O) particularly
convenient.

Firstly, the choice of basepoint O doesn’t really matter all that much (see Exercise
2.6.9), but a convenient choice of O can make the addition law particularly easy. Namely, by
Exercise 2.5.5, E has exactly 9 inflection points, and we pick O to be one of these flexes. The
upshot of this is that in the addition law on E, we have O′ = O by definition (see the proof of
Theorem 1.15.13), and hence the −A,O and A are collinear for each A ∈ E; in fact, it is easy to
see in this case (check!) that three points A,B,C ∈ E (counted with multiplicity) are collinear
iff A+B + C = 0 in the group law.

As a first consequence, not that this means that given a fixed P ∈ E, the point P is an
inflection point on E iff the “points” P, P, P are collinear iff 3P = 0 iff P ∈ E[3] is a 3-torsion
point. In particular, Exercise 2.5.5 gives us that E[3] is an abelian group with 9 elements, each
of order 3, and hence that E[3] ∼= Z/3×Z/3. This is the first observation in a very large story,
another part of which we shall see below and which you will be asked flesh out in detail in
Exercise 2.6.10.

Given an elliptic curve (E,O) with O ∈ E an inflection point, we can now bring E into
what is called the (reduced) Weierstrass normal form. Here’s how this goes: pick a coordinate
system in which O = [0 : 1 : 0] with the tangent line TOE being the line at infinity Z = 0. Let
F be the minimal polynomial of E, and write F as

F = A0Y
3 +A1Y

2 +A2Y +A3

for Ai ∈ k[X,Z]i homogeneous of degree i for i = 0, . . . , 3. The condition O ∈ E implies A0 = 0,
the condition TOE = V(Z) implies that A1 = Z (possibly after scaling, which we do), and the
condition that O ∈ E is an inflection point says that Z | A2. Therefore, the polynomial F looks
like

Y 2Z + (λX + µZ)Y Z +A3.

Since ch k ̸= 2, we can replace Y by Y − (λX + µZ)/2 to eliminate the middle term, so that
the equation looks like

Y 2Z = α0X
3 + α1X

2Z + α2XZ2 + α3Z
3

for some αi ∈ k for i = 0, . . . , 3. Since E is irreducible, we must have α0 ̸= 0; replacing Z by
α0Z, we may assume that α0 = 1 to get an equation of the form

Y 2Z = X3 + β1X
2Z + β2XZ2 + β3Z

3.

Finally, using ch k ̸= 3, we may replace X by X − 1
3β1Z to depress this last cubic to obtain the

reduced Weierstrass normal form

Y 2Z = X3 + pXZ2 + qZ3
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for some p, q ∈ k, or in affine coordinates

y2 = x3 + px+ q.

By (a salvage of) Exercise 2.3.10 combined with Exercise 2.2.5(b), this curve is smooth iff

4p3 + 27q2 ̸= 0.

One thing this form enables us to see immediately is the two-torsion E[2] on E. Firstly,
the only point on E at infinity (i.e. on Z = 0) is the point O. Next, given a(n) (affine) point
P = (x, y) on E, when E is in Weierstrass form, since P,O and −P are collinear, we see that
−P = (x,−y). In particular, 2P = 0 iff P = −P iff P = O or P = (x, y) with y = 0. In other
words, the two-torsion points other than O correspond directly to the roots of x3 + px + q; if
these roots are e1, e2, e3 ∈ k (using here that k = k), then

E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}.

Note that the discriminant condition 4p3 + 27q2 ̸= 0 (or equivalently the nonsingularity of E)
implies the roots e1, e2, e3 are pairwise distinct, whence E[2] is an abelian group of size 4; since
every nontrivial element of E[2] has order 2, we see immediately that

E[2] ∼= Z/2× Z/2.

The two examples here suggest the following generalization: is it always true that for
any n ≥ 1 we have

E[n] ∼= Z/n× Z/n,

as we have shown for n = 1, 2, 3? In fact, this is always true in characteristic zero, or more
generally if ch k ∤ 2n; for a proof, see Exercise 2.6.10. The best way I know of understanding
this result, however, involves seeing connections to a different branch of math, namely complex
analysis; I’ll cover this in the story time during the next lecture–see §1.17.2.

The above version of the Weierstrass normal form is convenient, but it doesn’t make
it clear how the isomorphism class of E depends on (p, q). For starters, replacing Z by uZ tells
us that the curves given by (p, q) and (u2p, u3q) are the same for any u ∈ k×. It turns out, but
is more difficult to prove, that two elliptic curves are in short Weierstrass form are isomorphic
iff there is such a transformation between them. We’ll pursue a slightly different line of study,
via a slightly different variant of the Weierstrass form.

Namely, recall as above that we by a chance of coordinates assume that the curve is
given as

Y 2Z = X3 + β1X
2Z + β2XZ2 + β3Z

3.

This time, we’ll factor the right hand side as

(X − e1Z)(X − e2Z)(X − e3Z)

for some distinct ei ∈ k. Next, replacing X by X − e1Z, we will assume that e1 = 0; then

e2e3 ̸= 0. Finally, by replacing Z by e−1
2 Z and Y by e

1/2
2 Y (again using k = k), we arrive at

the Legendre form
Y 2Z = X(X − Z)(X − λZ)

for some λ ∈ k ∖ {0, 1}. Written in affine coordinates, this is

y2 = x(x− 1)(x− λ).

Let us denote this curve by Eλ. One can then ask: when are Eλ and Eµ for λ, µ ∈ k ∖ {0, 1}
related by a projective change of coordinates? Giving a complete answer to this question will
allow us to give a classification of elliptic curves. This is what we will pursue next time.
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1.17 07/17/24 - Classification of Elliptic Curves, Story Time

Recall our standing assumption that the base field k is algebraically closed of characteristic
other than 2 or 3. We showed in lecture last time that every elliptic curve (E,O) with O ∈ E
an inflectionary point can be put into Legendre form, i.e. there is some λ ∈ k ∖ {0, 1} and a
projective change of coordinates taking E to the curve Eλ which is the projective closure of the
affine curve defined by

y2 = x(x− 1)(x− λ)

with basepoint O = [0 : 1 : 0]. For a given E, how many such λ work? In other words, when are
the curves Eλ and Eµ for λ, µ ∈ k∖ {0, 1} isomorphic (i.e. related by a change of coordinates)?
Answering this question will enable us to “classify” all elliptic curves in the sense that we will
be able to tell exactly when two such cubics are related by a change of coordinates, somewhat
similarly to Theorem 1.12.13. For this, we need to introduce a key invariant of elliptic curves–the
j-invariant.

1.17.1 The j-Invariant

I have used the word “isomorphism” quite a few times already; let me explain what I mean by
that at the moment.

Definition 1.17.1.

(a) Two curves D,E ⊂ P2
k are said to be projectively isomorphic if there is a projective

change of coordinates Φ : P2
k → P2

k such that Φ(D) = E.
(b) Let (E,O) and (E′, O′) be two plane elliptic curves. We say that (E,O) and (E′, O′)

are weakly isomorphic if the underlying cubic curves E,E′ ⊂ P2
k are projectively

isomorphic; we say that (E,O) and (E′, O′) are strongly isomorphic if the projective
change of coordinates Φ : P2

k → P2
k taking Φ(E) = E′ can be chosen to satisfy

Φ(O) = O′. Such a Φ is called a strong isomorphism (E,O) → (E′, O′).

Note that projective isomorphism (i.e. being projectively isomorphic) is an equivalence
condition (often denoted by ∼=) on the set of all projective plane curves; projectively isomorphic
curves have the same number and degrees of irreducible components, singular points, etc. We
will often denote projective isomorphism via the notation ∼=.Effectively, they are “the same”
curve, just viewed under different coordinates. Note also that strongly isomorphic elliptic curves
are weakly isomorphic, and a strong isomorphism Φ is automatically a group isomorphism
thanks to the geometric nature of the group law on E. Finally, if E ⊂ P2

k is a smooth cubic,
and O ∈ E an inflection point while O′ ∈ E not an inflection point, then the elliptic curves
(E,O) and (E,O′) are not strongly isomorphic, since the property of being an inflection point
of a curve is preserved under projective changes of coordinates.

Remark 1.17.2. The terminology here is my own and not standard. Further, in slightly more
advanced treatments of algebraic geometry, there is yet another notion of isomorphism: the no-
tion of an “abstract” isomorphism of algebraic curves, given by polynomial or rational functions.
For instance, the parametrization in Example 1.13.3 combined with the projection explained in
Lecture 1.3 tells us that a line L ⊂ P2

k and a smooth conic C ⊂ P2
k are abstractly isomorphic,

although they cannot be projectively isomorphic because they have different degrees. However,
it turns out that for elliptic curves the notions of abstractly isomorphic and projectively iso-
morphic agree, although showing this needs more work. (See the grown-up text [9] if you are
curious.) Here we will restrict ourselves to the study of projective isomorphisms.
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Finally, one last definition that we will need is

Definition 1.17.3. The j-function j : k ∖ {0, 1} → k is the rational function defined by

j(λ) := 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

The origin of this mysterious function will be explained in Remark 1.17.7 below; before
that, we arrive at the (somewhat surprising) main result of this section.

Theorem 1.17.4. Let λ, µ ∈ k∖ {0, 1}, and let O := [0 : 1 : 0] be the usual basepoint. The
following are equivalent:

(a) The elliptic curves (Eλ, O) and (Eµ, O) are strongly isomorphic.
(b) The curves Eλ, Eµ ⊂ P2

k are projectively isomorphic.
(c) We have µ ∈ Mλ := {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}.
(d) We have j(λ) = j(µ).

Proof. For this, we need the following two observations:

(1) Let E ⊂ P2
k be a smooth cubic curve, and O,O′ ∈ E be two inflection points. Then the

elliptic curves (E,O) and (E,O′) are strongly isomorphic. For a proof, consider the line
LO,O′ , and let the third point of its intersection with E be O′′; then O′′ ∈ E is also an
inflection point by Exercise 2.5.5(b), and O′′ ̸= O,O′ if O ̸= O′. Put (E,O′′) in Weierstrass
normal form; then since O and O′ are collinear with O′′, we have on this elliptic curve
that O + O′ = 0. It follows that the projective change of coordinates Y 7→ −Y is the
required strong isomorphism between (E,O) and (E,O′).

(2) If E ⊂ P2
k is a smooth cubic curve and O ∈ E an inflection point, then except for the

flex tangent there are three other tangents to E that pass through O, and the points of
contact of these three lines with E are collinear. This is immediate by putting (E,O) in
Weierstrass or Legendre form.

We are now ready to proceed to the main proof.

(a) ⇔ (b) Strongly isomorphic elliptic curves are weakly isomorphic by definition. follows from (1).
Indeed, if Φ : P2

k → P2
k is a change of coordinates such that Φ(Eλ) = Eµ, then Φ(O) ∈ Eµ

is an inflection point. By (1), there is a strong isomorphism Ψ taking (Eµ,Φ(O)) to
(Eµ, O). Then Ψ ◦ Φ is a strong isomorphism taking (Eλ, O) and (Eµ, O).

(a) ⇔ (c) For one direction, let Φ be the strong isomorphism taking (Eλ, O) to (Eµ, O). Then Φ takes
TOEλ to TOEµ, i.e. preserves the line Z = 0 as a set (although not necessarily pointwise).
By (2), Φ must take the set the points {(0, 0), (1, 0), (λ, 0)} to {(0, 0), (1, 0), (µ, 0)}. In
particular, Φ must fix the line Y = 0 as well, and hence the point [1 : 0 : 0]. This
combined with the fact that Φ(O) = O implies that Φ must be of the form [X : Y : Z] 7→
[sX + tZ : Y : Z] for some s, t ∈ k with s ̸= 0 (check!). In particular, the automorphism
x 7→ sx + t takes the set {0, 1, λ} to {0, 1, µ}. In particular, t ∈ {0, 1, µ}, and for each
choice of t, we are left with two possibilities for s; these correspond to the six choices for
µ above. Conversely, the same argument shows that when µ ∈ Mλ, a transformation of
this sort gives us the required strong isomorphism.

(c) ⇔ (d) This follows from the identity

j(λ)− j(µ) = 28
(λ− µ)(λµ− 1)(λ+ µ− 1)(λµ− µ+ 1)(λµ− λ+ 1)(λµ− λ− µ)

λ2(λ− 1)2µ2(µ− 1)2
.

■
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This key theorem allows us to define a crucial invariant for smooth cubic curves: the
j-invariant.

Definition 1.17.5. Let E ⊂ P2
k be a smooth cubic curve. Define the j-invariant of E as

follows: pick a projective change of coordinates Φ : P2
k → P2

k such that Φ(E) is in Legendre
form, say Φ(E) = Eλ, and define

j(E) := j(λ).

That this is well-defined follows from Theorem 1.17.4. From this we finally arrive at
the required classification theorem for all cubic curves.

Corollary 1.17.6. Up to projective changes of coordinates, a cubic curve in P2
k is of exactly

one of the following seven types.

(a) The union of three concurrent lines.
(b) The union of three nonconcurrent lines.
(c) The union of a smooth conic and a line tangent to it.
(d) The union of a smooth conic and a line transverse to it (i.e. meeting it in two distinct

points).
(e) A nodal cubic curve.
(f) A cuspidal cubic curve.
(g) A smooth cubic curve, i.e. after choosing a basepoint, an elliptic curve.

Further:

(a) The types (a) - (d) correspond to the reducible cubics, and the types (e) - (g) to the
irreducible cubics. Of these, all curves of types (a) - (f) are singular.

(b) Any two curves of the same type from (a) - (f) are projectively isomorphic.
(c) Two smooth cubic curves are projectively isomorphic iff they have the same j-

invariant. Further, given any specified α ∈ k, there is a smooth cubic E ⊂ P2
k

with j-invariant α.

In particular, the j-invariant is a complete isomorphism invariant of smooth cubic
curves, and can take any value in k.

Proof. The case of the reducible cubics is easy and left to the reader and the case of the
irreducible but singular cubics was handled in Exercise 2.4.4, so we’ll take the classification as
well as statements (a) and (b) as proven. For (c), it is firstly clear that the j-invariant of smooth
cubic is a projective isomorphism invariant; this is the content of Theorem 1.17.4. Conversely,
suppose that E,E′ ⊂ P2

k are two smooth cubic curves with j(E) = j(E′). By the discussion
in §1.16.1, there are λ, µ ∈ k ∖ {0, 1} and projective isomorphisms E ∼= Eλ and E′ ∼= Eµ. It
follows then from the first part that

j(λ) = j(Eλ) = j(E) = j(E′) = j(Eµ) = j(µ),

so from Theorem 1.17.4 we conclude that Eλ
∼= Eµ. It then follows that

E ∼= Eλ
∼= Eµ

∼= E′

as needed. Finally, given an α ∈ k, solve the equation

28(λ2 − λ+ 1)8 − αλ2(λ− 1)2 = 0

to get a λ ∈ k ∖ {0, 1} (using k = k and ch k ̸= 2); then Eλ ⊂ P2
k is a smooth cubic with

j-invariant α. ■

96



Chapter 1. Lecture Notes

Remark 1.17.7. In a more advanced perspective on the theory of elliptic curves, it is seen that
elliptic curves are 2 : 1 covers of P1

k branched over four points, and the location of the 4 points in
P1
k (up to projective changes) determines the isomorphism type of corresponding elliptic curve.

In the above set-up (i.e. when E is in say Legendre form y2 = x(x − 1)(x − λ)), this map
to P1

k is given by taking the x-coordinate; for most values of x, there are two values of y, i.e.
two points in E, mapping to it–except for the values x = 0, 1,∞, λ. Now given an ordered
quadruple of points (a, b, c, d) of P1

k, we can associate to them a quantity–the cross ratio–which
is invariant under coordinate changes; however, permuting the 4 points gives rise to up to six
different numbers, each of which is an equal candidate for the title of the cross ratio of an
unordered quadruple of points. To systematize this, we can note that any four points on P1

k can
be brought via a projective change of coordinates into a tuple of the form (0, 1,∞, λ) for some
λ ∈ k ∖ {0, 1} = P1

k ∖ {0, 1,∞}–and indeed, this λ then is the cross-ratio. The set Mλ is the
set of values µ ∈ P1

k ∖ {0, 1,∞} such that the quadruple {0, 1,∞, µ} has the same cross-ratio as
that of {0, 1,∞, λ} when taken in some order, and as the proof of Theorem 1.17.4 shows, the
j-function captures precisely this set, and provides a true invariant (under coordinate changes)
of unordered quadruples of points on P1

k. In more grown-up terminology, there is an S3 action
on P1

k, the orbit of a fixed λ ∈ P1
k∖{0, 1,∞} under this action is exactly Mλ, and the j function

j : P1
k → P1

k is a rational function of degree 6 that exhibits P1
k as the quotient P1

k/S3. (The factor
of 28 is there for further normalization purposes; I will not explain here what that means.)

Remark 1.17.8. The most interesting values of λ are the ones for which the set Mλ has fewer
than 6 elements; these correspond to elliptic curves Eλ with additional symmetries. A little
computation shows that there are (in ch k ̸= 2, 3) exactly 5 such values corresponding to

M−1 = M2 = M1/2 = {−1, 1/2, 2} and Mρ = Mρ = {ρ, ρ},

where ρ is a primitive sixth root of unity, i.e. ρ2 − ρ+1 = 0, and ρ = 1− ρ. In the former case,
we are looking at the elliptic curve y2 = x3 − x which has j = 1728 and has a Z/4-symmetry
(x, y) 7→ (−x, iy); in the latter case, we are looking at the curve y2 = x3 − 1 which has j = 0
and the Z/6-symmetry (x, y) 7→ (ρ2x, ρ3y). This is (part of) the reason for the specialness of
the values j = 0 and j = 1728 in the theory of elliptic curves. (Surprisingly, for ch k = 2, 3
curves with j = 0 = 1728, we have automorphism groups SL2 F3 and Z/3⋊Z/4 of sizes 24 and
12 respectively; see [9, Theorem 10.1].)

There is, of course, much more to say about elliptic curves, but that is all we have
time for, because I want to spend some time narrating some stories.

1.17.2 Story Time

The theory of plane algebraic curves is a classical yet very rich subject which is both the starting
point of several deep stories (the theory of abstract curves, algebraic geometry in general, and
elliptic curves to name a few) and the source of still many unsolved problems and not-as-well-
understood phenomenen (e.g. the moduli of curves). In this section, I want to end the course
by mentioning some of the directions the study of curves can take from here.

• For starters, there is much, much more to say about elliptic curves. For a good introduction
you can start reading now, see [10]; for a more advanced perspective, the classical textbook
is [9]. Here are three facts I want to mention:
(a) Over the field k = C, an elliptic curve E ⊂ P2

C is “the same” as a complex torus, i.e.
C/Λ for some lattice Λ ⊂ C, relating the theory of plane cubics to doubly periodic
meromorphic functions in the plane (which is–via the theory of elliptic integrals–
ultimately the source of the nomenclature “elliptic”, since it is otherwise not so
clear what these curves have to do with ellipses). The addition law on E is then
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induced from the usual addition law on C (or more precisely on the quotient group
C/Λ); this perspective makes abundantly clear why for each n ≥ 1 we can expect
E[n] ∼= Z/n × Z/n–these correspond exactly to the n2 points in the fundamental
parallelogram of Λ corresponding to (1/n)Λ. Further, if for each τ in the upper half
plane H, we let Eτ be the elliptic curve corresponding to the lattice Z⊕Zτ , then the
function τ 7→ j(Eτ ) is a holomorphic function H → C which very beautiful properties
(it is invariant under the action of the modular group PSL2 Z, and intimately related
to the theory of modular forms etc.).

(b) Elliptic curves over finite fields k = Fq are both theoretically important and the key
to a lot of modern day cryptography. For instance, the Hasse bound says that if
E ⊂ P2 is an elliptic curve defined over Fq, then the number #E(Fq) of Fq-points on
E is bound by

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Such counts of points an elliptic curve for varying q = pn are the start of another
beautiful story–that of the Weil conjectures.

(c) Finally, over number fields such as k = Q the theory is still fascinating and at times
mysterious. The famous Mordell-Weil Theorem asserts that if k is a number field
and E an elliptic curve defined over k, then the group of k-rational points E(k) is a
finitely generated abelian group. In particular, it is isomorphic to Zr ⊕ T for some
unique integer r ≥ 0 and finite abelian group T (the torsion subgroup)–this r is
called the algebraic rank of E(k). A theorem of Barry Mazur (a professor of mine!)
asserts that when k = Q, the torsion subgroup T can be only one of 15 types–it can
be either Z/n for n = 1, . . . , 10 or n = 12, or it can be Z/2n× Z/2 for n = 1, 2, 3, 4.
Much work has been done to extend this result to general number fields k. Finally,
the rank r is another fascinating quantity. The largest known rank over k = Q as of
this writing (September 2024) is 29, and this elliptic curve was found by Elkies and
Klagsbrun (Elkies was another professor of mine); see [11] for the equation. The rank
is part of some very important unsolved conjectures as well: associated to an elliptic
curve E over k = Q, we also have a an L-function holomorphic in a neighborhood of
s = 1; the order of vanishing of this function at s = 1 is called the analytic rank of
E. The famous Birch and Swinnerton-Dyer conjecture asserts that the analytic rank
of an elliptic curve agrees with its algebraic rank–if you show this, you get a million
dollars (among other things)!

• Another theme that is still an area of active research that touched upon in Exercise 2.1.2
is real algebraic geometry. This field studies the topology and geometry of algebraic curves
(and, more generally, varieties) over the field k = R of real numbers, which is harder
than the case k = C because R is not algebraically closed. It is theorem due to Harnack
from the 19th century that a real projective algebraic curve of degree d ≥ 1 has at most(
d−1
2

)
+1 connected components; for a proof sketch, see [12, Lect. 19]. Harnack also showed

with this proof that this bound is actually achieved–curves with this maximal number of
connected components are called M -curves. The classification of all possible isotopy types
(roughly, the nesting type) of M -curves still remains quite mysterious for d ≥ 8. In his
list of 23 mathematical problems presented by Hilbert before the Paris conference of the
International Congress of Mathematicians in 1900, the study of real algebraic geometry
was in the sixteenth place, and this problem has occupied researchers fruitfully for almost
a century with lots still to be explored.

• In our focus on smooth curves, one fascinating area of study we completely missed out on
was singularity theory, which studies the singularities of curves (or more generally varieties).
For instance, if you look at the nodal curve C defined by y2 = x3−x2 over k = C and take
a small cross-section near the singularity (0, 0) in A2

C
∼= C2 by a 3-sphere S3 ⊂ C2, the

intersection C ∩ S3 is a link in S3, namely the Hopf link–two circles that don’t intersect
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but cannot be “pulled apart” because they link exactly once. Similarly, if C were to be the
cuspidal cubic y2 = x3, then the intersection C ∩S3 would be the trefoil knot. Therefore,
the resulting link C ∩ S3 in S3 is somehow capturing the nature of the singularity of
the corresponding curve C–the more complicated the singularity, the more complicated
the corresponding link (this observation was first made by K. Brauner). Knots and links
arising in this way are called knots of singularities, and were studied extensively by Milnor,
the standard resource on the subject still being [13]. Here’s one thing to think about: the
figure-8 knot 41 does not arise as a complex knot singularity. Can you think of how you
would prove something like this?

• One more connection I want to mention, already somewhat manifest in our discussion
of elliptic curves over k = C above, is the relationship between algebraic geometry and
complex analysis. Classically, these subjects were not considered separate at all, with
the main focus being the study of complex algebraic curves. The idea is that if X ⊂ P2

C
is a smooth curve, then X is a compact complex manifold of dimension one–a Riemann
surface. By a topological classification theorem of orientable closed surfaces, each such X
is a g-holed torus for some g ≥ 0 (think of a the surface of a donut with g holes; the case
g = 0 is the sphere, and g = 1 the standard torus). This integer g–called the genus of
the curve X–is directly computable from X and contains a lot of information about it. If
X ⊂ P2

C is a smooth curve of degree d, then the genus of X can be shown to be
(
d−1
2

)
. One

piece of information contained in g is about a natural geometry on X. It turns out that
any compact Riemann surface carries in a natural way a metric, which for g = 0, 1,≥ 2
corresponds to round, flat, and hyperbolic metrics. The round case corresponds to g = 0
being X ∼= P1

C, which is topologically a sphere (the Reimann sphere). The flat case g = 1
corresponds to the case of plane cubics–d = 3–which, as mentioned above, are naturally
isomorphic to Riemann surfaces of the form C/Λ for lattices Λ ⊂ C; the flat metric on
the elliptic curve then comes from the Λ-translation-invariant flat metric on C. By far
the most interesting and mysterious case is g ≥ 2, when we have a natural hyperbolic
metric on X, i.e. a metric of constant negative curvature. Much work has been done to
study the moduli theory of such curves, although a complete understanding is far beyond
our means at the moment. Finally, a famous theorem (a generalization of which is due
to Chow) asserts conversely that any complex submanifold X ⊂ P2

C is a smooth algebraic
curve, so in dimension 1 the theory of compact complex manifolds and smooth algebraic
varieties (i.e. curves) are identical (although these theories, importantly, diverge in higher
dimensions).

• There’s a way to bring a lot of the above discussions together–and, indeed, syntheses of
this sort are the biggest triumphs of 20th century algebraic geometry. If X ⊂ P2

Q is a
curve defined over Q, then we can rescale the defining equation of X to have only integer
coefficients in a minimal manner (i.e. such that the minimal polynomial is primitive as a
trivariate polynomial over Z). It then makes sense to talk about not onlyX(Q), but in fact
X(k) for any field k. Under the additional assumption that X(C) is smooth, it turns out
that there is a beautiful relationship between the topology of the curves X(Q), X(C) and
X(Fq) over different q–this is again brought out in detail by the Weil conjectures, which is
a(nother beautiful) story for some other time. Here’s a different punchline I want to leave
you with. The Mordell-Weil theorem mentioned above asserts that if X(C) has genus 1,
then X(Q) is a finitely generated abelian group; this result was shown by Mordell already.
Based on this result (and additional considerations), Mordell conjectured in 1922 that if
X(C) has genus g ≥ 2, then, in fact, X(Q) is finite. This fascinating conjecture remained
open for a while until it was proven by Faltings in 1983. Isn’t this result simply amazing?
Somehow, the “rational part” X(Q) of the complex curve X(C) “sees” the topology of
the complex curve and decides accordingly whether it wants to be very infinite (g = 0),
“somewhat infinite” or finitely generated (g = 1), or finite (g ≥ 2).
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This is a good ending point for this course. I hope you enjoyed and that it has made
you excited to go and learn more algebraic geometry in the future!
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2.1 Exercise Sheet 1

2.1.1 Numerical and Exploration

Exercise 2.1.1. For an ordered pair (a, b) of rational numbers, consider the polynomial

fa,b(x, y) := ax2 + by2 − 1 ∈ Q[x, y].

Let C(a, b) = Cfa,b ⊂ A2
Q be the rational affine plane algebraic curve defined by fa,b.

(a) Show that C(2/5, 1/5) = ∅.
(b) Characterize all primes p such that C(1/p, 1/p) = ∅.
(c) Characterize all pairs (a, b) such that C(a, b) = ∅.

Exercise 2.1.2.

(a) Play around with graphs of real affine plane algebraic curves (RAPACs) on, say, Desmos
or WolframAlpha. What is the coolest thing you can get a graph to do (cross itself thrice,
look like a heart, etc.)?

(b) How many pieces (i.e. connected components) can a RAPAC of degree d = 2 have? How
about d = 3? What about d ∈ {4, 5, 6, 7}?

(c) What can you say in general? Can you come up with upper or lower bounds for the
number of pieces?

(d) Does the number of pieces depend on the nesting relations1 between them? Does it depend
on (or dictate) their shapes (e.g. convexity)?2

Exercise 2.1.3.

(a) Let P ⊂ A2
R be the polar curve implicitly defined by the equation

r3 + r cos θ − sin 4θ = 0.

Find a nonconstant polynomial f(x, y) ∈ R[x, y] such that the curve Cf ⊂ A2
R defined by

f contains P , i.e. satisfies P ⊂ Cf .
3

(b) What is the degree of your f? What is the smallest possible degree of such an f?
(c) By your choice of f , we have the containment P ⊂ Cf . Is P all of Cf? If so, can you

explain why (perhaps by retracing steps)? If not, how would you describe the extraneous
components of Cf ∖P? Could you have predicted them? Can you pick an f that provably
minimizes the number of extraneous components?

(d) Repeat the same analysis as in (a) through (c) for other such implicitly defined polar
curves of your own devising.

(e) Can you perform the same analysis as above for the Archimedean spiral, which is the polar
curve implicitly defined by the equation r = θ?

Draw pictures, or get a computer to draw them for you, but beware–is your software doing
exactly what you think it is?

1What does that mean? What are those?
2Here’s a harder result to whet your appetite: if d = 4 and there is a nested pair of closed ovals, then the

inner oval must be convex and there cannot be more components, although there may be up to 4 non-convex
components in general. You may not be able to prove this now, but you should be able to solve this problem by
the end of the course.

3I like to use the symbol ⊂ to mean “is contained in or equal to”. Others prefer the symbol ⊆ to denote the
same thing. I will use the symbol ⊊ when I want to exclude the possibility of equality.
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Exercise 2.1.4. Consider the surface defined by the equation z3+xz−y = 0, pictured in Figure
2.1. The orthogonal projection of this surface to the xy-plane outlines a cuspidal curve.

(a) Find the equation describing this cuspidal curve, and prove the assertion made above.
(b) How does all of this relate to the Cardano formula for the solution to the cubic equation?

Figure 2.1: The surface z3+xz− y = 0 when orthogonally projected onto the xy-plane outlines
a cuspidal curve. Picture made with Desmos 3D.

Exercise 2.1.5. Can you find a way to use the conchoid of Nichomedes (Example 1.2.14) to
trisect a given angle? You may suppose that you know how to construct a conchoid with any
given parameters. (Hint: see Figure 2.2.) Once you’ve done that, use the cissoid of Diocles to
give a compass and ruler (and cissoid) construction of 3

√
2, or of 3

√
a for any given a > 0. How far

can you take this–what else can you do with the cissoid and conchoids of different parameters?
Why do these constructions not contradict results from Galois theory you may have seen?

Figure 2.2: The Conchoid of Nichomedes and Angle Trisection. Picture made with Desmos and
edited in Notability.
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Exercise 2.1.6. Show that over k = C, every affine conic section, i.e. plane curve defined by a
quadratic polynomial of the form

f(x, y) = ax2 + 2hxy + by2 + 2ex+ 2fy + c ∈ C[x, y]

for some a, b, c, e, f, h ∈ C, not all zero, can be brought by an affine change of coordinates into
one and only one of the following forms:

(a) an ellipse/circle/hyperbola defined by x2 + y2 = 1,
(b) a parabola defined by y = x2, or
(c) a pair of lines defined by xy = 0, or
(d) a double line defined by x2 = 0.

Note that the equivalence of the circle x2+ y2 = 1 and hyperbola x2− y2 = 1 in A2
C uses that C

contains a square root of −1 (how?). Can you come up with a similar classification over k = R?
What about other fields like k = Fq?

2.1.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.1.7. Let k be a field, C ⊂ A2
k be an algebraic curve, and ℓ ⊂ A2

k be a line. Then the
intersection C ∩ ℓ ⊂ A2

k of C and ℓ is finite.

Exercise 2.1.8. Given any field k and function f : k → k, we define its graph to be the subset

Γf := V(y − f(x)) = {(x, f(x)) : x ∈ k} ⊂ A2
k.

(a) When k = R and f(x) = sinx, the graph Γf ⊂ A2
R is an algebraic curve.

(b) When k = R and f(x) = ex, the graph Γf ⊂ A2
R is an algebraic curve.

(c) In the setting of (b), every line ℓ ⊂ A2
R meets Γf in at most two points.

(d) When k = C and f(x) = ex, the graph Γf ⊂ A2
C is an algebraic curve.

[Possible Hints: For (a), see Exercise 2.1.7. For (b), the exponential function grows very fast,
so that your solution to (a) may not work for (b) thanks to (c). You may either use this growth
to your advantage, or you may first solve (d) and use a little bit of complex analysis.]

Exercise 2.1.9 (Apparently Transcendental Curves).

(a) The curve C1 ⊂ A2
R given parametrically as

C1 = {(e2t + et + 1, e3t − 2) : t ∈ R}

is an algebraic curve.
(b) The curve C2 ⊂ A2

R defined by the vanishing of the function f defined by

f(x, y) = x2 + y2 + sin2(x+ y)

is an algebraic curve.

These examples are a little silly, but they illustrate important points (what?). Can we improve
our definition of a plane algebraic curve to avoid such silliness?

Exercise 2.1.10. Given any g(r, c, s) ∈ R[r, c, s], there is a unique polynomial f(x, y) ∈ R[x, y]
such that the polar algebraic curve Pg implicitly defined by g (see §1.2.2) is contained in the
algebraic curve Cf defined by f , i.e. satisfies Pg ⊂ Cf .
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2.2 Exercise Sheet 2

2.2.1 Numerical and Exploration

Exercise 2.2.1. Show that if k is any field of characteristic zero (e.g. k = R or k = C), then the
affine curve C = Cf ⊂ A2

k defined by the vanishing of the polynomial

f(x, y) = y2 − x3 + x ∈ k[x, y]

cannot be parametrized by rational functions, using the following proof outline.

(a) Suppose to the contrary that it can, and use this to produce polynomials f, g, h ∈ k[t]
that satisfy all of the following properties simultaneously:

(i) h ̸= 0 and not all of f, g, h are constant,

(ii) the polynomials f, g, h are coprime as a triple, i.e. that (f, g, h) = (1) in k[t], and

(iii) g2h− f3 + fh2 = 0.

(b) Verify the following matrix identities over the ring k[t] (or equivalently field K = k(t)):

[
f g h
f ′ g′ h′

]
·

−3f2 + h2

2gh
g2 + 2fh

 =

[
f g h
f ′ g′ h′

]
·

gh′ − hg′

hf ′ − fh′

fg′ − gf ′

 =

[
0
0

]
.

Here f ′ denotes the formal derivative4 of f with respect to t, and similarly for g′ and h′.
(c) Show that the 2× 3 matrix [

f g h
f ′ g′ h′

]
has full rank, i.e. that at least one of gh′ − hg′, hf ′ − fh′, fg′ − gf ′ ∈ k[t] is nonzero.
(Hint: Exercise 2.2.11(a).)

(d) Use (b), (c), and basic linear algebra over the field K = k(t) to conclude that there are
relatively prime polynomials p(t), q(t) ∈ k[t] with q(t) ̸= 0 satisfying

q(t) ·

−3f2 + h2

2gh
g2 + 2fh

 = p(t) ·

gh′ − hg′

hf ′ − fh′

fg′ − gf ′

 . (2.1)

(e) Show that the polynomials −3f2 + h2, 2gh, g2 + 2fh ∈ k[t] are coprime as a triple, i.e. in
k[t], we have that

(−3f2 + h2, 2gh, g2 + 2fh) = (1).

Conclude that p(t) is a nonzero constant.
(f) Use the equation (a)(iii) and the matrix equation (2.1) to derive a contradiction. (Hint:

do some case-work on the possible relationships between the degrees of f, g and h.)
(g) Why do the polynomials −3f2 + h2, 2gh and g2 + 2fh show up in this proof? What goes

wrong in the above proof if you try to repeat it for f(x, y) = y2−x3−x2 ∈ k[x, y] instead?
(We showed in Example 1.3.7 that this curve admits a rational parametrization.)

(h) Where in the proof did you use ch k = 0? Investigate what happens in positive charac-
teristic. Is the result still true? If not, can you come up with a parametrization? If yes,
then does the same proof work? If the result is true but the proof doesn’t work, can you
come up with a different proof?

4If you haven’t seen this notion before, then define it.
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This proof due to Kapferer has been adapted from [14]; with minor modifications, the same
proof shows that any over a field k with ch k = 0, any smooth projective curve of degree at
least 3 cannot be parametrized by rational functions. For a different proof of this specific case
using Fermat’s method of infinite descent, see [5, §I.2.2]. In modern algebraic geometry, the
more general result (in arbitrary characteristic) is often seen as a consequence of the Riemann-
Hurwitz formula.

Exercise 2.2.2. Let Ce ⊂ A2
R denote the Cassini curve of eccentricity e ∈ (0,∞) (see Example

1.2.12). For concreteness, you may take Ce := Cfe , where

fe(x, y) :=
(
(x− 1)2 + y2

) (
(x+ 1)2 + y2

)
− e4 ∈ R[x, y].

Show that:

(a) The curve Ce consists of two pieces5 if 0 < e < 1 and one piece if e ≥ 1.
(b) The curve Ce is smooth6 if and only if e ̸= 1.
(c) For e > 1, the unique oval in Ce is convex7 iff e ≥

√
2.

Exercise 2.2.3 (More Parametric Curves). Using the proof strategy from Example 1.3.10 and
Remark 1.3.11 or otherwise, come up with Cartesian equations defining the parametric curves
given by the following parametrizations.

(a) (t4 + 2t− 3, t3 + 2t2 − 5)

(b)

(
t(t2 + 1)

t4 + 1
,
t(t2 − 1)

t4 + 1

)
Now come up with a few examples of your own devising, and repeat the same. Can you write
a program that does these (somewhat tedious) calculations for you?

Exercise 2.2.4 (Resultants). For those who know a little linear algebra, this exercise provides a
different perspective on the resultant of two polynomials than is presented in the Ross set on
this topic (which you should now solve if you haven’t done so previously!).

For a field K and for each integer N ≥ 0, let K[t]N ⊂ K[t] denote the subspace
of polynomials of degree strictly less than N , so that dimK K[t]N = N . Given polynomials
f, g ∈ K[t] of degree m,n ≥ 0 respectively, we can investigate whether or not f and g have a
common factor in K[t] as follows.

(a) Consider the linear map ϕ : K[t]n ×K[t]m → K[t]m+n given by ϕ(u, v) := uf + vg. Show
that f and g have a common factor in K[t] of positive degree iff the map ϕ is not injective.
(Hint: use that K[t] is a UFD.)

(b) Show that if we choose the ordered basis

(tn−1, 0), (tn−2, 0), . . . , (1, 0), (0, tm−1), (0, tm−2), . . . , (0, 1)

of the domain and
tm+n−1, tm+n−2, . . . , 1

5Here the word “piece” means “connected component”.
6What does that mean?
7What does that mean?
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of the range, then the matrix representative of ϕ with respect to these bases is

Syl(f, g) :=



a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . a0

...
...

. . . b0

am am−1 · · ·
... bn bn−1 · · ·

...

0 am
. . .

... 0 bn
. . .

...
...

...
. . . am−1

...
...

. . . bn−1

0 0 · · · am 0 0 · · · bn


,

where f(x) = a0t
m+ · · ·+am and g(x) = b0t

n+ · · ·+bn. This matrix is called the Sylvester
matrix of f and g.

(c) The determinant of the Sylvester matrix of f and g is called the called the resultant of f
and g with respect to t, often written Rest(f, g) or simply Res(f, g), so that

Res(f, g) := det Syl(f, g) ∈ Z[a0, . . . , am, b0, . . . , bn] ⊂ K.

Show, using some basic linear algebra, that f and g share a common factor in K[t] iff

Res(f, g) = 0 ∈ K.

(Hint: the domain and range of ϕ have the same dimension over K.)
(d) Conclude that if K is algebraically closed and a0b0 ̸= 0, then f and g have a common root

t = t0 ∈ K iff
Res(f, g) = 0.

(What happens if a0b0 = 0?) Use this to show that, even if K is not algebraically closed,
and α1, . . . , αm and β1, . . . , βn are roots of f and g, respectively, in some extension field
K ′ ⊃ K of K, then

Res(f, g) = an0b
m
0

m∏
i=1

n∏
j=1

(αi − βj) = an0

m∏
i=1

g(αi) = (−1)mnbm0

n∏
j=1

f(βj).

(e) Let’s do one example computation: show that if m = n = 2 and

f(t) = a1t
2 + b1t+ c1 and

g(t) = a2t
2 + b2t+ c2,

then
Res(f, g) = (a1c2 − a2c1)

2 − (a1b2 − a2b1)(b1c2 − b2c1).

In particular, these quadratic equations have a common root (in K, or if necessary, a
quadratic extension of K) iff this polynomial of degree 4 in the coefficients vanishes.

(f) (Finishing Example 1.3.10.) Show that if u(t), v(t) ∈ k[t] are any nonconstant polynomials
which define the parametric curve

C = {(u(t), v(t)) : t ∈ k} ⊂ A2
k

and if
f(x, y) := Rest(u(t)− x, v(t)− y) ∈ k[x, y],

then C ⊂ Cf with equality if k is algebraically closed.
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Exercise 2.2.5 (Discriminants). Given a field K and a polynomial f(t) ∈ K[t], the discriminant
of f , written disc(f), is the resultant of f and its (formal) derivative f ′ with respect to t, up to
scalar factors. More precisely, if f(t) = a0t

m+ · · ·+ am with aj ∈ K and a0 ̸= 0, then we define

disc(f) :=
(−1)m(m−1)/2

a0
· Res(f, f ′).

Let’s do a few examples.

(a) Show that if f(t) = at2 + bt+ c, with a ̸= 0, then disc(f) = b2 − 4ac.
(b) Show that if f(t) = t3 + pt + q, then disc(f) = −4p3 − 27q2. How does this relate to

Exercise 2.1.4?
(c) Show that if over an extension field K ′ ⊃ K, the polynomial f splits into linear factors as

f(t) = a0

m∏
i=1

(t− αi) ∈ K ′[t]

for some αi ∈ K ′, then

disc(f) = a2n−2
0

∏
1≤i<j≤n

(αi − αj)
2.

(d) Show that the polynomial f(t) has a repeated root over an algebraic closure of K iff
disc(f) = 0. In other words, if there is an α some extension field K ′ ⊃ K and a polynomial
q(t) ∈ K ′[t] such that

f(t) = (t− α)2q(t),

then disc(f) = 0, and conversely, if disc(f) = 0, then we can find such α,K and q.

2.2.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.2.6. For a field k, let Fun(A2
k, k) be the set of all functions F : A2

k → k. Claim: for
any field k, the map

k[x, y] → Fun(A2
k, k), f 7→ Ff

which sends a polynomial to the corresponding polynomial function is injective. In other words,
if two polynomials f, g ∈ k[x, y] agree at all points (p, q) ∈ A2

k, then f = g.

Exercise 2.2.7. If k is any infinite field and C ⊂ A2
k an algebraic curve, then the complement

A2
k ∖ C

of C in A2
k is infinite.

Exercise 2.2.8. A field is algebraically closed if and only if it is infinite.

Exercise 2.2.9. For any field k, if f, g ∈ k[t] are polynomials such that

f(t)2 + g(t)2 = 1

as polynomials, then f(t) and g(t) are constant. In other words, the “unit circle” C ⊂ A2
k does

not admit a polynomial parametrization.

Exercise 2.2.10 (Separability). For any field K and polynomial f(t) ∈ K[t], we say that f is
separable if an algebraic closure of K separates the roots of f , i.e. that disc(f) ̸= 0 ∈ K. (See
Exercise 2.2.5.) Claim: for any field K and f(t) ∈ K[t], the polynomial f is separable if and
only if it is irreducible as an element of the ring K[t].
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Exercise 2.2.11 (Wronskians).

(a) For any field k and polynomials f, g ∈ k[t] in one variable t over k, we have fg′ = gf ′ iff
there are α, β ∈ k, not both zero, such that αf + βg = 0. Here, as before, f ′ (resp. g′)
denotes the formal derivative of f (resp. g) with respect to t.

(b) More generally, for any field k, integer n ≥ 1, and polynomials f1, . . . , fn ∈ k[t] in one
variable t over k, the determinant

W (f1, . . . , fn) = det


f1 f2 · · · fn
f ′
1 f ′

2 · · · f ′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

 ∈ k[t]

vanishes (i.e. we have W (f1, . . . , fn) = 0 as a polynomial) iff the f1, . . . , fn ∈ k are linearly
dependent, i.e. there are α1, . . . , αn ∈ k, not all zero, such that

α1f1 + α2f2 + · · ·+ αnfn = 0.

Here, for any f ∈ k[t] and j ≥ 0, the symbol f (j) denotes the jth formal derivative of f
with respect to t, so that f (0) = f and we have f (1) = f ′, f (2) = f ′′, etc.
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2.3 Exercise Sheet 3

2.3.1 Standard Exercises

Exercise 2.3.1 (Eisenstein’s Irreducibility Criterion).

(a) Let R be a domain, let f ∈ R[t] have degree n ≥ 1, and write f = a0t
n+a1t

n−1+ · · ·+an
for a0, . . . , an ∈ R with a0 ̸= 0. Show that if there is a prime ideal P ⊂ R such that
(i) a0 /∈ P ,
(ii) for each j with 1 ≤ j ≤ n we have aj ∈ P , and
(iii) an /∈ P 2,
then f cannot be written as a product of two nonconstant polynomials in R[t]. In partic-
ular, if f is primitive, the existence of such a P implies that f irreducible.

(b) Show that for each integer r ≥ 1 and integer prime p > 0, the prime-power cyclotomic
polynomial

Φpr(t) :=
tp

r − 1

tpr−1 − 1
=

p−1∑
j=0

tp
r−1j ∈ Z[t]

is irreducible. (Hint: an f(t) ∈ R[t] is irreducible iff for some a ∈ R, the shift f(t+ a) is.)
(c) Show that the polynomial f(x, y) = x2 + y2 − 1 ∈ Q[x, y] is irreducible.
(d) Show that if k is any field, then the polynomial f(x, y) = y2−x3+x ∈ k[x, y] is irreducible.
(e) Given a field k, an integer n ≥ 1, and a polynomial p(x) ∈ k[x] of x alone, can you come

up with a criterion for the irreducibility of the polynomial f(x, y) := yn − p(x) ∈ k[x, y]?

Exercise 2.3.2.

(a) Show that if R is any integral domain, then any prime element of R is irreducible.
(b) Show that if R is a UFD, then any irreducible element of R is prime as well, so that the

terms “prime” and “irreducible” mean the same thing in UFDs.
(c) Show that the ring R := C[x, y, z]/(z2 − xy) is an integral domain and that the class of z

in R is an irreducible element that is not prime. Conclude that R is not a UFD.

Exercise 2.3.3. Show that if k is an algebraically closed field and p ⊂ k[x, y] is a prime ideal,
then one and exactly one of the following holds:

(a) p = (0);
(b) there is an irreducible f ∈ k[x, y] such that p = (f);
(c) there are p, q ∈ k such that p = (x− p, y − q).

Compare with your knowledge of the prime ideals of Z[x]. Can you prove an analogous result
for prime ideals of R[t] for any PID R? Also, what happens if k is not algebraically closed?

Exercise 2.3.4. Let k be an algebraically closed field, and C ⊂ A2
k be a curve of degree n ≥ 2.

(a) Show that if P ∈ C is such that mP (C) = n, then C is a union of n lines through P .
(b) Conclude that if C is irreducible, then for any point P ∈ C, the multiplicity of C at P

satisfies
1 ≤ mP (C) ≤ n− 1.

In particular, any irreducible conic C ⊂ A2
k is smooth.

(c) Show that if C is irreducible and if some P ∈ C has multiplicity mP (C) = n− 1, then C
admits a rational parametrization.

Finally,

(d) For each n ≥ 2 and integer j with 1 ≤ j ≤ n− 1, find an irreducible curve C ⊂ A2
k and a

point P ∈ C such that mP (C) = j.
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Exercise 2.3.5. (Taken from [3, Problems 3.22-23].) Let k be an algebraically closed field,
C = Cf ⊂ A2

k be a curve, and P ∈ C.

(a) Suppose that mP (C) ≥ 2 and that C has a unique tangent line Cℓ at P . Show that
iP (f, ℓ) ≥ mp(C)+1. The curve C is said to have an ordinary hypercusp of order n := mp(C)
at P if equality holds; a hypercusp of order n = 2 is called simply a cusp.

(b) Suppose we pick coordinates so that P = (0, 0) and ℓ = y. Show that if ch k ̸= 2, 3, then
P is a cusp iff ∂3f/∂x3|P ̸= 0. Use this to give examples. What happens if ch k ∈ {2, 3}?

(c) Show that if P is a cusp of C, then there is only one component of C through P .
(d) Generalize (b) and (c) to the case of hypercusps.

2.3.2 Numerical and Exploration

Exercise 2.3.6. (Adapted from [3, Problem 3.2].) Suppose k = C. Find the multiple points,
and the tangent lines at the multiple points, for each of the following curves:

(a) y3 − y2 + x3 − x2 + 3xy2 + 3x2y + 2xy,
(b) x3 + y3 − 3x2 − 3y2 + 3xy + 1,
(c) (x2 + y2 − 3x)2 − 4x2(2− x), and
(d) (x2 + y2 − 1)m + xnyn for m,n ≥ 1.

Be sure to draw (or get a computer to draw) tons of pictures! Which of you answers change in
positive characteristic, and what are the answers there?

Exercise 2.3.7. Let k = C and P = (0, 0). Consider the affine plane curves Ci containing P
defined by the polynomials fi for 1 ≤ i ≤ 7 below:

(i) f1 = y − x2,
(ii) f2 = y2 − x3 + x,
(iii) f3 = y2 − x3,
(iv) f4 = y2 − x3 − x2,
(v) f5 = (x2 + y2)3 + 3x2y − y3,
(vi) f6 = (x2 + y2)3 − 4x2y2, and
(vii) f7 = (x2 + y2 − 3x)2 − 4x2(2− x).

For each pair of integers i, j with 1 ≤ i < j ≤ 7, compute the local intersection multiplicity
iP (fi, fj) of Ci and Cj at P . What patterns do you observe? Make some conjectures.

Exercise 2.3.8. Over a field k = k, how many singular points can a curve C ⊂ A2
k of degree

n ≥ 1 have? Come up with an upper bound and a conjecture for when it is achieved.

2.3.3 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.3.9. A cubic curve C ⊂ A2
k over a field k can have at most one singular point.

Exercise 2.3.10. Given a field k, an integer n ≥ 1, and a polynomial p(x) ∈ k[x], the curve
Cf ⊂ A2

k defined by the vanishing of the polynomial

f(x, y) := yn − p(x) ∈ k[x, y]

is smooth iff the polynomial p(x) is separable, i.e. disc(p) ̸= 0.8

8See Exercise 2.2.10. When ch k ̸= 2, smooth curves of the form Cf with n = 2 are called hyperelliptic curves.
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2.4 Exercise Sheet 4

2.4.1 Numerical and Exploration

Exercise 2.4.1. What can you say about DerQ
(
Q[

√
−3]

)
? DerQ(Q[

√
7, cos(2π/5)])? DerR(C)?

DerQ(Q[π])? DerQ(C)? DerFp(t)(Fp(t)[s]/(s
p − t))? What about Derk K, where k is any field

and K = Frac k[x, y]/(f) for f = y, y − x2, y2 − x3, y2 − x3 + x? Make (and prove) conjectures.

Exercise 2.4.2. (Adapted from [3, Exercise 5.2].) Define what it means for a projective plane
curve to be irreducible. For each of the following polynomials F , identify whether the projective
curve CF ⊂ P2

k is irreducible, find all the multiple points, their multiplicities, and tangent lines
at the multiple poins.

(a) XY 4 + Y Z4 + ZX4.
(b) X2Y 3 + Y 2Z3 + Z2X3.
(c) Y 2Z −X(X − Z)(X − λZ) for λ ∈ k.
(d) Xn + Y n + Zn for n ≥ 1.

What is the relationship between the irreducibility of F and that of CF ? Do your answers
depend on the characteristic of the base field?

Exercise 2.4.3. (Adapted from [3, Exercise 5.3].) Find all points of intersection of the following
pairs of curves, and the intersection numbers at these points.

(a) X2 + Y 2 − Z2 and Z.
(b) (X2 + Y 2)Z +X3 + Y 3 and X3 + Y 3 − 2XY Z.
(c) Y 5 −X(Y 2 −XZ)2 and Y 4 + Y 3Z −X2Z2.
(d) (X2 + Y 2)2 + 3X2Y Z − Y 3Z and (X2 + Y 2)3 − 4X2Y 2Z2.

Do your answers depend on the base field?

Exercise 2.4.4 (Singular Plane Cubics). Let F ∈ k[X,Y, Z] be an irreducible homogeneous cubic
polynomial, and suppose that C = CF has a cusp at a point P ∈ C (see Exercise 2.3.5).

(a) Show that there is a projective change of coordinates such that P = [0 : 0 : 1] and TPC
is defined by Y = 0. Show that in these coordinates,

F = Y 2Z −AX3 −BX2Y − CXY 2 −DY 3

for some A,B,C,D ∈ k with A ̸= 0, up to scaling F by a nonzero scalar.
(b) Find a projective change of coordinates to make C = D = 0. In other words, find a

projective change of coordinates ϕ : P2
k(X1, Y1, Z1) → P2

k(X,Y, Z) such that we have
ϕ∗F = Y1Z

2
1 −AX3

1 −BX2
1Y .

(c) Now suppose that k is algebraically closed (or even that k× = (k×)3, i.e. that every
nonzero element is a cube) and also that ch k ̸= 3. Find a projective change of coordinates
to make A = 1 and B = 0. Conclude that when k satisfies the above hypotheses (e.g.
k = C or k = F5), there is a unique cuspidal plane cubic up to projective changes of
coordinates, and this has no other singularities. What happens when these hypotheses on
k are not satisfied?

(d) Similarly, show that under suitable hypotheses on k, there is a unique nodal plane cubic
up to projective changes of coordinates, and this has no other singularities. Explore what
happens when these hypothesis on k do not apply.

(e) Give at least two proofs of the following fact: under suitable hypothesis on the base field
k, any irreducible projective plane cubic is either nonsingular, or has at most one singular
point of multiplicity at most 2, which must be either a node or a cusp. (Hint: For one,
use (c) and (d). For the other, use the correct salvage of Exercise 2.4.9 below.)
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(f) What can you say about irreducible singular plane quartic curves? Can you come up with
a similar clasification? What about singular plane quintic curves? Can you explore and
make some general conjectures?

Exercise 2.4.5 (Hessian). (Adapted from [4, Exercise 3.29].) Let F ∈ k[X,Y, Z] be a homoge-
neous polynomial. We define the Hessian polynomial of F to be

Hess(F ) := det

 ∂2F/∂X2 ∂2F/∂X∂Y ∂2F/∂X∂Z
∂2F/∂X∂Y ∂2F/∂Y 2 ∂2F/∂Y ∂Z
∂2F/∂X∂Z ∂2F/∂Y ∂Z ∂2F/∂Z2

 .

(a) Show that if Φ : P2
k(X

′, Y ′, Z ′) → P2
k(X,Y, Z) is a projective change of coordinates and

we pick a lift Φ∗ : k[X,Y, Z] → k[X ′, Y ′, Z ′] representing it, then, then we have that
Hess(Φ∗F ) = C ·Φ∗(Hess(F )) for some nonzero constant C. What is C in terms of F and
Φ∗?

(b) Compute the Hessian for

Fλ := Y 2Z −X(X − Z)(X − λZ),

where λ ∈ k, and describe the intersection CFλ
∩ CHess(Fλ)? (If the general case is too

hard, can you do this for some special values of λ?)
(c) Show that if ch k ̸= 2, 3, if F is irreducible of degF ≥ 2 and if P ∈ CF is a smooth point

of CF , then P ∈ CF ∩ CHess(F ) iff iP (CF ,TPCF ) ≥ 3. Such a point is called an inflection
point of CF .

(d) How many inflection points can a smooth curve of degree 2 have? What about 3? 4? 5?
Find patterns and make some conjectures.

See also [3, Exercises 5.23-24].

2.4.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.4.6. If k is any field and f ∈ k[t] a nonconstant polynomial, then ∂tf ̸= 0.

Exercise 2.4.7. If k is any infinite field and C ⊂ P2
k a projective plane curve, then C is infinite.

Exercise 2.4.8. Given any two ordered sets of nonconcurrent lines (L1, L2, L3) and (L′
1, L

′
2, L

′
3)

in P2
k, there is a unique projective change of coordinates ϕ : P2

k → P2
k such that ϕ(Li) = L′

i for
i = 1, 2, 3.

Exercise 2.4.9 (Bézout’s Theorem for a Line). If k is any field and C ⊂ P2
k a projective curve

of degree n ≥ 1 with minimal polynomial F ∈ k[X,Y, Z]n, then for any line CL ⊂ P2
k where

L ∈ k[X,Y, Z]1, we have ∑
P∈CF∩L

iP (F,L) = n.

Exercise 2.4.10. If F ∈ k[X,Y, Z] is a nonconstant homogenous polynomial, the the projective
curve CF defined by F is irreducible iff F is.
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2.5 Exercise Sheet 5

2.5.1 Standard Exercises/Numerical and Exploration

Exercise 2.5.1. Given a nonempty finite set S ⊂ P2
k of points in P2

k, let d(S) be the smallest
degree of a curve C ⊂ P2

k through S, i.e. such that C ⊃ S. Let’s investigate the relationship
between S, its size n := #S, and the integer d(S).

(a) Show that if n ∈ {1, 2}, then d(S) = 1.
(b) Show that if n ∈ {3, 4}, then d(S) ∈ {1, 2}. When does each case hold?
(c) Show that if n = 5, then d(S) ∈ {1, 2}, or equivalently that given any five distinct points

P1, . . . , P5 ∈ P2
k, there is at least one (possibly reducible) conic C ⊂ P2

k passing through
each Pi.

(d) Show that, in general, we have

1 ≤ d(S) ≤
⌈√

9 + 8n− 3

2

⌉
,

where ⌈·⌉ denotes the ceiling function. (Hint: When does a system of N linear equations
in M variables always have a solution that is not identically zero?)

(e) (Cramer’s Theorem) Show that the bound in (d) is sharp in general: for each n ≥ 1, come
up with a collection S of n points such that d(S) equals the upper bound from (d). Can
you characterize the sets S for which this equality holds? What possible intermediate
values of d(S) are possible?

Exercise 2.5.2. Let k be a field.

(a) Suppose ch k ̸= 2, and consider the collection of 9 points S := {(i, j) ∈ A2
k : 0 ≤ i, j ≤ 2}.

How many distinct cubic curves C ⊂ A2
k pass through S? (Hint: by Exercise 2.5.1(d),

there is at least one such C. Does your answer change if the question is about projective
cubics instead? Does the choice of base field matter? Can you come up with an analog if
ch k = 2?)

(b) Can you formulate an analog of (a) for a configuration of n2 points

S := {(i, j) ∈ A2
k : 0 ≤ i, j ≤ n− 1},

where n ≥ 2 is any integer (say when ch k = 0 for convenience)?

Exercise 2.5.3 (More on Pascal). (Adapted from [3, Exercise 5.31].) If in Pascal’s Theorem, we
let some adjacent vertices coincide (the side being tangent), then we get many new theorems.

(a) State and sketch what happens if P1 = P2, P3 = P4 and P5 = P6.
(b) Let P1 = P2 and the other four points be distinct. Deduce a rule for constructing a

tangent to a given conic at a given point, using only a straight-edge.

Exercise 2.5.4. Let C ⊂ P2
k be a curve of degree d over an algebraically closed field k.

(a) Make sense of the following statement: a “general” line L ⊂ P2
k intersects C in exactly d

distinct points.
(b) Given a “general” point P ∈ P2

k, how many lies through P are tangent to C?

(Hint: How is this exercise is related to Exercises 2.5.8, 2.5.9, and 2.5.10? For (b), you may
suppose for convenience that ch k = 0. What happens in positive characteristic?)

Exercise 2.5.5. Let k be an algebraically closed field, and let C ⊂ P2
k be a smooth cubic curve.

(a) Show that C has exactly 9 inflection points. The set of inflection points on C is usually
denoted by C[3]. (Hint: Exercise 2.4.5. You may assume ch k ̸= 2, 3 for convenience.)
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(b) Show that C[3] is not contained in a line, but any line passing through any two points in
C[3] passes through a third point in C[3]. Why does this not violate the Sylvester-Gallai
Theorem?

(c) Suppose that ch k ̸= 3. Show that by a projective change of coordinates, we can bring
C[3] to be the nine points

[0 : 1 : ξ], [ξ : 0 : 1], [1 : ξ : 0],

where ξ runs over the three roots of t3 + 1 = 0 in k.9

(d) Keeping the hypothesis that ch k ̸= 3, show that every cubic curve passing through the 9
points from (c) has the equation

FΛ = λ(X3 + Y 3 + Z3) + 3µXY Z ∈ k[X,Y, Z]

for some Λ := [λ : µ] ∈ P1
k. This curve is singular iff Λ is either [0 : 1] or [1 : ξ] where

ξ3+1 = 0. In each of these cases the curve CΛ := CFΛ
degenerates into a product of three

lines. If CΛ is irreducible, then the flexes of CΛ are exactly the 9 points above.
(e) Conclude, using either (b) or both (c) and (d), that if k = C, then

# (C[3] ∩ C(R)) ≤ 3,

i.e. at most three of the flexes of a complex smooth cubic curve can be real. Come up
with a curve C for which this bound is achieved. Can this intersection have fewer than 3
points? Can it have exactly 2?

Exercise 2.5.6. If f, g ∈ k[x, y] are nonconstant polynomials and P ∈ A2
k, then

iP (f, g) ≥ mP (f) ·mP (g).

When does equality hold? (This is a very hard exercise, and you may not be able to do it with
the tools we have developed so far; nonetheless, it is very valuable to work out special cases.
Try doing the case when f or g is linear. Next, try the case when mP (f) = 1 or mP (g) = 1.
Finally, see how far you can extend your techniques to the next (or general) case; once you’ve
done that, see [3, §3.3, Theorem 3] or [15, Theorem 7.4].)

2.5.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.5.7 (Braikenridge-Maclaurin Theorem/Converse to Pascal’s Theorem). If the intersec-
tion points of opposite sides of a hexagon lie on a straight line, then the vertices of the hexagon
lie on a conic.

Exercise 2.5.8. (Adapted from [3, Exercise 5.26].) If C ⊂ P2
k is a curve of degree n ≥ 1, and

P ∈ P2
k a point of multiplicity m := mP (C) ≥ 0, then for all but finitely many lines L through

P , the line L intersects C in n−m distinct points other than P .

Exercise 2.5.9. Given a curve C ⊂ P2
k and a point P ∈ P2

k, there is at least one tangent line L
to C that does not pass through P .

Exercise 2.5.10 (Dual Curve). Let C ⊂ P2
k be a curve. Let

C∗ := {L ∈ P2∗
k : L is tangent to C at some point P ∈ C} ⊂ P2∗

k .

Then C∗ ⊂ P2∗
k is a curve, and C∗∗ = C. (Hint: Can you work out a few examples in low

degrees? What is the relationship between the degrees of C and C∗?)

9That these roots are distinct uses ch k ̸= 3.
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2.6 Exercise Sheet 6

2.6.1 Numerical and Exploration

Exercise 2.6.1 (Brianchon’s Theorem). Let C ⊂ P2
k be a smooth conic, and (L1, . . . , L6) an

ordered six-tuple of pairwise distinct lines tangent to it. For i = 1, . . . , 6, let Pi := Li ∩ Li+1,
where L7 := L1, and for 1 ≤ i < j ≤ 6, let Mij denote the line joining Pi and Pj .

(a) Show that the lines M14,M25 and M36 are concurrent. See Figure 2.3.
(b) How many such distinct configurations can you produce from an unordered set of 6 distinct

lines L1, . . . , L6?
(c) Explore what happens when some of the lines L1, . . . , L6 “collide”–what theorems can you

obtain then?

(Hint: Theorem 1.13.5 and Exercise 2.5.10.)

Figure 2.3: Brianchon’s Theorem. Picture made with Geogebra.

Exercise 2.6.2. Suppose that k is an algebraically closed field of characteristic other than 2.
Show that there are, up to projective changes of coordinates, exactly 8 types of pencils of conics
in P2

k, as described in Example 1.15.7. Explore what happens when k is not algebraically closed
or has characteristic 2.

Exercise 2.6.3. Solve, by hand, the quartic equation

x4 − 4x3 − 22x2 + 116x− 119 = 0

over an arbitrary field k. In other words, given a arbitrary field k, determine how many roots
this equation has in k and what are their multiplicities are. (Hint: Example 1.15.11.)

Exercise 2.6.4. Suppose that k is a field of characteristic other than 2 or 3.

(a) For each α ∈ k, let Fα := X3 + Y 3 + αZ3 ∈ k[X,Y, Z], and let Eα := CFα be the
corresponding cubic curve. Show that when α ̸= 0, the curve Eα is smooth, and so
becomes an elliptic curve when equipped with the base point O = [1 : −1 : 0].

(b) Find a projective change of coordinates that brings Eα into Weierstrass normal form, and
use this to find j(Eα) as a function of α.

(c) Next, suppose that k = Q. Determine Eα(Q), i.e. the Q-rational points of Eα for
α ∈ {±1,±2}. Show that if α is an integer other than ±1,±2, then Eα(Q) is infinite.
Conclude that for each integer α other than ±1,±2, there are infinitely many coprime
triples (X,Y, Z) of integers such that X3 + Y 3 + αZ3 = 0.

116



Chapter 2. Exercise Sheets

(d) Using a computer, determine #E1(Fp), i.e. the number of points on E1 over the finite field
k = Fp with p elements, for all primes p ∈ [5, 1000]. What patterns do you observe? Make
conjectures, and prove them. (Hint: Consider the cases p ≡ 1, 2 (mod 3) separately.)

Exercise 2.6.5. (Adapted from [10, Exercise 1.18].) Consider the elliptic curve E defined in
Weierstrass normal form by

y2 = x3 + 17

over k = Q. Note that E contains the rational points

Q1 = (−2, 3), Q2 = (−1, 4), Q3 = (2, 5), Q4 = (4, 9), and Q5 = (8, 23).

(a) Show that Q2, Q4 and Q5 can be expressed as mQ1 + nQ2 for appropriate choices of
m,n ∈ Z.

(b) Compute the points Q6 = −Q1 + 2Q3 and Q7 = 3Q1 −Q3.
(c) Notice that the points Q1, . . . , Q7 and there inverses all have integer coordinates. There is

exactly one more rational point Q8 on this curve that has integer coordinates and y > 0.
Find it.

If you are up for a real challenge, here are a few more things to think about in this example:

(d) Show the claim made in (c) about the set of all integral points on E.
(e) Show that E(Q) ∼= Z2, i.e. there are no nontrivial rational torsion points on E and E(Q)

has rank 2. Can some two of the above points Q1, . . . , Q8 be taken to be two generators
for E(Q), and if so, which ones?

Exercise 2.6.6. (Adapted from [10, Exercise 2.13].) Let k be a field of characteristic other than
2, let t ∈ k, and consider the projective closure Et ⊂ P2

k of the locus defined by

y2 = x3 − (2t− 1)x2 + t2x.

(a) Prove that Et is nonsingular iff t /∈ {0, 1/4}, in which case (Et, O) is an elliptic curve over
k with O = [0 : 1 : 0]. What is j(Et)?

(b) Show that, in the situation in (a), the point (t, t) ∈ E(k) has order 4.
(c) Show that if E ⊂ P2

k is any elliptic curve over a field k of characteristic other than 2 or
3 such that there is a point P ∈ E(k) of order 4, then there is a projective change of
coordinates Φ : P2

k → P2
k such that Φ(E) = Et and Φ(P ) = [t : t : 1] for some t /∈ {0, 1/4}.

(d) For a given pair (E,P ) as in (c), how many values of t work?

2.6.2 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.6.7. If k is a field, and S ⊂ P2
k a finite subset, then there is a line L ⊂ P2

k such that
S ∩L = ∅, i.e. in projective space, a line can be chosen that avoids any finite set of points. Can
we produce two such lines L1, L2? Can we produce n such lines for any n ≥ 1? Can we produce
infinitely many?

Exercise 2.6.8. Every connected component of a real elliptic curve is a subgroup of it under
the elliptic curve addition law. A real elliptic curve is isomorphic as a group (in fact, as a Lie
group10) to the circle group S1 := {z ∈ C : |z| = 1}.

Exercise 2.6.9. Let E ⊂ P2
k be a smooth cubic curve, and let O,O′ ∈ E be two points. There

is a projective change of coordinates Φ : P2
k → P2

k such that Φ(E) = E and Φ(O) = Φ(O′); in

10What’s that?
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particular, as abelian groups, (E,O) ∼= (E,O′). (Hint: For a very strong salvage, consider the
map α : E → E defined as follows. Let LO,O′ intersect E in the third point T , and consider the
map α : E → E which sends a P ∈ E to the third intersection point of the line LP,T with E.)

Finally, here are a couple more really challenging exercises to keep you occupied all
(the rest of) summer.

Exercise 2.6.10 (Division Polynomials). Let R := Z[p, q] be the polynomial ring in two variables
p, q. Take the polynomial f := x3+ px+ q ∈ R[x], and let f ′ = 3x2+ p and f ′′ = 6x be the first
and second formal derivatives of f with respect to x.

(a) Define the sequence (fn)n≥0 of polynomials in R[x] recursively by f0 = 0, f1 = f2 = 1,

f3 := 2f · f ′′ − (f ′)2,

f4 := −16f2 + 4f · f ′ · f ′′ − 2(f ′)3,

f2n+1 := fn+2 · f3
n − 16f2 · fn−1 · f3

n+1 for n ≥ 2 odd,

f2n+1 := 16f2 · fn+2 · f3
n − fn−1 · f3

n+1 for n ≥ 2 even, and

f2n := fn(fn+2 · f2
n−1 − fn−2 · f2

n+1) for n ≥ 3.

For n ≥ 1, we have

fn =

{
nx(n

2−1)/2 + · · · , for n odd, and

(n/2)x(n
2−4)/2 + · · · , for n even,

where · · · denotes terms of lower degree.
(b) The equation y2 = f defines an elliptic curve E in Weierstrass normal form (over k =

Q(p, q) or over any field k of characteristic other than 2 when given specific p, q ∈ k such
that 4p3 + 27q2 ̸= 0 ∈ k). In this case,

gcd(fn, f · fn+1 · fn−1) = (1)

when n is odd and
gcd(f · fn, fn+1 · fn−1) = (1)

when n ≥ 2 is even.
(c) If P = (x, y) ∈ E, then the coordinates of nP ∈ E are given as

nP =

(
x− 4 · f · fn+1 · fn−1

f2
n

, y · f2n
f4
n

)
when n is odd and

nP =

(
x− fn+1 · fn−1

4f · f2
n

, y · f2n
16f2 · f4

n

)
when n is even.

(d) Now fix an n ≥ 1, and suppose that k is an algebraically closed field with ch k ∤ 2n.
(1) For P = (x, y) ∈ E, we have nP = O iff the x-coordinate x(P ) of P satisfies fn(x) = 0

when n is odd or satisfies f(x) · fn(x) = 0 when n is even.

(2) When n is odd, the polynomial fn is separable, and when n is even, the polynomial
f · fn is separable (Exercise 2.2.10).

(3) There are exactly n2 points of order dividing n in E, and, in fact, we have

E[n] ∼= Z/n× Z/n.

(Hint: If G is an abelian group of order n2 for some n ≥ 1 such that for each divisor
d | n we have #G[d] = d2, where G[d] ⊂ G is the subgroup of all points of order
dividing d, then G ∼= Z/n× Z/n.)
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(e) Now suppose that p, q ∈ R. How many real roots can f3(x) ∈ R[x] have? Use this to give
another solution to Exercise 2.5.5(e).

Exercise 2.6.11 (Elliptic Divisibility Sequences). (Adapted from [9, Exercises 3.34-3.36].) Let k
be a field. A (nondegenerate) elliptic divisibility sequence (EDS) over k is a sequence a = (an)n≥1

defined by four initial parameters a1, a2, a3, a4 with a1a2a3 ̸= 0 subject to the recursive relations

a2n+1 =
1

a31

(
an+2a

3
n − an−1a

3
n+1

)
, and

a2n =
1

a21a2
an(an+2a

2
n−1 − an−2a

2
n+1)

for all n ≥ 2.

(a) The sequence a defined by an = n is an EDS. The sequence a defined by an = Fn, where
Fn is the nth Fibonacci number, is an EDS. More generally, given a1, a2, x, y ∈ k, the
sequence a defined by the linear recursive relation

an = xan−1 + yan−2

for n ≥ 2 is an EDS.
(b) If (an)n≥1 is an EDS, then for each m ≥ 1 such that am ̸= 0, so is the sequence

(amn/am)n≥1. An EDS such that a1 = 1 is said to be normalized; given any sequence
a we define its normalization ã to be given by ãn = an/a1 for n ≥ 1. Given a normalized
EDS (an)n≥1, we define its discriminant to be

∆ := a4a
15
2 − a33a

12
2 + 3a24a

1
20− 20a4a

3
3a

7
2 + 3a34a

5
2 + 16a63a

4
2 + 8a24a

2
3a

2
2 + a44.

We say that a EDS is singular if the discriminant of its normalization is zero; else it is said
to be nonsingular. Which of the sequences from (a) are nonsingular?

(c) Let E : y2 = x3 + px + q be an elliptic curve over k, and let P = (x0, y0) ∈ E(k). The
sequence a = (an)n≥1 defined by

an =

{
fn(x0) n odd, and

2y0 · fn(x0), n even,

is an EDS, where the polynomials fn are as in Exercise 2.6.10. What is the discriminant
of (the normalization of) this sequence an? Is this sequence singular?

(d) The sequence a = (an)n≥1 is an EDS iff for each m > n > r > 0, we have

am+nam−na
2
r = am+ram−ra

2
n − an+ran−ra

2
m.

(e) Now suppose that k = FracR for some integral domain R, and let a = (an) be an EDS
over k such that a1, a2, a3, a4 ∈ R and such that a1 | ai for i = 2, 3, 4 and a2 | a4. Then a
is a divisibility sequence in the sense that each an ∈ R and if m,n ≥ 1 are integers, then

m | n ⇒ an | am.

If, further, R is a PID and gcd(a3, a4) = 1, then for all m,n ≥ 1 we have

agcd(m,n) = gcd(am, an),

up to units. In particular, these properties hold for the Fibonacci sequence Fn.
(f) Finally suppose that k = R. Suppose that a is a nonsingular, non-periodic EDS. Then

there is a real number h > 0 such that

lim
n→∞

log |an|
n2

= h.
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